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Review Article 

Review of “grey box” lifetime modeling for lithium-ion battery: Combining 
physics and data-driven methods 
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a Department of Energy, Aalborg University, Aalborg 9220, Denmark 
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A R T I C L E  I N F O   
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A B S T R A C T   

Lithium-ion batteries are a popular choice for a wide range of energy storage system applications. The current 
motivation to improve the robustness of lithium-ion battery applications has stimulated the need for in-depth 
research into aging effects and the establishment of lifetime prediction models. This paper reviews different 
combination approaches of physics-based models and data-driven models. The three basic physics-based battery 
lifetime models are introduced, and requirements and features are compared from an application perspective. 
Then, state-of-the-art approaches for integrating physics and data-driven methods are systematically reviewed. 
Flowcharts present each approach to offer the readers a clear understanding. Next, the publication trends are 
represented by line graphs, and pie charts, including data-driven assisted physical models and physics-guided 
data-driven, different physical model applications, and data-driven approaches. It is concluded that electro
chemical models have great potential to describe complex aging behavior under various conditions. Moreover, 
machine learning is a promising tool to overcome mechanistic absence and highly nonlinear performance, 
occupying 78 % of all data-driven methods. Physics-guided data-driven approach started to emerge as an 
innovative lifetime prediction method after 2020. The application advantages and limitations are compared 
according to the description of different methods. Furthermore, future perspectives are discussed, with oppor
tunities and challenges. The Prospect of applying physics-guided machine learning looks forward to more 
inspiration.   

Abbreviations: ANN, artificial neural network; BMS, battery management system; BTMS, battery temperature management system; BOL, beginning of life; CDKF, 
central differential Kalman filter; CT, computerized tomography; DAE, differential algebraic equations; DNN, deep neural network; DRA, discrete-time realization 
algorithm; DRT, distribution function of relaxation times; ECM, equivalent circuit model; EIS, electrochemical impedance spectroscopy; EKF, extended Kalman filter; 
EM, electrochemical model; EnKF, ensemble Kalman filter; EODV, end-of-discharge voltage; EST, energy storage technology; ETNN, electrochemical-thermal-neural 
network; EV, electric vehicle; FLW, finite length warburg; FNN, feedforward neural network; FSW, finite space warburg; GA, genetic algorithm; GHPF, Gauss-Hermite 
particle filter; GITT, galvanostatic intermittent titration technique; GPR, Gaussian process regression; IEKF, iterative extended Kalman filter; IMM, interacting- 
multiple-model; KF, Kalman filter; LASSO, least absolute shrinkage and selection operator; LiB, lithium-ion battery; LS, least squares; LSTM, long short-term memory; 
Mask R-CNN, mask regional convolutional neural network; MC, Monte Carlo; MCMC, Markov Chain Monte Carlo; ML, machine learning; MLP, multi-layer per
ceptron; MOA, multi optimization analysis; NODE, neural ordinary differential equations; OCV, open circuit voltage; ODE, ordinary differential equation; P2D, 
Persudo two dimension; PCDNN, physics-constrained deep neural network; PC, polynomial chaos; PDEs, partial differential equations; PDF, probability density 
function; PEM, point estimate method; PF, particle filter; PHM, prognostics and health management; PINN, physics-informed neural network; PITT, potentiostatic 
intermittent titration technique; RBPF, Rao–Blackwellized PF; RLS, recursive least squares; RMSE, root mean square error; RNN, recurrent neural network; ROM, 
reduced-order model; RUL, remaining useful life; RVM, relevance vector machines; SEI, solid electrolyte interphase; SEM, Scanning Electron Microscope; SOA, single 
optimization analysis; SOC, state-of-charge; SOH, state of health; SPKF, Sigma Point Kalman filter; SPM, single-particle model; SPMT, SPM coupled with thermal 
effects; UKF, unscented Kalman filter; UODE, universal ordinary differential equation; UQ, uncertainty qualification; XPS, X-ray photoelectron spectroscopy; XRD, X- 
ray Diffraction. 
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1. Introduction 

With the increasing focus on using clean and renewable resources, 
lithium-ion batteries (LiBs) have attracted a lot of attention for replacing 
fossil fuels because of their high energy density, high charging effi
ciency, long lifetime, low maintenance, and low maintenance self- 
discharge. In recent years, the development of LiBs energy storage 
technology (EST) has been emphasized by different countries' trans
portation and energy sectors. LiB ESTs are the first choice for powering 
the EVs/HEVs power, in the transportation sector. For instance, Tesla is 
using LFP-based prismatic cells as its power source. In the energy sector, 
LiBs EST can enhance the grid integration of renewables by acting as a 
power and energy buffer [1]. However, the capacity/power capability of 
LiBs gradually decreases with the actual operation [2], leading to 
reduced service life and even creating some safety hazards [3]. 

During the long-term operation of LiBs, their performance is 
degrading and can be quantified as capacity y fade, resistance increase, 
and power decrease. Based on the variation of these parameters, batte
ries' State of Health (SOH) is defined as the ratio between their current 
value and the value at the beginning of life (BOL). The lifetime is defined 
as the length of time between the BOL and end of total useful life (i.e., 
when the battery reaches a predefined threshold value such as SOH =
80 %). Accurate estimation of SOH and lifetime is essential for lifetime 
modeling of LiBs and their reliable operation in a certain system or 
application [4,5]. By assessing SOH and predicting lifetime, the per
formance of each cell can be identified, and information on battery 
lifespan can be obtained in advance, thus ensuring the safe and reliable 
operation of the battery system as well as planning maintenance tasks. 

LiBs are considered complex electrochemical systems with strong 
nonlinearity and time-varying properties, where performance degrada
tion at the cell level is mainly based on chemical degradation reactions 
at the electrodes and electrolyte levels. The different degradation 
mechanisms can be divided into lithium inventory loss and active ma
terial loss, resulting in capacity fade and resistance increase [6]. It has 
been shown that solid electrolyte interphase (SEI) and lithium-plated 
film layers formed on the anode electrode are generated by the con
sumption of recyclable lithium ions [7] and can scale up to hundreds of 
nanometres in thickness [8]. The same deposition occurs at the cathode 

as a cathodic electrolyte interphase [9]. In addition, graphite exfolia
tion, adhesive decomposition, electrical contact loss due to current 
collector corrosion, and electrode particle cracking due to mechanical 
stresses [10] lead to the loss of active material [11]. From this point of 
view, an underlying analysis of degradation mechanisms and the con
struction of physical models can help to improve the capabilities of 
assessing LiBs' SOH and lifetime. Despite the challenges of complex 
model parameters identification and online application, enthusiasm for 
physical modeling to guide BMS predictions is well underway [12]. 
When cells are discharged at high C-rates, where C-rate is a measure of 
charging/discharging current compared to rated capacity, the temper
ature rises dramatically, coupling electrochemical reactions that affect 
battery performance. Studies on battery thermal management systems 
(BTMS) [13–15] and cooling technology [16–18] focus on maintaining 
cell temperatures within working ranges to increase service life. 

Data-driven approaches have stepped out in recent years and are 
well positioned to address the shortcomings of physics-based ap
proaches, as they can learn from high-quality data to accurately capture 
the dynamic behavior of batteries with a reasonably low computation 
burden. Data-driven approaches have been classified as machine 
learning methods, filtering techniques, stochastic methods, and time 
series methods [19,20]. However, some stochastic-based methods can 
be regarded as a type of probabilistic machine learning [21,22]. The 
main limitation of data-driven methods is its reliance on sufficient 
training data, which are closely related to battery degradation. With the 
advent of the Big Data era, physical approaches combined with data- 
driven approaches are favored by researchers. Some review papers 
have presented different ways of combining the two aforementioned 
approaches, five of which are summarized in Table 1. These five papers 
focus on the state of the art, comparison, and future prospects of the 
different integration strategies, and mainly discuss interdisciplinary 
hybrid approaches from the view of computer science and material 
science. The physical models for battery lifetime prediction mainly focus 
on electrochemical models and a few equivalent circuit models, not 
enough attention is given to other semi-empirical models. For data- 
driven prediction methods the main focus is on machine learning and 
the description of the way other methods are combined is not deep 
enough. 

Nomenclature 

a specific surface area of the particles 
A total surface area of the battery 
ce electrolyte phase Li-ions concentration 
ce,ref reference electrolyte phase Li-ions concentration 
cs concentration of solid phase Li-ions 
cs,max the maximum concentration of intercalated lithium ions in 

the active material 
cs,surf surface concentration 
Ds solid phase Li-ions diffusion coefficient 

Greek letters 
α charge-transfer coefficient 
εe electrolyte phase volume fraction 
η over potential 
σD

eff effective electrolyte ionic diffusional conductivity 
σe

eff effective electrolyte ionic conductivity 
σs

eff effective solid-phase ionic conductivity 
ϕe current collector electrolyte-phase potential 
ϕS current collector solid-phase potential 
De

eff effective diffusion coefficient 
Eocv electrode open circuit potential 
F Faraday constant 

i0 exchange current density 
Iapp external working current 
jr molar current flux 
Jtot total volumetric current density 
k reaction rate 
r coordinate along the radius of active particles 
R Universal gas constant 
T temperature 
t+0 Li-ions transfer number 
ts sampling period 
x horizontal location in electrodes and separator 

Subscript 
a anode 
app application current 
c cathode 
k the kth time series 
mechanism considering the aging mechanism part 
nonmechanism disregarding the aging mechanism part 
ref reference value 
s solid electrode phase 
sep separator 
surf surface quantity 
0 initial state  
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The main contributions of this paper are listed below:  

• Physics-based lifetime modeling for lithium-ion batteries is classified 
into three broad categories and. The corresponding model flowcharts 
are presented. The requirements and capabilities of these models are 
compared from an application perspective.  

• The combination of physical and data-driven approaches is divided 
into two main categories. The first one is data-driven assisted phys
ical models, termed as physical model prediction is the primary 
driver, and data-driven methods assist it. The other one is physics- 
guided data-driven, where a physical model is used to guide and 
constrain data-driven predictions. The different approaches are 
illustrated with flowcharts.  

• The publication trend of selected papers is presented as line graphs. 
Different trends in the application of physical models and trends in 
the application of data-driven methods are discussed. The re
quirements, advantages and disadvantages of different integration 
methods are compared. Readers can select an appropriate method 
based on their available resources. 

• Future development based on physic guided data-driven are pro
posed. Considering EM-PINN is recognized as a promising direction. 
It is challenging to simultaneously overcome the high complexity of 

EMs and combine it with machine learning to improve the compu
tational efficiency of online applications. 

The rest of this review is organized as follows. Section 2 introduces 
different physics-based models for battery lifetime prediction. Section 3 
focuses on the status of different combinations of physical and data- 
driven forecasting. Then research trends, comparison from resources, 
prons and cons of each combination method and future perspectives are 
presented in Section 4. Finally, Section 5 gives conclusions followed by 
prospects. 

2. Physics-based battery lifetime modeling 

Dynamic modeling is an essential element of battery health man
agement. The SOH of LiBs is influenced by many factors such as tem
perature, charge/discharge current rate, cycle depth, state-of charge 
(SOC) and cut-off voltage etc. It cannot be obtained by direct mea
surement but can be obtained by model assessment. Accurate lifetime 
prediction requires consideration of current SOH, historical usage data, 
and failure mechanism, and still remains a challenge. Considering this 
review mainly focuses on dynamic lifetime prediction from a physical 
perspective, this section discusses the commonly used physics-based 
models, Electrochemical model (EM), Equivalent Circuit model (ECM), 
and semi-empirical model. 

2.1. Electrochemical model 

The most popular used electrochemical model is the P2D model. It 
was designed by Doyle and Newman [28,29] to simulate the whole 
battery behavior, covering all the essential components of lithium-ion 
batteries. The model can be understood as a puncture from the cell 
through five layers in sequence: the negative current collector, the 
anode electrode, the separator, the cathode electrode, and the positive 
current collector. The “2D dimension” refers to the dimension along the 
x-direction of electrode thickness and the r-direction of the particle 
radius inside the porous electrode. The basic modeling process simplifies 
the reaction internal to the cell in 4 steps.  

• The conductivity of the positive and negative electrode collectors 
tends to infinity, and there is no significant change in conductivity in 
the y-axis and z-axis directions.  

• The active electrode material consists of a porous structure with 
uniform distribution of spherical particles to avoid inhomogeneous 
structure and distributing particles of active material.  

• The double-layer effect is ignored to simplify the distribution state of 
lithium ions on the electrolyte and electrode surface.  

• The ionic transport in the electrolyte only includes diffusion and 
electromigration, and convection is not considered. 

The P2D model follows mass conservation, where the substance is 
constant before and after the reaction, and charge conservation, where 
the current is equal to the sum of the solid and liquid phase currents at 
any given moment [30]. Mass transfer refers to the motion of lithium 
ions occurring within the electrolyte and active material particles; 1) 
Using the Nernst-Planck equation to describe the diffusion process, 
where the diffusion process is related to the lithium-ion concentration 
gradient, and the liquid phase diffusion coefficient, and the migration 
process is related to the liquid phase potential distribution and con
centration distribution. 2) Using Fick's law to describe the diffusion 
process of lithium ions within the solid phase particles, where the re
action rate of the process is related to the solid phase diffusion coeffi
cient and the concentration gradient of lithium ions from the solid 
phase. The charge transfer originates at the surface of the electrode 
active material particles. The Butler-Volmer equation describes the 
relationship between the local current density, the exchange current 
density and the overpotential. It is the bridge between the reactions 

Table 1 
Summary of published literature related to integration of physics and data- 
driven methods.  

References Focus Main idea 

Andersson 
et al. [23] 

Parametrization of physics- 
based models 

Review of electrochemical model 
parameter estimation, including:   

▪ Sensitivity analysis  
▪ Optimal experiment design  
▪ Machine learning 

Krewer et al. 
[24] 

Dynamic models for 
diagnosis and operation of 
LiBs 

Review of dynamic analysis and 
LiB's models, including:   

▪ Dynamic processes and 
measurements methods in 
battery state  

▪ Mechanistic models  
▪ Equivalent circuit and 

impedance models  
▪ Data-driven models 

Liao et al.  
[25] 

Hybrid Prognostics 
Approaches for Remaining 
Useful Life (RUL) Prediction 

Review of hybrid prognostics 
approaches for RUL prediction, 
including:   

▪ Experience-based model  
▪ Data-driven model  
▪ Physics-based model  
▪ Case study of the battery 

RUL prediction 
Finegan et al. 

[26] 
Accurate prediction of 
battery failure to ensure 
safer battery systems 

Perspective of application for 
physics-based learning and data- 
driven methods, including:   

▪ Experiment design  
▪ Datasets acquisition  
▪ Fusion of physics-based 

learning and data-driven 
methods 

Aykol et al.  
[27] 

Battery lifetime prediction Perspective of Integrating physics- 
based and machine learning models, 
including:   

▪ Sequential integration 
(residual learning, transfer 
learning and parameter 
learning)  

▪ Hybrid integration 
(physics-constrained ML, 
ML-accelerated physics- 
based model)  

W. Guo et al.                                                                                                                                                                                                                                    



Journal of Energy Storage 56 (2022) 105992

4

occurring in the electrolyte and active electrode material. The model 
and reaction equations are shown schematically in Fig. 1. Table 2 lists 
the P2D model's governing equations. For all material properties and 
parameter values used in models, we refer to [31,32] for different 
chemistries. In several applications of the P2D model, researchers have 
developed continuous scale models from 1D to 3D. The distinction be
tween different dimensions of the model is shown in the Table 3. 2D and 

3D models can also be integrated with 1D EMs for analysis, and we refer 
to [33,34]. 

The P2D model is powerful in that it simplifies the modeling of 
batteries at multiple micro-macro and time-space scales and achieves a 
high computational accuracy. Many studies [47] have reported SEI- 
dominated aging characterization modeling for the Li-ion battery 
aging phenomenon, considering a linear combination of two current 

r o
tc

ell
o
Ct

ne
rr

u
C C
urrentC

ollector Iapp

Li+

Negative PositiveSeparator

r r

CCharge conservation in electrolyte

Mass conservation in electrolyte

x

Fig. 1. Schematical of P2D and governing eqs. A lithium-ion battery consists of current collectors, an anode, a separator, a cathode, and an electrolyte. The elec
trochemical behavior in the cell is calculated in two dimensions, in the direction of the sandwich stack thickness and in the direction of the particle radius. 

Table 2 
Governing equations of the P2D model.  

Governing equations Equation Ref. 

Solid phase Li- ion diffusion ∂cs(r, x, t)
∂t

=
DS

r2
∂
∂r

(

r2∂cs(r, x, t)
∂r

)

[35] 

Boundary condition 
Ds

∂cs

∂r

⃒
⃒
⃒
⃒r=0 = 0,Ds

∂cs

∂r

⃒
⃒
⃒
⃒
r=Rs

= − jr 

Electrolyte phase Li-ion diffusion εe
∂ce(x, t)

∂t
= εe

∂
∂x

(

Deff
e

∂ce(x, t)
∂x

)

+ a
(
1 − t0+

)
jr(x, t) [36,37] 

Boundary condition ∂ce

∂x

⃒
⃒
⃒
⃒x=0 =

∂ce

∂x

⃒
⃒
⃒
⃒
x=L

= 0 

Charge conservation ∂ie(x, t)
∂x

= aFjr(x, t) [38] 

Boundary condition 
ie(xa, t) = ie

(
xa + xsep, t

)
=

Iapp(t)
A 

Butler Volmer kinetics 
jr(x, t) =

i0(x, t)
F

(

exp
(

αaF
RT

η(x, t)
)

− exp
(

αcF
RT

η(x, t)
))

[39,40] 

Exchange current density 
i0(x, t) = Fkαa

c kαc
a
(
cs,max − cs,surf (x, t)

)αa cαc
s,surf (x, t)

(ce(x, t)
ce,ref

)αa 

Over potential η(x, t) = ϕs(x, t) − ϕe(x, t) − Eocv [36] 
Solid phase potential ∂

∂x

(

σeff
s

∂
∂x

ϕs(x, t)
)

− aFjr(x, t) = 0 [38] 

Boundary condition 
− σeff

s
∂

∂x
ϕs(x, t)

⃒
⃒
⃒
⃒x=0 = − σeff

s
∂

∂x
ϕs(x, t)

⃒
⃒
⃒
⃒
x=L

=
Iapp(t)

A 
∂

∂x
ϕs(x, t)

⃒
⃒
⃒
⃒x=xa =

∂
∂x

ϕs(x, t)
⃒
⃒
⃒
⃒
x=xa+xsep 

Electrolyte phase potential ∂
∂x

(

σeff
e

∂
∂x

ϕe(x, t)
)

+
∂

∂x

(

σeff
D

∂
∂x

lnce(x, t)
)

+ aFjr(x, t) = 0 

Boundary condition ∂
∂x

ϕe(x, t)
⃒
⃒
⃒
⃒x=0 =

∂
∂x

ϕe(x, t)
⃒
⃒
⃒
⃒
x=L

= 0 

Terminal voltage V(t) = ϕs(L, t) − ϕs(0, t)  
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contributions: one from the graphite particle fraction covered by the 
microporous SEI layer and the other from the cracked graphite particle 
fraction of the SEI layer. However, the above is only applicable to 
describe the aging process of graphite electrodes for Li-ion batteries with 
a moderate current up to 1C. Further research [48] has found that aging 
is linearly related to the number of cycles in the early stage of cycling, 
and this linear aging regime is dominated by SEI growth. As the cycling 
proceeds, the SEI grows and the anode porosity decreases, resulting in a 
more significant electrolyte gradient in the anode and, therefore, a lower 
lithium deposition potential. In turn, the appearance of lithium metal 
further accelerates the reduction in local anode porosity. This positive 
feedback leads to an exponential increase in the lithium plating rate and 
a dramatic decrease in the local porosity at the anode/separator inter
face. The cell aging characteristics shift from linear to non-linear. 

The single-particle model (SPM) is a common simplified type of P2D, 
which assumes the current distribution is uniform in electrodes. The 
single-particle scale analyzes the kinetics of solid diffusion and inter
calation reactions in electrode particles. SPM is a 0D model in COMSOL 
simulation. Considering coupled chemical and mechanical degradation, 

an advanced aging model was derived from alleviating low accuracy at 
high C-rates [49]. In situations such as the above, where performance 
prediction is computationally intensive, SPM can be used instead of the 
complex P2D model [38]. 

2.2. Equivalent circuit model 

A common phenomenological approach used to describe the 
behavior of batteries is the ECM, a model consisting of electrical com
ponents such as RC networks, voltage sources, resistors, etc., to repre
sent the main electrochemical processes. In contrast to the EM model, an 
EMC model does not require an in-depth analysis of the internal elec
trochemical reactions inside the battery. The external characteristics of 
the battery can be modeled by describing the open-circuit voltage, the 
DC internal resistance, and the polarized internal resistance through a 
circuit. Typical ECM models include the Rint model [50], the Thevenin 
model [51,52], the second-order RC network [53] and their variants 
[54–56]. 

The polarization phenomenon of batteries consists of ohmic polari

Table 3 
Different dimensional model characteristics.  

Model 
dimension 

Assumptions Advantages Disadvantages Exemplary 
applications 

1D  ▪ Uniform electric potential in the 
current collectors  

▪ Homogeneous electrode plates  

▪ Suitable for small format batteries and 
calculating average values for large 
batteries  

▪ Accurate enough to evaluate 
inhomogeneity along the thickness 
direction  

▪ Fast solution  

▪ Useless to solve non-uniform 
current and thermal 
distributions  

▪ Not suitable to predict large 
scale battery 

[41–44] 

2D  ▪ Uniform heat evolution inside the 
battery  

▪ Radial-axial coordinates using 
physical cell properties 

▪ Able to calculate non-uniform heat ex
change from surfaces  

▪ Increases in prediction precision  

▪ Unable to reflect the influence 
of tab on thermal behavior  

▪ Relatively heavy 
computational load 

[45,46] 

3D  ▪ Heat source calculated by 1D 
model  

▪ Temperature derived from 3D 
model is the initial condition for 
the 1D model  

▪ Good tool to investigate spatial and 
temporal distributions of internal 
physicochemical properties  

▪ Characterize inhomogeneity  
▪ Very good agreement with the experiment  

▪ Highly computational 
complexity 

[47]  

Rt
R1

Q1

Rn

Qn

Rf

Qf

Z(w)

Multi-layer surface film
Charge transfer process

Solid state diffusionElectrolyte,
Separator,

Current collector,
Contact resistance

Middle to low 
frequency

Middle to high 
frequency

High frequency

…

Z’/Ohm

mh
O/’Z

RQ element 
superposition

Z’/Ohm

Z’
/O

hm

Warburg 
diffusion 
element 

Z’/Ohm

Z’
/O

hm

FLW

FSW

Ohmic 
resistance

Fig. 2. Relationship between ECM and impedance spectrum. ECM consists of ohmic resistance, n-RQ elements, and an RQ-Warburg element. The EIS result cor
responds to respective ECM components. Warburg elements can be classified as Finite Space Warburg (FSW) elements and Finite Length Warburg (FLW) elements. 
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zation, electrochemical polarization, and concentration polarization. 
Ohmic polarization is caused by the internal resistance of the cell formed 
by the electrode material, the conducting material, and the connection 
impedance; the electrochemical reaction causes electrochemical polar
ization, and concentration polarization is caused by the rate of 
consuming reactants on the electrode surface being more significant 
than the rate of supplementation. In ECM, ohmic polarization can be 
characterized by resistance. In contrast, first-order or multi-order RC 
circuits can characterize concentration polarization and electrochemical 
polarization, making the effect of polarization realistic. R represents the 
finite exchange rate in RC, and C describes the double layer capacity. But 
in practice, it is more common for a depressed semicircle to appear, in 
which case the RQ element is more appropriate, where C is replaced by a 
constant phase element (as in Eq. (1): 

ZQ(ω) =
1

Q(jω)n (1)  

When n = 1, Q is equivalent to C. When n = 0.5, it is equivalent to an 
infinite solid state diffusion process; when n = 0, it is equivalent to a 
resistance. 

To account for ohmic resistance, lithium-ion diffusion, migration, 
and charge accumulation interpolation capacitance of the host material, 
the identification, and parameterization of the ECM are usually per
formed using EIS in frequency domain analysis. 

As shown in Fig. 2, the impedance spectrum shows a tail of inductive 
behavior at high frequencies, which is attributed to the porous nature of 
the cell electrodes and the connecting leads of the jelly-roll structure; the 
intercept on the real axis represents the total ohmic resistance of the cell, 
including electrolyte resistance, contact resistance, and electronic con
tacts. The depressed semicircle in the mid and high frequencies is 
attributed to the solid electrolyte layer at the membrane electrode- 
solution interface. The semicircle in the mid-frequency range charac
terizes the charge transfer kinetics at the electrode-electrolyte interface. 

The low-frequency portion of the impedance is derived from the solid 
Warburg diffusion of lithium ions into the porous electrode matrix. 
When extremely low frequencies are present, the impedance response is 
related to the differential intercalation capacitance of the electrode. 

As mentioned above, when modeling the behavior of a cell using 
ECM, a model is first pre-selected based on the shape of the measured 
impedance spectrum; this generally consists of a series ohmic resistor, a 
Warburg diffusion element, and several RC/RQ elements depending on 
the number of semicircles in the spectrum. According to Fick's law, the 
Warburg diffusion element describes the diffusion process in electro
chemical systems, classified as the Finite Space Warburg (FSW) element 
and Finite Length Warburg (FLW) element. 

Considering the behavior of electrodes that can be modeled by 
double-layer capacitive effects and solid-phase diffusion, Randles has 
developed an impedance model structure representing the combination 
of charge transfer processes and diffusion processes. It consists of a series 
connection of a charge transfer resistor and a diffusion element, in 
parallel with a double layer capacitor. The Randles circuit argues that 
charge-transfer overpotentials are directly related to solid-state diffu
sion and cannot be independent loss processes. Therefore, the dynamic 
behavior of diffusion and charge transfer cannot be decoupled by 
separate RC or RQ cells. Nevertheless, it was demonstrated [57] that the 
RQ cell and Warburg cell in series did not differ significantly from the 
Randles circuit at different diffusion time constants, which means that a 
good combination of RQ and Warburg elements can accurately charac
terize the cell. 

The capability of ECMs to measure and predict cell voltages by 
optimizing models and parameter values is convenient for the design of 
control algorithms in BMS [58,59]. Yet the prediction accuracy is still 
within limits due to the variety of factors influencing battery aging be
haviors, and how these factors can affect impedance is not fully 
understood. 

SEI growth

edafre
wop/ecnatsiser/yticapa
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Time

Calendar test

Cycle test

Stress increase(i.e., T)

Accelerated degradation tests

Stress increase(i.e., )

Dominant mechanisms

Assumptions and fit

( )

Arrhenius model

Power of time

Global performance

• β=1: reaction limitation when charging

• β=0.5: diffusion limitation

• β=0: migration limitation when discharging

Fig. 3. Schematic of semi-empirical models, experiments, and reactions. Lithium-ion batteries' lifetime follows the Arrhenius law [66] and power law through 
accelerated degradation tests. The power-law coefficient of time depends on the SEI growth reaction. The SEI growth schematic is cited from Ref. [67]. 

W. Guo et al.                                                                                                                                                                                                                                    



Journal of Energy Storage 56 (2022) 105992

7

2.3. Semi-empirical model 

In addition to the above modeling approach based on physical per
spectives of aging, fitting a mathematical relationship between output 
characteristics and different stress factors can also yield reasonable ac
curacy predictions. As illustrated in Fig. 3, this model aims to quantify 
the effects of aging factors (i.e., temperature, cycle number, C-rates, etc.) 
and obtain a descriptive expression for the variation of battery perfor
mance with lifetime [60]. The investigation needs to be based on a large 
amount of accelerated experimental data [61], seeking approximate 
expressions for time versus battery performance in terms of data trends. 
Although the predictive capacity of the semi-empirical model is lower 
than EM models, it is preferred for industrial applications owing to the 
low computational complexity and easy integration within BMS, divided 
into cycling aging modeling [62,63], calendar aging modeling [64], and 
global performance modeling [65]. 

Cycling aging factors include the number of cycles, temperature, C- 
rate, average SOC, and cycle depth [68]. The modeling process generally 
uses the cycle number as a time metric [69]. Laboratory efforts have 
shown that long-term capacity loss follows a t0.5 dependence [66], and 
models in the literature usually attribute this dependence to diffusion 
limitations through the SEI layer [67] due to the reactants participating 
in the formation of the SEI layer in the electrolyte. As ΔSOC changes 
from 3 % to 6 %, the power decay mechanism changes significantly [70]. 
The power-law coefficient of time drops below 0.5, also indicating that 
more complex mechanisms influence, cyclic aging than just SEI growth. 
Quantitative analysis of acceleration effects of different influencing 
factors on battery aging has concluded that high-temperature stress, and 
high charge rates are promising candidates for forced battery degrada
tion [71]. The experimental findings of Ref. [72] indicate two degra
dation mechanisms in the tested cells, which depend specifically on the 

capacity ranging above and below 70 % of their initial capacity, 
expressed quantitatively as a power law of time. 

The main factors influencing calendar aging are time, temperature, 
and storage SOC [73]. According to experimental data [70], the area- 
specific impedance growth and power loss obey a power-law function 
of time and Arrhenius kinetics. The power of time is approximately 0.5 
[74]. This relationship can be interpreted as SEI growth. Following test 
results on two types of LiBs [75], high temperature and high SOC ap
pears to be promising for accelerated calendar aging. The calendar test's 
capacity fade and resistance increase obey the Arrhenius law in the 
temperature range of 30 ◦C to 50 ◦C and 60 % SOC [76]. Therefore, it is 
concluded that the capacity fade and resistance increase are caused by a 
thermal activation process linearly related to time. 

A global performance model can be expressed by adding cycling and 
calendar aging empirical models. As seen in the End-of-Discharge 
Voltage (EODV) degradation curve [57], three phases indicate 
different aging mechanisms dominating other each stage. In the early 
stage, EODV shows an exponential decrease trend affected by the po
larization effect. The linear decline phase is mainly due to the gradual 
increase in the internal resistance of the battery. The sharp drop phase 
corresponds to cells' performance degraded exponentially, resulting 
from electrolyte drying, electrode dissolution, and degradation of active 
materials. Considering the interaction of these different aging phases, 
the degradation model is described by summing the empirical models 
with varying weights of stage. Additionally, it is possible to apply the 
same type of model as previously explained to fit the overall capacity 
degradation behavior [77] or to get a SOH degradation model [62] by 
considering both long-term and short-term aging. 

The main drawback of semi-empirical models is that they do not 
interpret the processes of capacity decline and impedance rise, relying 
on independent studies of the stress factor influence trends of each, 

Table 4 
Summary of requirements and functional features from different physics-based modeling. The left column corresponds to the model types described earlier.  

Models Requirements Measurements Computation Application 

P2D Knowledge of physical and 
electrochemical reactions 
(i.e., PDEs, physical laws)  

▪ Geometric parameters 
(micrometer, SEM, and optical 
microscopy [78])  

▪ Material properties (SEM, XPS, 
CT [79], and XRD [80])  

▪ Diffusion coefficient (GITT and 
PITT [81])  

▪ Resistance value (EIS [82])  
▪ Electrochemical analysis (OCV, 

charge/discharge)  
▪ Fitted model a (as function of 

concentration and temperature 
[83]) 

More physical variables and a 
high load of computation  

▪ Hard to apply in BMS unless 
simplified  

▪ Easy transferable to the 
battery with the same 
chemistry 

SPM Knowledge of physical and 
electrochemical reactions 
(i.e., ODEs, physical laws)  

▪ Assumption followed with 
physical laws [84]  

▪ Fitted model (as a function of 
temperature)  

▪ Similar to P2D measurements 

Less computational 
complexity  

▪ Have potential for online use  
▪ Easy transferable to the 

battery with the same 
chemistry  

▪ Only accurate for low- 
medium C-rates due to the 
absence of electrolyte phys
ics [49] 

ECM Relationship between model structure and 
impedance spectrum  

▪ Impedance data obtained (EIS 
[85])  

▪ Time-domain analysis (DRT 
[86])  

▪ Electrochemically analysis 
(charge/discharge, OCV [80])  

▪ Fitted Arrhenius behaviors 
(activation energy obtained from 
half-cell measurements [57]) 

Simple structure with effective 
computation  

▪ Easily adapted for on-board 
circumstances [58]  

▪ A worse performance, 
especially in low SOC areas 
[87] or large current 
situations 

Semi- 
empirical 
model 

Understanding of power-law relation with 
time, Arrhenius kinetics, and accelerated 
tests, preferable some physical insights 
corresponding to models  

▪ Accelerated degradation tests 
(cycling and calendar aging 
profiles)  

▪ Electrical analysis (Capacity, 
power, or resistance [76])  

▪ Heavy sets of 
experimental 
research before 
modeling  

▪ Speedy computing 
capability  

▪ Simple to implement online  
▪ Can lead to significant errors 

[71] unless combined with 
other physical models [88]  
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leading to loads of experiment work. 

2.4. Requirements and applicable features 

In this part, the knowledge requirements, measurements, computa
tion capabilities, and application features of various physics-based 
models are compared and summarized in Table 4. 

P2D is intended to provide a clear understanding of the specific 
physical and chemical phenomena that occur during the operation of 
batteries. A reliable and accurate model can be built with sufficient 
background in electrochemistry and physics accurate. However, many 
variables are challenging to measure due to lack of facilities or lack of 
technical precision in measurement. Moreover, complex modeling im
poses a significant computational burden. Although it has very good 
generation performance and the most accurate results, significantly 
high-test requirements and computational pressure make it unsuitable 
for online prediction. 

SPM is a simplification of P2D, with many essential battery proper
ties. The SPM is derived directly from P2D and consists of ordinary 
differential equations. In addition to the series of measurements applied 
in P2D, it is common to use assumptions or fit the Arrhenius behavior in 
the parameter determination process. Besides, the simple structure has 
enhanced its computational utility and made it a popular model for SOH 
estimation [89]. But it is not capable of describing batteries' nonlinear 
behavior at high C-rates because of missing electrolyte physics and 
degradation. 

ECM allows the modeling to be incorporated with training algo
rithms at the system level due to its conceptual simplicity and has the 
potential to be applied to onboard applications in vehicles. With lumped 
models featuring relatively few parameters, users do not need to have an 
in-depth understanding of physical mechanisms, only how the time and 
frequency domain tests relate to the model structures. However, the 
accuracy of the model tends to drop significantly in the low SOC region 
of the cell or high current situations, as the non-linear characteristics of 
the cell are evident. 

Semi-empirical model is based on simple correlations, derived from 
aging tests carried out under several conditions, between stress factors 
and capacity degradation/impedance increase. Therefore, adequate 
data to develop an awareness of the impact of accelerated calendar and 
cycle life is fundamental. Meanwhile, power of time and Arrhenius ki
netics are often used as assumptions for the initial structures. Hence, 
understand these models' definition and the corresponding physical 
meanings of coefficients help to establish semi-empirical forms with 
good generalization capabilities. It is important to note that the appro
priate acceleration conditions must be chosen to ensure that the 
extrapolation is successful with limited time and cost. 

Based on the above analysis, only some methods can be applied 
online. The fact that no physical model is perfect has inspired re
searchers to use algorithms or a mixture of different physical models to 
fill in the gaps. Interested readers can refer to [89–92]. 

3. “Grey box” lifetime modeling 

Given that the aging of LiBs is caused by an evolution of multiple 
interfaces and materials in a wide range of use conditions, it suggests 
that models capable of successfully predicting battery degradation 
should account for potential spatial, temporal, and chemical complex
ities. As this evolution can be described using thermodynamic and Ki
netic laws of physics, the solution to these problems requires a 
combination of traditional physics-based modeling methods and flexible 
data-driven techniques. Why we need “grey box” lifetime modeling? 
Data-driven methods (black box) have the drawback of heavily relying 
on training data, and if only the capacity is utilized as input, then the 
prediction results only include the capacity, while the other internal 
characteristics are unknown. Traditional physical models (white box) 
are computationally demanding and highly challenging to apply online 

since they rely on many different material properties and parameters. 
Consequently, there is a rising need for hybrid models (grey box 
modeling) that complement the drawbacks of both strategies and inte
grate their advantages. Date-driven and physics-based methods can be 
combined in two possible ways: (1) the data-driven method is used to 
assist the physics-based method when estimating and optimizing the 
parameters of the physical model, for downscaling the first principle 
based physical model or to quantify the uncertainty of the applied 
physical model and (2) Guide the data-drive method using data that 
carries physical meaning, the error between a physical model and the 
prediction data-driven method, or by embedding a physical model 
directly in the data-driven method. This section reviews the develop
ment of these methods, divided into data-driven assisted physical 
models, and physics-guided data-driven methods. 

3.1. Data-driven assisted physical models 

This section deals with methods that use physical models as the main 
prediction method and data-driven methods to improve the model's 
accuracy or quantify its uncertainty. Precise prediction depends on 
whether the physical model sufficiently captures the relevant physical 
properties of the aging. Furthermore, the most important aspects of 
these methods are parameter identification and fast predictability. 

3.1.1. Parameter identification 
Estimating unknown parameters in a model is also known as model 

calibration, and a common method is to use a grid search over the space 
of parameter value combinations to obtain the best match between 
predicted and observed values. The parameter identification process is 
shown in Fig. 4. Prior to choosing or building a physical model, the 
parameters in the model are given nominal values. Then, by using 
sensitivity analysis, the set of unknown parameters that should be pre
cisely evaluated is reduced. Maximizing the ideal values of the param
eters is done using data-driven methods to produce a good parametric 
physical model and forecast. Typically, this is an iterative process, and 
by evaluating it against actual performance, the process is verified and 
ended. 

The Electrochemical model is built from a series of partial differen
tial equations (PDEs) and not all parameters can be solved from exper
imental observations. As the model parameters vary with use cases and 
time, the capacity state estimates will deviate from the truth. It has been 
shown that diffusion and conductivity changing the aging [93]. This has 
led to the incorporation of a data-driven approach to update time- 
sensitive parameters on a real-time basis. Filtering methods [91,94] or 
adaptive observers [95] that consider a combination of state and 
parameter estimation can generate aging relevant parameter measure
ments. Furthermore, they can strengthen self-correction schemas 
including Li-ion concentration in the electrode, total cell capacity, anode 
diffusion coefficient and SEI layer conductivity. This ensures that the 
model-based capacity prediction remains accurate over time. Addi
tionally, machine learning can be utilized to enhance physics-based 
models, using current [96], voltage [97], and anode expansion rate 
[98] and capacitance [99], as aging predictors. Miguel et al. [100] gives 
a comprehensive review of computational parameter estimation and 
optimization methods for EMs. These include single optimization anal
ysis (SOA) and multi optimization analysis (MOA) according to pa
rameters evaluation based on one or more optimization procedures. SOA 
uses a specific EM model (P2D or SPM) after collecting data to identify 
parameters using nonlinear least squares [101] or genetic algorithm 
[90,102]. The highly complex optimization scheme of this method leads 
to a loss of accuracy. MOA designs test curves [103] to isolate specific 
parameters or sets of parameters. Fisher information [104] is applied to 
measure and optimize the solvability of a given parameter estimation 
problem, thereby increasing the speed of parameter identification. This 
method expands how much information is collected to determine ac
curate estimates of certain parameter values. In order to shorten the time 
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of the parameter identification process, sensitivity analysis [104] and 
deep learning [105] are chosen to identify the parameter types with the 
highest impact on the prediction results to decrease the number of pa
rameters, and speed up the convergence. The ensemble Kalman filter 
(EnKF) performs parameter identification independent of the initial 
state, which avoids computing the Jacobian matrix of the P2D model to 
reduce the computational difficulty. Other data-driven methods such as 
the elastic net algorithms [98] which penalize the size of the coefficients 
to reduce the risk of overfitting, and nonlinear least squares (LS) with 
dynamic bounds [106] used to track the evolution of individual pa
rameters, are tried to reduce modeling overfitting and prediction un
certainty over the entire battery life cycle. With the goal of online 
prediction, popular neural network [97] is used to obtain the parameters 
in an SPM. The NN proposed by Kim [107], which is expected to be 
implemented in BMS. Since the NN model can flexibly adapt to 
numerous input variables and output parameters. 

Battery parameter estimation using ECMs relies on large experi
mental designs to account for the change in parameters due to C-rate, 
temperature, and degradation. However, when measurements are ac
quired in real-time C-rate, temperature, and degradation also change in 
real-time. Data-driven methods have been used to account for this 
change when estimating the parameters of the ECM using the measured 
current and voltage of the battery. An improvement of the classical 
Kalman filter (KF) for nonlinear systems has been successfully used for 
the BMS of electric/hybrid vehicles. By far the most common method are 
joint and dual Extended Kalman filter(EKF) [108] and Sigma Point 
Kalman filter(SPKF) [109]. However, the EKF has some drawbacks. If 
the assumption of local linearization is not satisfied, it will lead to a 
highly unstable observer. SPKFs include some variants such as the 
central differential Kalman filter (CDKF) and the unscented Kalman 
filter (UKF) [110]. Such strategies require fewer samples than particle 
filters in terms of statistical linearization and exhibit better perfor
mance. The weighted recursive least squares algorithm (RLS) [111] is 
often used in combination with a KF, EKF or UKF In addition to the 
above filtering methods, the genetic algorithm (GA) [99] is proposed to 
estimate the SOH of a battery on-line using the diffusion capacitance of a 
second-order RC circuit model. Using genetic algorithms, the diffusion 
capacitance of the battery can be monitored in real-time by measuring 
the battery current and terminal voltage. The disadvantage is that it 
takes some time for GA to find the optimal solution. In literature [112], 
the terminal sliding mode observers are utilized to estimate three vari
ables (open circuit voltage, polarization voltage, and terminal voltage), 
and two variables (capacity and internal resistance) in the ECM model, 
which is then adapted to make a robust estimation of SOC and SOH. This 
observer allows continuous output injection signal, which attenuates 
chattering, and eliminates the low-pass filter. Although the above 

advantages are presented only on a single cell. Furthermore, a study 
reported by Hu et al. [58] implements a multi-swarm particle optimal
ization algorithm to identify the optimal parameters based on twelve 
lumped ECM models. The first-order RC model is favored for LiNMC 
cells, according to RMSE comparison results, while the first-order RC 
model with one-state hysteresis appears to be the best option for 
LiFePO4 cells. 

One way to improve long-term forecasting is to combine semi- 
empirical models with filtering algorithms [113–115] in order to 
dynamically update the model parameters. As illustrated in [116], 
Particle filter (PF) takes the aging parameters given by the physical 
scaling laws to account for the impacts of physical variation and correct 
the findings produced by assuming constant physical attributes, 
describing capacity decay and internal resistance increase as part of the 
state vector (given by Eq. (2)). The PF algorithm adapts parameters 
online that superimpose two exponential degradation feature models 
(given by Eq. (3)) to track and predict battery life. 
{

xk = fk− 1(xk− 1) + qk
yk = hk(xk) + vk

(2)  

where xk is the system state vector at time k, yk is the measurement at 
time k, f and h are the state transfer and measurement functions, q and v 
are the process noise and measurement noise. 

Fk = γ • exp
(
Qref − Qk

)
+(1 − γ) • exp

(
Rint,k − Rref

)
(3)  

where Fk is the defined battery health parameter. Qk and Rref are the 
measured capacity and internal resistance at the kth cycle, respectively. 
Qref is 80 % of the capacity nominal value and Rref is equivalent to about 
133 % of the internal resistance nominal value. 

Since semi-empirical models are generally low-order algebraic 
equations and fit a small number of parameters, data-driven methods are 
used to assist in parameter estimation without great complexity to 
ensure computational efficiency. The GA can then fit the battery cycle 
life model very accurately [63], using the root mean square error 
(RMSE) between the predicted and tested battery capacity as the 
objective function to minimize the RMSE yielding the parameter esti
mates. The empirical model, which consists of two exponential models, 
is anticipated to be applied to on-board prognostics and health man
agement (PHM) systems and can deliver precise predictions starting 
from the early stages of battery life with Bayesian Monte Carlo en
hancements [117]. PF updates the parameters in accordance with Bayes' 
law, bringing them closer to their real values over time. A numerical 
Monte Carlo method is used to solve the recursive propagation of the 
posterior density in the Bayesian update process. 

Most of the effort spend in combining physical models and data- 

Fig. 4. Parameter estimation flowchart. The physical model carries out predictions using nominal parameter values. The parameter space is made less dimensional 
by sensitivity analysis and identifies which parameters would be sensitive. Data-drive methods evaluate the prediction error compared with experimental mea
surements, update the parameter estimates, and iteratively optimize until the error is less than the tolerance to obtain the optimal parameter values and battery life 
prediction results. Yellow boxes indicate physical models and physics-based predictions. Blue boxes represent data-driven assessments. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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driven methods, has emerged to enable online parameter estimations of 
the physics based models using real-time measurements [118], avoiding 
tedious and expensive laboratory measurements. Although parameter 
identification is simple to comprehend and apply, it heavily depends on 
the model and a priori knowledge. 

3.1.2. Reduced-order physical model 
Reduced-order models (ROMs) attempt to capture the most impor

tant properties of more high-fidelity physical models, by reducing the 
dimensionality of the system, thereby reducing the computational 
complexity and cost. This reduction ignores weak responses that are 
insensitive to the global system, to obtain a ‘dominant’ sub-model whose 
response is like that of the full-order model. Fig. 5. depicts the ROM 
prediction flow. The EM model is discretized using four different tech
niques in the first category (seen as Fig. 5(a)), which greatly reduces the 
model order while maintaining physical significance and parameter 
accuracy. To achieve prediction, data-driven methods are applied to 
correlate the model with actual outcomes. The second category (seen as 
Fig. 5(b)) utilizes test data to integrate a library of descriptors with 
various algebraic equations that can forecast battery behavior. Data- 
driven methods are then used to filter the best sub-descriptors and re- 
merge them into a global ROM to achieve prediction. 

A common approach is to project the control equations of the system 
into a linear subspace of the original state space using methods such as 
orthogonal decomposition [119], time-step discretization [120], spec
tral methods [121] or Padé approximation [122]. In [123], an electro
chemical P2D model was discretized using Chebyshev orthogonal 
collocation. The cell region is subdivided into three sub-domains, where 
the model equations are solved for thickness of anode xa, thickness of 
separator xs and thickness of cathode xc at different sets of Chebyshev 
coordinate nodes. The P2D model differentiated by orthogonal collo
cation is comprised of a group of non-linear differential algebraic 
equations (DAEs) in relation to time. Such state-space representations 
can be recognized as stochastic state-space model and a modified 
extended Kalman filter (EKF) algorithm is applied to achieve the optimal 
state estimation of the battery model. The benefit is that the state error is 
estimated at each time step using a time-varying linear approximation of 
the model differential algebraic equations. The fact that it cannot ensure 
the state estimation's convergence is a drawback. There is also a study 
[124] implementing a reduced-complexity battery model developed 
from an SPM, where the final SOC estimation is obtained using the 
iterative extended Kalman filter (IEKF), an upgraded variant of the EKF 
that strengthens the state estimate around the current point at each time 

step in order to solve nonlinear problems more effectively. However, the 
computational complexity increases and needs to be kept at a tolerable 
level. Smiley et al. [125] presents a method for predicting battery per
formance using an interacting-multiple-model (IMM) Kalman filter to 
select from a pre-computed set of physically based ROMs, and choose 
the one closest to the observed output voltage measurements, given an 
input current. The method for creating the ROMs uses the discrete-time 
realization algorithm (DRA) [126]. This method guarantees a stable 
model that accurately represents the internal and external battery dy
namics at each stage of lifetime as opposed to the more commonly 
implemented adaptive methods. An optimal discrete-time state space 
model in reduced order satisfies Eq. (4) and (5). 

X(t+ ts) = AX(t) +BIapp(t) (4)  

Y(t) = CX(t)+DIapp(t) (5)  

where ts is the discrete-time ROM sampling period (integer), X(t) is the 
model's “state” vector at time t, Y(t) is the vector of the model's “output” 
at time t, and A, B, C, and D are matrices. 

An alternative approach to generating ROMs is to use a data-driven 
approach to select and automatically identify the basic set of parame
ters that capture the aging characteristics. Machine learning methods 
have the potential to greatly enhance ROM identification, as they typi
cally have fast forward execution time and the ability to exploit data to 
model larger number of generated descriptors [127]. Descriptors here 
refer to algebraic expressions that accurately predict battery behaviors, 
such as Arrhenius, Tafel and polynomials. Based on the physical 
observation of the calendar fade, Gasper et al. [128] combine ROM and 
machine learning by using symbolic regression to identify local 
parameter sub-models, replace the local parameters with their respec
tive sub-models, and perform regression to assemble a global model. 
This approach speeds up the model development process and assists in 
the construction of reduced order models through sensitivity analysis, 
bootstrap resampling, and long-term extrapolation and analysis of un
used validation data. The convergence of descriptors in this research, 
such as Arrhenius and Tafel-like sub models, for local parameter sub- 
models identified by LASSO has also been investigated to provide 
insight into the learning behavior of the models. One branch of future 
work could be to create a larger pool of descriptors in the hopes of better 
performing models with fewer parameters. 

There are also investigations that address mathematical reformula
tions based on physical insights to generate reduced-order models, but 

Fig. 5. Two types of Reduced-order models flowchart. (a) The EM is downscaled using four numerical operations to obtain the ROMs and the predictions are 
obtained using data-driven assistance. (b) To extract the ROM descriptor library from battery measurement data and use data-driven identification of optimal local 
ROM models and global ROM models to predict battery life. The green box represents test data. The white box denotes the intermediate process of model prediction. 
The blue color means data-driven prediction, and the white cube on the yellow side indicates physics-related intermediate processes. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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they are not in the reduced-order approach of interest in this section. 
Interested readers can refer to [44,129]. 

In general ROMs only using engineering physics models (i.e., semi- 
empirical/empirical models) and limiting their dynamic in lower 
dimensional space have less freedom in terms of parameter variation 
within the system they represent and retaining less information in the 
original space may lead to a loss of accuracy in the numerical solution. It 
may be possible to narrow the search area and produce more reliable 
training models with less data by combining electrochemical principles 
and assembling them. 

3.1.3. Uncertainty qualification 
How reliable can predictions, for tracking a batteries age, be 

considered? To quantify uncertainty of a prediction requires charac
terization of the entire distribution, (y|x), rather than just y = f(x). This 
will allow analyses of the degree to which the predicted values cover the 
true value, y, or the sensitivity of the input features, x. Fig. 6 depicts the 
uncertainty qualification (UQ) procedure. A physical model is con
structed or chosen based on the test data. Data-driven methods are used 
to adjust the model parameters and track the prediction up to the 
currently observed period while taking the uncertainty in the degrada
tion process into account. Depending on the threshold set, the remaining 
useful life or the distribution of the underlying parameters can be ob
tained to describe the uncertainty. As a result of transient fluctuations, 
cell-to-cell variations, and measurement errors, UQ combines random 
variance to characterize the uncertainty in the battery's degrading 
behavior. 

Traditional methods such as Monte Carlo (MC) allow uncertainty 
quantification to be applied to P2D physical models. For instance, 
porous electrode model is used to estimate battery life based on charge/ 
discharge curves, where probability density for effective solid-phase 
diffusion coefficient Ds quantified by MCMC shows a monotonic 
reduction of Ds with increasing cycle number with very high confidence 
[93]. Similar quantification of uncertainties in design-related parame
ters [130,131] are used to meet the need for a framework for assessing 
the effects of internal parameters of EMs and their relative impact on cell 
behavior. Utilizing such uncertainty qualification (UQ), it is possible to 
lower cell-to-cell variation and create more focused quality control 
procedures to lower the cost of cell manufacture [132]. By using an 
extended P2D model, the nested point estimate method (PEM) and MC 
techniques assess sub-cell level bias and cell-to-cell variation [133]. In 

order to provide a global SA conclusion that the sensitivity of the studied 
parameters relies on the applied C-rate, the nested PEM is applied to a 
significant number of independently normally distributed parameters. 
Both aforementioned methods are sampling based UQ methods, and 
comparison studies reveal that the PEM is computationally more 
affordable but has a lower sensitivity. Due to the system's non- 
differentiability at low C-rates, PEM fails. In Ref. [134], a stochastic 
LiB modeling approach based on non-invasive polynomial chaos (PC) 
[132] is proposed to study the effect of uncertainties in the EM model 
parameters of Li-ion batteries' capacity, voltage, and concentration. The 
PC relies on the sparsity of the expansion coefficients, and a modest 
number of battery simulations can yield precise statistics for the quan
tity of interest. However, the stochastic LiB model created using PC has 
the drawback of being sampling-based, and as the number of necessary 
cell simulations rises, so does the overall computing cost. 

The management of uncertainty for battery health prognostics based 
on ECM, have generally fallen into two categories: particle filter [135] 
and machine learning method [136]. An integrated method to estimate 
capacity and RUL based on a lumped ECM is proposed in [137]. In this 
paper, a Gauss-Hermite particle filter (GHPF) is applied to model the 
capacity decay and infer future capacity values to predict RUL. 
Furthermore, the GHPF method has been experimentally validated over 
the past 10 years showing its accuracy in capturing the uncertainty in 
RUL prediction. Saha et al. [138] first demonstrates the usefulness of 
Bayesian theory in managing uncertainty as a powerful tool for inte
grated battery health diagnosis and prediction through Relevance Vec
tor Machines (RVMs), and state estimation with particle filters (PF). 
Furthermore, they propose an RUL prediction method, a Rao–
Blackwellized PF (RBPF), using the correlation between battery per
formance and ECM model parameters [114]. The results demonstrate 
that the particle distribution that represents the system state probability 
density function (PDF) can be quantified in terms of the contributing 
factors. The particle cloud distribution analysis can then be utilized to 
greatly minimize the spread of the RUL distribution while still keeping 
the convergence qualities of the underlying PF when there are deter
ministic relations in the system model. 

Based on the semi-empirical formula for capacity fade obtained from 
the regression analysis of experimental data, the RUL prediction can be 
given in the form of a probability distribution using data-driven 
methods, such as nonlinear mixed effect [139], particle filter [140], 
and Gaussian processes [141], so that the confidence in the prediction 

Fig. 6. Uncertainty qualification workflow. The physical model extracts measurement data to estimate battery state. Data-driven methods can be adopted for 
tracking prediction and update state estimation. Uncertainty qualification consists of parametric uncertainty and RUL distribution results. Green indicates mea
surement data. Yellow represents physical models. Blue shows the data-driven related process. Red denotes the threshold. And white boxes in blue indicate predicted 
results. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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can be assessed. A narrower PDF indicates a higher confidence in the 
RUL prediction. In [142] Xing et al. presents how two models, a double 
exponential model and a polynomial model, can be incorporated into a 
single degradation model. As it divides the capacity degradation data 
into three sections to meet the ideal global and local regression char
acteristics of the ensemble model, this integrated model is more effective 
than each of the two individual models. A PF is employed to account for 
the battery aging process. The RUL prediction is investigated by 
measuring the narrowness of the probability distribution. Reliable pre
dictions can be made based on this new ensemble model for an addi
tional set of cells with a different rated capacity, using a wide variety of 
initializations. Guha [116] proposes a method for estimating the RUL of 
Li-ion batteries based on capacity degradation and internal resistance 
growth. A semi-empirical model is developed based on battery capacity 
measurement data. Another semi-empirical model for internal resistance 
growth is developed based on EIS data. A PF is used to predict the RUL 
based on a fusion of the capacity and internal resistance degradation 
models. 

Uncertainty quantification provides guidelines for assessing the 
confidence of physical model forecasts. It is also used for both quanti
tative validation of simulations and for optimizing robust designs. High 
computation times and a reliance on trustworthy priors are problems for 
models that apply UQ tasks to physics. Traditional MC lacks sufficient 
flexibility. Since the scale of the Gaussian process is O(N3) with N data 
points, the basic machine learning technique requires significant com
puter resources when applied to higher dimensions or larger data sets. 

3.2. Physics-guided data-driven 

Many physics-based models cannot precisely represent battery aging 
trend for its entire lifetime, implying there are simply physical laws that 
we are yet to fully understand. To close this gap, the combination of 
physical prior information and data-driven methods has been developed 
to fuse the benefits of both. This section categorizes physics-based 
learning for batteries into three parts: (1) physics-based data genera
tion, (2), physics-based residual learning, and (3) physics-based 
embedding. 

3.2.1. Physics-based data generation 
Data generation with restricted physical laws will provide prior 

knowledge when training data-driven models. Currently, two main ap
proaches are applied when generating scientific data. The first relies on 
simulation [143] and the second from experiments. As shown in Fig. 7, 

Physical simulations are used to create a large number of new input/ 
output data. Capacity fade, voltage, current, and temperature response 
are typical outputs, whereas the inputs are normally voltage, current, 
and temperature applied to the battery. By first training on these 
simulation data, machine learning can include aging mechanisms into 
the model. A small number of experimental data inputs, such as current/ 
voltage curves, EIS, and QV curves, can be utilized to improve the ac
curacy of model predictions. It is important to think about how the data 
are merged because too much simulation data could mask valuable 
experimental data. 

The high computational cost of electrochemical models prevents 
applicability in predicting SOH. Meanwhile, machine learning methods 
have been found to be successful in predicting, analyzing, and opti
mizing SOH at lower computational costs [144]. As battery design needs 
to consider reducing risks while increasing performance, machine 
learning-based multivariate optimization of design parameters is used to 
address battery capacity and performance degradation. In [145], a nu
merical model based on a Newman model and 2D current preservation 
model is adopted to create a nail penetration simulation database that 
serves as training data for a Gaussian process. Augmented Lagrangian 
genetic algorithm attempts to combine the above regression model and 
target optimal design conditions for Li-ion batteries. Furthermore, [146] 
show that neural networks are highly valuable in battery design. Data 
from finite element analysis has been used to train and construct two 
neural networks. The first is classifier, aiming to determine if a group of 
input variables is physically feasible. The second is a calculator, tar
geting a specific energy and power. Statistical models also contribute to 
optimizing and extending battery service life. One case is reported by Li 
et al. [147], who propose an electrochemical thermal model and use it to 
generate training data. The internal concentrations and potentials of 
electrodes and electrolytes in different spatial positions are then esti
mated using the generated training data as input to a deep neural 
network. It is shown that the proposed method can bridge the spatial, 
temporal, and chemical complexity. Additionally, physics-based simu
lation data has been used to train Gaussian process regression (GPR) 
[148]. This approach uses just the ambient temperature and C-rate as 
input features to an EM, the finite element is used to simulate the ca
pacity degradation and SEI thickness, and then charging voltage curves 
are linked to GPR model. 

Conducting physical experiments also creates meaningful datasets to 
forecast battery lifetime using machine learning, even without complete 
knowledge. As clarified in Section 2.2, electrochemical impedance 
spectroscope (EIS) is coupled with internal electrochemical reaction and 

Fig. 7. Physics-based data generation schematic. Physics-based models can be adopted for generating train data. Machine learning methods train data obtained from 
physics-based models and physical experiments with electrochemical significance to acquire a mapping relationship between measured features and predicted 
outcomes. The cubes indicate the input feature X, physics solution S and output prediction Y. The yellow box represents physical model and blue box denotes 
machine learning methods. Green box refers to physical experiment data. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 
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contains rich information on material properties used to describe battery 
aging. Zhang et.al [149] collected 20,000 electrochemical impedance 
spectroscope (EIS) measurements of Li-ion batteries under different 
SOC, SOH and temperature. An accurate battery prognostic system was 
built to achieve a real-time, non-invasive, and information-rich diag
nosis with Gaussian process regression. The suggested model not only 
tells us which frequencies are dominant, but also outperforms conven
tional prediction techniques [150] that make use of discharge curve 
characteristics. Jiang et al. [151] trained an machine learning model 
using a series of nano tomographic slices of NMC composite electrodes 
from as experimental data. A mask regional convolutional neural 
network was used to identify and segment NMC particles for each slice 
(Mask R-CNN). The benefit of this technique is that, especially when the 
picture signal-to-noise ratio is low and the boundaries are hazy, it can 
address the over or under-segmentation caused by the conventional 
internal distance map as a signal function. Understanding the electro
chemical effects of the changing battery particles with the conducting 
matrix is aided by the visualization of the microstructure evolution of 
the electrode material. Lastly, Ricardo et.al [152] utilized three machine 
learning methods to predict performance of NMC-based cathode from 
manufacturing parameters. It was revealed that support vector machines 
can predict the influence of these manufacturing parameters with high 
accuracy. Physics-based data generation can also consider both simu
lated and experimental data. Machine learning models are upgraded 
separately and in combination using simulated data based on a half-cell 
model, and dQ/dV curves from cycle experiments in the early-life stage 
[153]. Either data augmentation or the bias-correction method can 
produce more precise degradation predictions. However, the strength of 
the extrapolation capability of different machine learning methods 
needs to be carefully addressed, as the efficacy of performance 
improvement varies. Data generation methods have stringent re
quirements for producing almost brand-new data under circumstances. 
Today's physics-based data creation relies largely on executing simula
tions or carrying out experiments, both of which take some time. It is 
challenging to use machine learning techniques to learn data 

distributions unsupervised in order to produce new data that cannot be 
produced using conventional techniques. 

Physics-based data generation feeds realistic synthetic prototypes 
with directly using mechanistic equations such as the P2D. Numerical 
simulation or experimental dataset from physics-based methodologies 
can used to support data-driven methods to achieve more accurate 
results. 

3.2.2. Physics-based residual learning 
With comprehensive understanding of aging mechanisms of Li-ion 

batteries, research on aging-conscious modeling including EMs 
[39,40] and ECMs [154,155] coupled with different degradation phe
nomenon has increased in popularity. However, no single model can 
accurately describe all degradation factors. Residual learning, in which a 
machine learning model learns to forecast the errors created by a 
physics-based model, is the most established and widely used method for 
directly addressing the flaws of physics-based models. The workflow is 
shown in Error! Reference source not found. The physical model and 
machine learning are performed simultaneously. A representative Li-ion 
battery's electrochemical, electrical, or thermal behavior is essentially 
represented by the physical model. The physical model mismatch is 
learned using machine learning. To mimic the projected value of the 
battery, the final output will be Phybrid = Pphy + ΔP. Features include 
voltage, current, resistance, temperature, and SOC etc., prediction can 
be terminal voltage, capacity loss and resistance increase (Fig. 8). 

The fundamental idea is to gauge model predictions by learning the 
physical model's residuals (in relation to the observations). One way is to 
use machine learning to fill the gap in our understanding of degradation 
mechanisms that introduce errors. A potential method is universal or
dinary differential equations (UODEs) an extension of neural ordinary 
differential equations (NODEs) [156], which will act as a function over 
all state variable of the system. The UODE is used to describe the ca
pacity fade and resistance increase triggered by unknown physical 
mechanisms [157]. A combination of physics-based model and the 
UODE is proposed to create a degradation model assessing charge loss 

Fig. 8. Physics-based residual learning workflow. Given the features, the physics-based model predicts an initial solution, and the machine learning method reduces 
the total error by learning the mismatch between physics-based prediction and observation to obtain a more accurate prediction. The cubes indicate the input 
features X and output prediction Y. Furthermore, the yellow, blue, and green boxes represent the physics-based model, the machine learning method, and the battery, 
respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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(due to SEI growths, lithium plating [48] and active material isolation 
[35]) and resistance increase. This physics informed machine learning 
approach, governed by Eq.(6), has the potential to improve the accuracy 
of Li-ion battery degradation models. The equations governing the 
UODE framework for degradation mechanisms is seen in Eq.(6): [157] 

dY
dt

=
dYmechanism

dt
+

dYnonmechanism

dt
dYnonmechanism

dt
= NN(μ,X, θ)

(6)  

where Y describes the aging characteristics (i.e., capacity, internal 
resistance, power), μ represents collection of physical parameters such 
as ohmic overpotential and equilibrium potential, X is the vector of 
operating conditions, and θ denotes parameters of NN. A similar concept 
was also proposed and studied under the name ‘data-driven error 
compensation’ by Gesner et al. [158]. 

Another approach to improving the physics-based solutions is by 
deploying algorithmic control. State information calculated by physical 
principles, such as the anodic surface and bulk SOC, etc., is added to the 
output and machine learning is used to optimize the error between the 
model-based solution and the true value. In [159] a feedforward neural 
networks (FNN) is used to capture residuals of physical models. They 
concatenate an SPMT (SPM coupled with thermal effects) and FNN. And 
the second effort integrates the ECM [160], developed in [161], with 
FNN. The FNN monitors the ongoing state evolution of physical model 
and learns what is missing in the physics-based model using the mea
surement data. This hybrid approach is validated using simulations and 
experiments revealing a high predictive accuracy over a wide range of C- 
rates. Recently Park et al. [162] also showed support for hybrid elec
trochemical modeling with recurrent neural networks which out
performs other reduced-order battery models in most situations. In this 

approach, an SPM describes the terminal voltage output, governed by 
equations based on electrode thermodynamics, electric overpotential, 
and Butler-Volmer kinetics. The current is used as input and the SPM 
outputs the voltage result, while RNNs learns the difference between the 
P2D model (considered as the true value) and the SPM result, and finally 
outputs Vmodel = VSPM + ΔVRNNs. Nevertheless, one drawback of this 
structure is its inability to blend physical constraints in machine 
learning. 

The investigations show that data-driven error compensation outside 
restricted boundaries leads to improvements and robustness in the 
predictive accuracy. However, these aging prediction models need to be 
validated under for more conditions when applied to LiBs. 

3.2.3. Physics-based embedding 
Physics-based embedding incorporates physical models into the 

model optimization loop, where the physical models act as the part of 
the skeleton and the machine learning is responsible for tracking the 
trend and accelerating the calculation. The workflow is shown in Fig. 9. 
One structure feeds the physics-based model's output into a machine 
learning model that predicts the target directly. Another use is when the 
machine learning model is applied to forecast an intermediate quantity 
that is challenging to represent with physics or to replace one or more 
physics-based model parts. Features extraction include voltage, current, 
temperature, and SOC. Prediction can be battery voltage, total resis
tance, maximum charge, and charge/discharge power, all of which are 
motivated by the aging process. 

One approach to embed physics into a machine learning algorithm is 
by feeding the output of physics-based model as input to the data-driven 
model, as illustrated in Fig. 9 (a). A demonstration of this approach is 
carried out by Tu et al. [160] The HYBRID-2 model employs FNNs to 
predict terminal voltages based on an SPMT and NDC (an ECM 

Fig. 9. Two types of physics-based embeddings. (a) physics-based model takes input features and feeds its output to a machine learning method. The machine 
learning method uses the original input features and the output of the physics-based model as an input, and outputs the predicted battery life. (b) Machine learning 
replaces a part of the physical model, while the physics-based model is used to constrain the machine learning method to obtain physically meaningful mapping 
between the features and the prediction results. The cubes indicate the input feature X, intermedia vector, and output prediction Y. While the blue and yellow boxes 
refer to the machine learning methods, and physics-based model, respectively. (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.) 
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developed by Tian et al. [163]), both of which provide state information 
to the FNNs. For SPMTNet (a combination of an SPMT model and an 
FNN) the FNN measures SoCbulk, SoCsurf and T derived from the SPMT 
model as its input variables and exploits the SPMT's state to make pre
dictions. For NDCNet (a combination of a NDC model and an FNN), state 
variables such as voltage referring to the bulk inner region of electrodes, 
voltage describing the surface region of the electrode, and transient 
voltage caused by ion diffusion dynamics, are fed to the FNN to embed 
physical laws in its predictions. In [164], a simplified SPM and a lumped 
thermal model are used as sub-models of an ETNN (electrochemical- 
thermal-neural network) to forecast the core temperature and offer es
timates of the approximate terminal voltage. The electrochemical ther
mal sub-model is parameterized to give an approximation of the 
terminal voltage and a neural network with I, T, and VSP inputs is then 
used in series with the sub-model to improve the accuracy of the pre
dicted voltage. Validation of the ETNN model indicates that it can 
accurately predict the battery terminal voltage and core temperature 
over a wide range of ambient temperatures (from − 10 ◦C to 40 ◦C). An 
earlier systematic study of physics embedded machine learning methods 
by Refai et al. in 2011 [165] shows that a sparse recurrent neural 
network can incorporate the output of physics-based model as addi
tional input. However, this hybrid neural network can only be used after 
the physic-based model. Recently, Hu et al. [166] proposes a physics 
informed data-driven model where a ECM is exploited to capture the 
physical features of the Li-ion battery during charging and discharging, 
and a Tensor-Network-based Volterra model is used to predict the SOC. 
The results show that this method can reduce the risk of overfitting. Li 
et al. [167] applies EM to monitor and iteratively predict the internal 
electrochemical condition of Li-ion batteries in real time to determine 
safe operating conditions. This research uses GPR, which accelerates 
online prediction computation by employing the window of historical 
maximum charge and discharge currents that moves forward step by 
step over time as opposed to using all historical data as the training data 
set. In incorporating LSTM for capacity fade prediction, a recent study 
[168] has mostly centered on semi-empirical Eq. [169]. The benefit is 
that by understanding how operational stress factors and battery health 
conditions affect battery degradation, capacity fade can be properly 
predicted. While it is still necessary to validate predictions made for 
various battery types, loads, and temperatures. 

Another embedding approach is to replace a part of the physics- 
based model with a data-driven method [170,171]. Encoding the loss 
of physics-based models in a machine learning method such as a neural 
network have yielded positive results [172]. In a recent paper by Nas
cimento et al. [173], a physics-based model (based on the Nernst and 
Butler Volmer equations) is embedded into an RNN, thereby generating 
physically driven hidden constraints for the RNN. Part of the physics- 
based model is replaced by a multilayer perceptron (MLP), which is 
flexible enough to capture the dynamic changes of non-ideal voltages. It 
is easy to adapt and interpret the hybrid model since most of the com
putations in the RNN are driven by the physics-based model (i.e., Nernst 
and Butler-Volmer equations). The same approach has been applied in 
redox flow batteries [174]. He et al. establishes a physics-constrained 
deep neural network (PCDNN) using a 0D cell model of the vanadium 
redox flow battery, which learns the model parameters as a function of 
operating conditions. DNNs are used to replace the parameter function 
of the physics-based model. Physics informed machine learning and 
visual tracking are employed to predict the thermal conductivity of the 
heat pipe in battery thermal management systems related to tempera
ture and position [175]. The Multiphysics numerical simulation used 
within the heat pipe that supplies variable thermal conductivity can 
contribute useful insights into the efficiency of the heat pipe. The dis
advantages of the embedded structure include the necessity to modify 
the hybrid structure based on the predictor variables and the need for 
additional electrochemical domain knowledge to select which machine 
learning units embed into the physical structure. 

Embedded predictions insert intermediate variables between a 

physics-based model and a machine learning method during training to 
ensure that the acquired parameters carry a real physical interpretation. 

4. Discussion and comparison 

4.1. Publication trend 

Battery lifetime modeling publications, including journals and con
ference proceedings, blending physics and data-driven methods in the 
past 20 years are reviewed and illustrated in Fig. 10. It should be noted 
that the publications for 2022 are only available until June 1st. The 
number of this hybrid way is growing rapidly. Before 2017, data-driven 
assisted physical models are the dominance of physics-based lifetime 
modeling. However, after 2020, what is striking in this figure is the 
phenomenal growth of physics-guided data-driven approaches. Physics 
informed data-driven methods first appear in 2011, originating from 
computer sciences and breathe new life into the battery aging prediction 

Fig. 10. Publication trends of the literature reviewed in this paper. (a) Three 
physical model trends are reviewed in Section 2, and two categories of ‘grey 
box’ lifetime modeling trends are reviewed in Section 3, (b) The application 
percentages of different data-driven models used in hybrid approaches in Sec
tion 3. 
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Table 5 
Comparison of different methods regarding description, needs, advantages and limitations.  

Method Description Needs Advantages Limitations Ref. 

Parameter 
identification 

Finding parameter values in physical model 
that minimize the error between predictions 
and observations  

▪ Suitable physical model  
▪ High fidelity observations  
▪ Filtering algorithm or machine 

learning or Statistical methods  

▪ Mature process  
▪ Simpler experiments 

required  
▪ Low training complexity  

▪ Limited by the accuracy of the 
physical model  

▪ Prediction speed depends on 
model complexity 

[58,63,90,91,93–114,116–118] 

Reduced-order 
physical model 

Simplification of EM for efficient forecasting  ▪ Governing equations (i.e., P2D) or 
sub-model library of candidate 
reduced-order models  

▪ High fidelity but simpler 
models  

▪ Release some computing 
pressure  

▪ Immature automatic 
identification of optimal 
reduced-order models  

▪ Extended time for calculating 
ROM when modifying 
parameter values  

▪ Impractical in system 
identification applications 

[119–128] 

Uncertainty 
qualification  

▪ RUL distribution based on a 
fundamental physical model  

▪ Design-related parameter fluctuations 
on battery performance  

▪ Suitable physical model  
▪ Filtering algorithm or stochastic 

process or probabilistic machine 
learning (i.e., Gaussian process)  

▪ Tools for assessing the 
credibility of model 
predictions  

▪ Quantitative validation of 
physical models and robust 
design  

▪ High dependence on reliable 
priors  

▪ Ongoing development of 
online modeling for real-time 
processing  

▪ Increasing computational cost 

[114,116,131–142] 

Physics-based 
data generation 

Generate synthetic data using EM-based 
simulation or physical measurement data  

▪ Experiment observations or synthetic 
data  

▪ Data-driven handle 
mechanisms in a simple 
way  

▪ Flexible choice of machine 
learning methods  

▪ Accurate predictions  

▪ High computational cost for 
data generation 

[143–153] 

Physics-based 
residual 
learning 

Learn biases between physical model and 
observations to correct  

▪ Suitable EMs  
▪ Observations  
▪ Machine learning methods (preferred 

ANN)  

▪ High predictive accuracy  
▪ Mature learning process  

▪ Limited by simple physical 
models in applications  

▪ Prediction speed depends on 
model complexity 

[35,157–160,162] 

Physics-based 
embedding 

Incorporating physical models into neural 
network optimization loops  

▪ Chosen physics equations (i.e., PDEs, 
ODEs)  

▪ Designed neural network architecture  

▪ High predictive accuracy  
▪ Ability to numerically 

solve PDEs or ODEs  
▪ Potential for online 

applications  

▪ Pending development of the 
foundation laid 

[160,163–175]  
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area. The pie chart, Fig. 10. (b) shows machine learning has the largest 
share of data-driven methods in the “grey box” lifetime modeling. This 
indicates that machine learning is the most popular data-driven method 
to combine with physics-based models (especially non-probabilistic 
machine learning), which will evolve our understanding of battery 
aging. 

Regarding the usability of physics-based battery lifetime modeling 
(Fig. 10. (a)), P2D models and SPM have become the most popular 
physical models for lithium-ion batteries, and the success of these 
models depends on an accurate understanding of the electrochemical 
properties of the battery. The EM-based aging prediction has been one of 
the hot spotlights of research over recent years, attracting increasing 
attention from academia and industry. Despite the greater complexity of 
EM, EM-based BMS is regarded as an encouraging trend for future BMS 
with the advancement of research [167]. Moreover, ECM and semi- 
empirical have become the second most applied model. Their benefits 
include the ability to explain how external stressors affect aging and a 
minimal parameter complexity that is conductive to online applications. 
The drawback, however, is that they convey less physical perspective 
than EMs to depict the nonlinear behavior of dynamic operating 
circumstances. 

4.2. Comparison 

Battery lifetime prediction modeling combining physics and data- 
driven discussed in this part covers a great deal of work. Table 5. sum
marizes the distinctions by listing the synopsis, strengths, and weak
nesses of the different methods. Different approaches can be chosen 
depending on the resources available and the problem-solving 
objectives. 

Parameter identification is an approach to using data-driven 
methods to estimate parameter values through regression data to 
physical models. For accurate prediction of results, a high-performance 
physical model is a necessity. And suitable algorithms need to be 
considered to apply for leveraging computational resources and accu
racy. In on-board applications, prediction is completely dominated by 
the physical model, and forecasting speed is also related to model 
complexity. Additionally, it is essential to ensure that these internal 
variables are patterned adequately before they can be safely used in BMS 
applications. 

The reduced-order physical model angle provides a simplified 
physical model while ensuring accuracy. One is to focus on simplifying 
high-fidelity EMs, such as P2D or coupled EMs. Considering the 
complexity of EMs, decomposition ways are used to reduce expensive 
representations. Then data-driven algorithms are employed to output 
from ROMs. Moreover, Machine learning appears to be a powerful tool 
to automatically identify ROMs from the sub-models' descriptor library. 
However, ROM requires more time for calculation if parameter values 
are altered, making it unsuitable for system applications. 

Uncertainty qualification expresses the battery life (RUL) as proba
bility distributions, describing the uncertainty due to the measurement 
tolerances, parameter fluctuations, and cell-to-cell variations. Filtering, 
stochastic, or probabilistic machine learning methods are requirements. 
Another purpose is to describe parametric uncertainty through statisti
cal theory. Quantitatively quantifying the effects of these uncertainties 
is essential for reliable physics-based model prediction. While prediction 
accuracy relies on priors and online evaluation, dynamic training stra
tegies are still inadequate. 

Physics-based data generation can output large quantities of 
computational data and reduce the cost of experimental observation 
acquisition. Machine learning technique trains on these data or synthesis 
of experimental and computational data to ensure a partially physics- 
constrained prediction result. This is a simple integration of physics 
and data-driven and demonstrates excellent performance in real-time 
state assessment and battery system cloud optimization. However, this 
method requires a high computational cost in data generation. With 

more data under different applications, the accuracy of the method can 
be significantly improved. 

Physics-based residual learning captures unmodeled dynamics in 
physical models. Machine learning improves prediction accuracy by 
reducing the errors between observations and models. The physical 
model will choose an electrochemical-based derivation to ensure phys
ical solid consistency. It reduces the data requirements corresponding to 
the pure data-driven methods. Although it is faster than existing com
plex physical models, a more straightforward model form is favorable 
for online applications. And the prediction speed is limited by model 
complexity. 

Physics-based embedding approach is either as physics informed 
machine learning architecture or physics constrained machine learning. 
This method requires governing equations and a suitable algorithm 
(preferred ANN). The physical model can feed some intermediate pa
rameters in NNs. Meanwhile, machine learning can learn the nonlinear 
PDEs or ODEs to let the output be partially constrained by physics in
sights. Such connections can be alternated in a cycle until satisfactory 
results are obtained. It serves as the cornerstone for work online. At the 
same time, more work needs to be done to lay the groundwork in this 
area. 

4.3. Future perspectives 

Physics-guided data generation is an important study area. Data can 
provide breakthrough technologies and powerful new forces to bridge 
experts from different disciplines. Experimental and simulation-based 
high-fidelity datasets with physical perspectives are in demand. Accel
erated experimental datasets are an important basis for developing 
prediction methods in the battery field. Already commonly cited are 
battery data published by NASA [176], CALCE [177], and in 2019 MIT 
[150] published a dataset of 124 commercial LFP/graphite cells under 
fast charging scenarios. Recently, Pozzato et al. [178] and Xia et al. 
[179] have also released experimental data subjected to an EV discharge 
profile and the deep aging process. More comprehensive public datasets 
are encouraged. 

The above trends emphasize the significance of data sets. On the one 
hand, the identification of reasonable accelerated experimental condi
tions and the investigation of standardized test procedures are worthy of 
continued development to ensure the minimum test matrix and test 
costs. Thermal [180], mechanical [181], and other test instruments 
[182] can also be combined with electrical tests to enrich the data 
dimension. On the other hand, the generation of multi-physics simula
tion datasets [183,184] through physical mechanisms is also a valuable 
area that can support the study of underlying parameters not easily 
measured to guide cell design optimization and iterative production. 

Physical models leading fused data-driven approaches have achieved 
a lot and have become practical for improving accuracy. Instead, long- 
term attention should be focused on physics-guided machine learning 
approaches to prognostics. As biology embraces data-driven algorithms, 
machine learning has emerged as the most promising tool. In physically- 
based high-dimensional models [185,186] the physics-guided machine 
learning can estimate the parametric functional form, which will 
improve the accuracy of the model compared to the standard LS or other 
optimal regression algorithms. Introducing more physical crossover 
factors supports degradation prediction, which needs to be solved 
numerically or approximately for PDEs. 

PINN method [187], a set of deep learning algorithms for seamlessly 
integrating data and extracting mathematical operators, can solve for 
the spatial derivatives of these fields in the PDEs and boundary condi
tion residuals by embedding multi-physics field loss functions in the NN 
loss function. Considering the complex dynamic degradation of lithium- 
ion batteries in EV application, PINN with EM models or some principal 
equations (Butler Volmer, conversation laws, etc.) would be a promising 
solution in the future. 

With neural networks studied for their ability to incorporate physical 
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concepts well [188,189], the development of physics-based neural 
network architectures that can adapt to changes in physical correctness 
or quality of training data is promising. We expect experts from 
computing, physics, mathematics, chemistry, etc., to work together to 
make this happen. 

On-board prediction for BMS is another focus [190]. The ideal model 
needs to be constantly updated and optimized by combining battery 
design, manufacturing factors, historical usage data, and online moni
toring data to form a closed-loop update mechanism to achieve a wide 
range of applications in electric vehicles. We want to test the model 
under real load conditions in EVs and extend the physics-based neural 
network model to more powerful components to build a complete hybrid 
model that is not only useful for predicting the end of discharge but also 
for fault detection as well as isolation within the EV system. 

While as a matter of fact, blending physics-based and data-driven 
techniques in an accurate sole model has its challenges related to 
identifying the merging point. What physical model can we choose to 
inject machine learning networks? How to choose the optimal machine 
learning method and its architecture to avoid overfitting or under
fitting? Which form of structural embedding can fully exploit the guid
ance and constraints of physics-based models, while allowing machine 
learning to track the aging trajectory to give accurate predictions flex
ibly? Hopes and challenges will inspire life prediction and trouble
shooting of lithium-ion batteries to go even further. 

5. Conclusions 

Battery lifetime modeling is a nonlinear and time-varying process. 
Accurate lifetime assessment is a hot but challenging topic in the battery 
field. The interest in transferring from a single model to a hybrid 
physical and data-driven prediction approach to improve the general
ization and accuracy of battery aging prediction can solve many of the 
issues of the pure physical or data-driven approaches. 

This review gives a systematic overview of battery lifetime modeling, 
combing physics, and data-driven methods on the basis of 190 related 
papers. Three physics-based battery models are introduced, and these 
models' requirements and application features are presented. Through 
the perspectives of parameter identification, reduced-order models, and 
uncertainty qualification applications, data-driven can assist physical 
models in obtaining results closer to observations. Constraining and 
feeding data-drive algorithms via physical equation fusion significantly 
increases the results' confidence while reducing the training data re
quirements. Regardless of the above two approaches, the gradual 
enhancement of electrochemical models is noticed, with more than 50 % 
occupation in the physical part of “grey box” modeling options. At the 
same time, the 78 % share of machine learning demonstrates its better 
predictive power when compared to other data-driven methods. To 
develop a highly sophisticated life model to describe the battery aging 
phenomenon, combined with the temporal and spatial complexity of 
electrochemical processes needs to be considered simultaneously. 
Therefore, developing physics-based models is an ongoing required 
effort. Furthermore, open-source multi-conditional application data is 
expected. Finally, deriving physical explanations to inject into data- 
driven lifetime predictions will help guide accurate lifetime prediction 
and safe battery operation. We believe that using physics-guided ma
chine learning to predict battery degradation is very promising, such as 
PINN or applying EMs to develop physics informed machine learning 
architecture. 

In addition to building high-fidelity models, implementing, and 
updating model prediction capabilities by appending models to the BMS 
is an expected development direction. We hope to inspire more re
searchers to keep enhancing the online application of “grey box” lifetime 
modeling. 
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