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State Space Temporal Gaussian Processes for Glucose Measurements*

Mohamad Al Ahdab1, Torben Knudsen1, and John Leth1

Abstract— Measuring the blood glucose (BG) concentrations
for people with diabetes is essential to achieve a better glycemic
control either by medical professionals or by using feedback
control algorithms. Continuous Glucose Monitoring (CGM)
devices provide indirect measurements of the BG each 1–
5 minutes. However, CGM devices suffer from correlated
measurement errors and calibration errors. Detailed models
for the errors of CGM devices already exist in the literature.
Nonetheless, the identification of these models requires data
from multiple CGM devices at once and accurate reference
blood glucose measurements obtained clinically. This fact makes
these models difficult to be subject-specific during typical
treatment since diabetic subjects only use one CGM device with
3–4 finger pricking blood glucose measurements per day. In
this paper, a methodology to obtain subject-specific CGM error
models using Temporal Gaussian Processes (TGP) in their state
space form is introduced. Three different TGPs are proposed
and a strategy based on a particle Markov Chain Monte Carlo
(MCMC) is used to perform regression and fit parameters for
the models. The strategy is tested against data generated from
virtual subject using detailed CGM error measurement models
which were fitted with more than one CGM device and detailed
clinical data from the literature. The results demonstrated the
ability for TGP models with the proposed particle MCMC
strategy to obtain subject-specific CGM error models using
data available during the typical life of diabetic subjects.

I. INTRODUCTION

Subjects with diabetes employ different methods to moni-
tor their BG concentration during their treatment to manage
it and to determine appropriate insulin doses. One com-
mon method is to use Self-Monitored Glucose Measurement
(SMBG) devices which measure glucose concentration in
blood drops obtained with a finger prick [1]. Measurements
acquired from such devices are sparse and do not pro-
vide enough information about the variability of glucose
concentration. On the other hand, CGM devices provide
measurement samples each 1-5 minuts allowing for a better
description of glucose variability. Obtaining a better de-
scription about glucose variability with CGM devices has
been shown to provide improvement in glycemic control
and detection of low BG concentrations [2]. Nevertheless,
CGM devices do not provide direct measurement of BG.
Instead, CGM devices measure the interstitium glucose (IG)
concentration, and therefore, there is a time lag between
CGM measurements and BG concentrations which depends
on the diffusion process of BG to IG. Additionally, CGM
devices have been shown to be affected by systematic and
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random errors [3]. Therefore, patients usually use SMBG
measurement to calibrate CGM devices during the day [4].
Obtaining and fitting subject-specific models for the errors
of CGM devices is important for more accurate automated
insulin dose calculators and fitting personalised insulin-
glucose dynamical models for patients [5], [6].

In the literature, several models exist for the error of CGM
measurements with various degrees of complexity. In [7], a
posteriori recalibration of CGM is performed first using BG
references with a sample time of 15 minutes for around 40
hours. After that, a first order model between BG and IG is
used with a fixed time constant of 17 minuts to estimate
IG based on interpolated reference BG data. Finally, the
residual between CGM and the estimated IG, taken as the
measurement noise of the sensor, is fitted with a first order
autoregressive (AR) model. The work in [8] then refined the
work in [7] by considering forcing functions. Values for the
time constant for the BG to IG kinetics were also estimated
for each individual subject with the help of BG reference val-
ues collected every 15 minutes through BG a venous cannula.
The work in [9]–[12] considered a more detailed model with
reference BG sampled more frequently and multiple CGM
devices. The models consider polynomials in time for both
the gain and the drift on the CGM measurements in addition
to modeling the additive random error as the sum of two
different second order AR processes AR(2). Lastly, AR(2)
models for both the drift and the additive noise are used to
model continuous intravascular glucose monitoring sensor.
Each of the mentioned methods above relied on reference BG
values taken more frequently than the usual case of SMBG
measurements. This make these models difficult to be used
in subject-specific settings. The works in [13]–[15] intended
to improve CGM measurements with the help of Kalman
filters using the typical SMBG data patients provide. In [13],
an extended Kalman filter (EKF) is used to estimate BG
concentrations from SMBG and CGM measurements. The
model for the EKF consists of a first order model with a time
constant assumed between IG and BG, a random walk model
for BG and other constant parameters to be estimated, and
an additive Gaussian noise for the measurements of SMBG
and CGM with the latter having a scale parameter on IG that
was estimated. The variance of the additive noise on SMBG
was assumed to be proportional to percentage of the SMBG
value while the variance for CGM measurememnts was fixed
to constant value and was not estimated. In [14], a dual rate
Kalmanfilter is used on a similar model to the one in [13]
but now the rate of change for BG and the scale parameters
evolve to two independent random walks. Additionally, no
model for IG to BG concentrations is assumed. Moreover,



the variance on SMBG was also assumed to be constant
and known. Finally in [15], an EKF is used similarly to
the one in [13] but with the assumption that the scale
parameters evolves according to a triply integrated white
noise while the BG evolves according to a doubly integrated
white noise. Additionally, the time constant parameter was
not estimated between IG and BG due to the difficulties in
estimating it with sparse SMBG measurements. Nevertheless,
the proposed EKF strategy was shown to be robust to the
different values of the time constant. As for the variances,
only the variance of the white noise associated with the scale
parameters was estimated. The rest of the variances were
fixed to be the same variances used in simulation. All the
mentioned methods did not attempt to estimate variances for
measurement noises. Moreover, they all assumed an additive
gaussian noise for CGM measurements. Additionally, all the
of these methods assumed integrated white noise models for
the evolution of BG. Their main intention was to improve the
CGM measurements rather than obtaining a subject-specific
CGM model.

As for SMBG models, several models have been con-
cerned through the literature with various degrees of com-
plexity. Some works, such as [16], [17], assumed that the
relative error of the SMBG measurement to be an identically
and independently distributed (iid) Gaussian process with a
bias term. Others, as in [18], modelled the error on SMBG
measurement to be gaussinally distributed with zero mean
and variances depending on the BG concentration. More
specifically, the variance of the error was assumed constant
for BG below 4.2 [mmol/L] and linearly dependent on
BG for BG above 4.2 [mmol/L]. This assumption was
done to simulate the International Organization for Stan-
dardization (ISO) standard for SMBG devices [19]. The
ISO standard states that 95 percent of glucose measurement
should lie within ±0.83 [mmol/L] when BG concentration
is below 4.2 [mmol/L] and within 20% of BG values when
BG concentration is above 4.2 [mmol/L]. Recently, [11]
considered two different skew normal distributions for the
SMBG relative error when BG concentrations are above 4.2
[mmol/L] and the SMBG error when BG concentrations
are below 4.2 [mmol/L]. Parameters for the two different
distribution were estimated in addition to parameters for
exponential distributions accounting for outliear measure-
ments. To be able to estimate the parameters of the error
distributions, highly accurate reference BG data obtained by
a laboratory equipment each 15 minutes in parallel to SMBG
measurements were used. The main contribution of this paper
is as follows. We propose a new strategy based on TGP
to obtain subject-specific CGM error models using SMBG
and CGM measurements. Additionally, we propose to model
the CGM errors with only one CGM device and SMBG
measurements unlike the other strategies which uses multiple
CGM devices and/or reference BG samples obtained with a
relatively higher sampling rate than SMBG measurements.
The structure of the paper is as follows. Section III presents
an introduction to TGP regression. After that, we present the
proposed models for the CGM and SMBG errors in section

IV. The regression strategy is then presented in section V.
Subsequently, we present simulation models in section VI
to generate data and compare with our proposed strategy to
later be followed with results in section VII and a conclusion
in section VIII.

II. NOTATIONS

All probabilistic considerations in this paper will be with
respect to an underlying probability space (Ω,F ,P). For a
random variable x we write x = x(ω) for the value of the
random variable, and x ∼ p(x) for the corresponding density.
We use N (µ, σ) to denote the normal distribution with mean
µ and variance σ. If the difference between two consecutive
time instants tk and tk+j is such that tk+j− tk = jT, j ∈ Z
with T ∈ R being a constant, then variables that are indexed
with time x(tk), x(tk+j) will be denoted by x(k), x(k + j)
for ease of notations. For a collection of n ∈ Z variables
{x(i)}ni=1 or {x(ti)}ni=1, the notation x1:n is used for both
of them. Moreover, if each of {x(i)}ni=1 is a scalar, then
x1:n =

[
x(1), . . . , x(n)

]T
. In addition, for a diagonal matrix

An×n with diagonal elements a1, . . . , an, the notation A =
diag (a1, . . . , an) is used. Moreover, the symbol In is used
to denote an n dimensional identity matrix and the symbol
1n is used to denote an n dimensional column vector of 1s.

III. GAUSSIAN PROCESS REGRESSION

A TGP is a stochastic process f(t) indexed by time inputs
t ∈ R≥0 such that any finite collection of the random
variables {f(t1), . . . , f(tn)} has an n-dimensional Gaussian
distribution [20]. The TGP regression address the estimation
of the statistics of f(t∗) with t∗ being an arbitrary point in
time given a set of data {ti, y(ti)}ni=1 with output y(ti) being
the value f(ti) corrupted with noise e.g.,

y(ti) = f(ti) + εi (1)

with εi ∼ N (µεi , σεi).
The TGP regression uses the fact that the joint distribution

of any finite collection of its random variable is Guassian,
and therefore completely determined by its mean and co-
variance functions. A TGP process is commonly denoted as

f(t) ∼ GP
(
µ(t), c

(
t, t

′
, θc

))
(2)

with µ(t) the mean function and c
(
t, t

′
, θc

)
the covariance

function between time points t and t
′

with hyperparameters
θc. The the mean and the covariance functions represent
part of the prior information regarding the process. For
this paper, we assume that µ(t) = 0 and restrict the prior
information in the choice of the TGP model to be provided
by c

(
t, t

′
, θc

)
as a first approach towards using TGP for

CGM error models. Given the collection {ti}ni=1, one can
write as a prior f(t1), . . . , f(tn) ∼ N (0,C) where the ijth
entry of the covariance matrix C is Cij = c

(
ti, tj , θc

)
.

The computational complexity for TGP can scale up to
O(n3) for all kinds of output processes, even in the Gaussian
case (1), see [20]. This can be a problem for large data sets.



Especially when time is the input and the sampling frequency
is high as it is the case for CGM measurements. One way to
deal with this is to use state space representation for TGPs. In
[21], [22], exact or approximate methods to obtain state space
representations for TGPs with stationary covariance function
(c(t, t

′
, θc) = c(τ, θc), τ = t− t′ ) have been presented and

discussed. In addition, the regression problem for TGPs in
(2) with a general likelihood can be seen as a smoothing
problem for the likelihood together with the following linear
system

dxgp(t) = Agpxgp(t)dt+ LgpdB (3a)
f(t) = Hgpxgp(t) (3b)

with B denoting standard Brownian motion. The stationary
covariance functions determines the matrices Agp, Lgp, and
Hgp together with the state dimension. For some covariance
functions, exact state representation can be found in closed
form as shown in [21], [22]. For example, the TGP with
an exponential covariance function is represented by an
Ornstein–Uhlenbeck (OU) process.1Other example which
have closed form state space representation are TGPs with
half integers Matérn covariance functions. For other station-
ary covariance functions such as the squared exponential
function, they can be approximated using Taylor series or
Padé approximation for their spectral density to obtain an
approximate linear state representation as done in [21], [23].

IV. REGRESSION MODEL

A. CGM model

To consider that CGM devices measure IG instead of
BG, a first order model is considered between the two
concentration with time constant τc [min−1] as done in [9],
[15]

dxc(t) =
1

τc

(
xg(t)− xc(t)

)
dt (4)

with xg [mmol/L] the BG concentration, and xc [mmol/L]
is the IG concentration. The time constant τc is taken to
be the median from [9] which is 7 [min−1]. For the CGM
measurement, the model is assumed in this paper to be on
the form

yc(k) =
(
1 + g(k)

)
xc(k)+v(k)+εc(k), εc(k) ∼ N (0, σ2

c ),
(5)

where tk+j − tk = jTs, j ∈ Z with Ts being the sampling
time of the CGM device. The process g(k) represents the
time dependent gain error of the sensor due to calibration.
As for v(k) and εc(k), they represent the additive calibration
and measurement errors of the sensor. In this paper, three
different models are assumed for g(k) and v(k) summarized
in Table I. For the first model, the additive noise is assumed
to be an AR(2) process, inspired by [9]. As for the gain
error, the exponential covariance function (OU) is chosen
inspired by the work in [14] since their model for the gain
error can assumed to be a discritized version of an OU

1For a scalar OU TGP with c(t, t
′
) = σ2

2γ
e−γ|t−t

′
|,Agp = −γ, Lgp =

σ2, Hgp = 1

process. Additionally, the induced OU model is simple since
it becomes one dimensional. Nevertheless, the solutions for
the OU process are continuous but not differentiable which
is not an ideal property for the gain error. For the second
model, a TGP with a squared exponential covariance function
is considered instead of an AR(2) process. The squared
exponential covariance function gives solutions which are
infinitely differentiable. Moreover, it is a common choice for
covariance functions in TGPs when no information about
the underlying true process is known [20]. However, the
squared exponential kernel cannot be exactly represented
by a finite linear system in the form of (3). Instead, a 6th
order Taylor series approximation for the spectral density
of the covariance function is used in this paper to obtain a
6th order state space representation [22], [23]. Finally, the
third model considers two different TGPs with a Matérn 5/2
covariance functions. The Matérn 5/2 covariance functions
can be written as the product of a second degree polynomial
and an exponential covariance function. This choice was
made here since the works in [9]–[12], [24] all considered
polynomials in time for the sensor’s calibration error with a
maximum degree of two. Additionally, TGPs with the Matérn
5/2 covariance function have an exact third order state space
representation [21], [22].

Model Number g(k) v(k)
Model 1 Exponential (OU) AR(2)
Model 2 Exponential (OU) Squared Exponential
Model 3 Matérn 5/2 Matérn 5/2

TABLE I
DIFFERENT MODELS OF CGM CONSIDERED IN THE PAPER

The aim of this paper is to provide a methodology for
the use of TGPs with CGM and SMBG measurements, and
to demonstrate the ability of TGPs to model CGM measure-
ments with only one CGM device and SMBG measurements.

To avoid a model for the BG concentration xg , the dy-
namics in (4) is discretized using forward Euler discritization
with the sampling time Ts to obtain

xc(k + 1) = (1− Ts
τc

)xc(k) +
Ts
τc
xg(k). (6)

Now, xg(k) can be written in terms of yc(k + 1) and yc(k)
by isolating xg(k) in (6) and using (5) to obtain

xg(k) =
τc
Ts

yc(k + 1)− v(k + 1)− εc(k + 1)

1 + g(k + 1)

−
(
τc
Ts
− 1

)
yc(k)− v(k)− εc(k)

1 + g(k)
.

(7)

B. SMBG

The SMBG measurements are modelled as

ys(ts) = xg(ts) + σs
(
xg(ts)

)
εs(ts), (8a)

σs
(
xg
)

=
1

κ
σ2 log

(
1 + eκ(xg−4.2)

)
+ σ1, (8b)

where ts is the time instant of the measurement. The model
for the standard deviation (8b) is chosen such that it provides
a smooth transition between the two zones (mentioned in the



introduction) which simulates the ISO standard for SMBG
devices [19]. The value of κ determines how smooth the
transition is. For this paper, a value of κ = 5 is chosen to
produce the function in Figure 1.

0 1 2 3 4 5 6 7

xg [mmol/L]

0.4

0.45

0.5

0.55

0.6

0.65

0.7

<
s
(x

g
)

4.2

Fig. 1. A plot of σs
(
xg

)
for κ = 5. The values of σ1 and σ2 are chosen

in accordance to the ISO [19] to be σ1 = 0.415 [mmol/L] and σ2 = 0.1.

Note that it is now possible to write the measurement mod-
els here in a state space representation where the dynamics
are given by the state space representation of g(k) and v(k)
(discrtized in case of a TGP using Euler–Maruyama), and
the output equation is (8) with xg(k) given by (7). This
can be done by matching SMBG measurements at time ts
with the nearest CGM measurement tk. For the following
sections, xg(k) ∈ Rng , xv(k) ∈ Rnv are denoted for the
states corresponding to the model of g(k), v(k) respectively,
and x(k) = [xTg (k), xTv (k)]T. The overall state space model
can then be written in the following form

x(k + 1) = Ax(k) + Lζ(k), ζ(k) ∼ N (0,
√
TsIng+nv

),

(9a)[
g(k)
v(k)

]
= Hx(k). (9b)

with the output equation given by (7) and (8), and

A =

[
(Ing + TsAg) 0

0 (Inv
+ TsAv)

]
, (10a)

L =

[
Lg 0
0 Lv

]
, (10b)

H =

[
Hg 0
0 Hv

]
, (10c)

with Ag, Lg, Hg and Av, Lv, Hv the corresponding state
space matrices for g(k) and v(k) respectively.

V. REGRESSION STRATEGY

As discussed in [22], regression of TGPs can be done
using smoothing techniques when they are represented as a
state space model. The two TGPs considered in this paper
come together in a nonlinear fashion as in (7). Additionally,
the noise for the likelihood in (8) is clearly not additive
Gaussian noise. Moreover, the SMBG measuremens which
are the outputs of the modeling strategy proposed in section
IV happens only 3-4 times per day. Due to these reasons,
a particle smoother is considered for the regression of the
model. In addition to the smoothing, it is desired that the

strategy should also estimate the hyper parameters of the
TGP covariance functions (or the AR(2) process) θg and
θv of g(k) and v(k) respectively. In addition, the strategy
is also desired to estimate σ1 and σ2 in (8b), and σc in

(5) to have θ =
[
θTg θTv σc σ1 σ2

]T
as the overall param-

eters desired to be estimated. For these reasons, Particle
Gibbs with Ancestor Sampling (PGAS) [25] together with
Metropolis Hasting (MH) [26] are chosen as a smoothing
(regression) and a parameter estimation strategy. PGAS is
a particle MCMC algorithm which combines Sequential
Monte Carlo methods with MCMC. MCMC strategies are
concerned with obtaining samples from a desired density
by means of sampling a Markov chain from a transition
kernel which has the desired density as its unique stationary
density. Thus, from an arbitrary initial state of the Markov
chain, successive samples (by the ergodicity property of the
Markov kernel) from the transition kernel will approximate
samples from the target density, provided that the Markov
chain has reached its stationary distribution. The PGAS is
constructed as an ergodic kernel with the stationary density
being the smoothing density p(x1:N |y1:Ns

s , θ), where N is the
number of CGM samples and Ns is the number of SMBG
measurements matched with the CGM measurements. Thus,
one can use the PGAS to obtain M subsequent samples
x1:N [1], . . . , x1:N [m], . . . , x1:N [M ] approximately from the
smoothing distribution by running the kernel with x1:N [m−
1] to obtain x1:N [m]. Additionally, if it is desired to estimate
parameters, then one can use the PGAS kernel in another
MCMC sampling procedure such as Gibbs sampling [27]
in order to sample parameters from their posterior density
as shown in Algorithm 1. For the model in this paper, it
is possible to know the posterior up to a proportionality
constant

log

(
p
(
θ|x1:N [m], y1:Ns

s

))
= −1

2

Ns∑
i=1

log
(

2πσ2
s

(
xg(i)

))
− 1

2

Ns∑
i=1

ys(i)− xg(i)

σ2
s

(
xg(i)

) + log(p(θ)) + constant,

Note that xg(i) depends on the parameters θ and x1:i+1[m],
despite this not being indicated in the notation. To sample
from the posterior distribution, another MCMC algorithm can
be used. In this paper we used the MH to sample from the
posterior p

(
θ|x1:N [m], y1:Ns

s

)
. The proposal density of the

MH algorithm is chosen to be a random walk driven by
white noise for all the parameters. Note that the complexity
order of the PGAS in [25] is O

(
NNp

)
and O

(
NNpM

)
for

smoothing with Np being the number of particles. For the
PGAS, it was shown that it still provides good mixing for
low number of particles due to the ancestor sampling step
introduced in [25], even for Np = 5 particles.

VI. SIMULATION MODEL

A. Generating Virtual Diabetic subjects Data

The model from [28] is used to generate IG and BG
data of 100 type 2 diabetic subjects for 10 days. The BG
concentration is taken to be the glucose concentration in



Algorithm 1: Gibbs sampling with PGAS

Input: Arbitrary x1:N [1] and θ[1], a prior distribution
for the parameters θ ∼ p(θ), and Ns
measurements y1:Ns

s

Output: A sequence of samples
x1:N [1], . . . , x1:N [M ] and θ[1], . . . , θ[M ]

1 For m = 2, . . . ,M Do
2 Run the PGAS kernel with x1:N [m− 1] to obtain

x1:N [m] given θ[m− 1] see [25].
3 Sample θ[m] from the posterior p

(
θ|x1:N [m], y1:Ns

s

)
.

End For

the heart and lung compartment, while the IG concentration
is taken to be the glucose concentration in the periphery
interstitial fluid compartment. To simulate different subjects,
specific parameters from the model are changed randomly
from subject to subject according to [29]. Moreover, the time
constant to the periphery interstitial fluid compartment is
changed uniformly for each subject within an interval of 40%
of its nominal value to simulate the effect of different time
lags between IG and BG. Additionally, subjects consume
three different meals per day denoted as breakfast, lunch,
and dinner. The meals are allocated randomly within the
following time intervals: 6:00-8:00 [h] for breakfast, 12:00-
14:00 [h] for lunch, and 19:00-21:00 [h] for dinner. The
Carbohydrate intake for each meals is also drawn randomly
from a normal distribution with mean ± SD given by
45 ± 10 [g] for breakfast, 75 ± 10 [g] for lunch, and
85±10 [g] for dinner. The simulated subjects took 4 SMBG
measurements. One measurement time drawn uniformly 10–
30 [min] before breakfast, one drawn uniformly 30–90 [min]
after breakfast, another drawn uniformly between 10–30
[min] before dinner, and one drawn uniformly 30-90 [min]
after dinner. This scheduling is usually done by subjects since
they likely measure their BG concentration before a meal to
determine how much they can eat and later after the meal to
check their BG after meal consumption. In addition to the 4
SMBG measurements, a measurement is taken by the subject
whenever BG goes below 4 [mmol/L]. This is also usually
done since subject can feel low BG episodes and would likely
take an SMBG measurement to check it. Finally, all subjects
are assumed to take constant long acting insulin doses each
day starting from 30 units of insulin and increasing by 10
units for each three days. This choice was done to insure
that some of the subject will have low BG episodes.

B. Generating CGM and SMBG Measurements

To generate CGM data for the generated IG data, the
polynomial and AR(2) models discussed in [9]–[12], [24]
are used. Each of the references used polynomials for the
calibration gain error and for the calibration additive error
with different degrees and piece-wise constant coefficient
between calibration points. The degrees of these polynomial
differed from article to article depending on the device used
in the study, the data set used, and the day in which the

identification is carried out ( [10] identified polynomials
with different degrees for Day 1, Day 4, and Day 7 of
the CGM device). Additionally, two additive random errors
are modeled with two separate AR(2) process. The first
random error represent random calibration error, and the
second one represent other random measurement errors. In
order to simulate these models with polynomials of different
degrees, a count for how many times an npgth and an npvth
degree polynomial is used for the calibration gain error and
the calibration additive error respectively has been done.
Afterwards, for each subject, the degrees of the polynomials
associated with their CGM measurements is drawn randomly
according to the following categorical (multinoulli) distri-
bution obtained by the counts of the polynomials For the

npg = 0 npg = 1 npg = 2
npv = 0 4/15 2/15 ×
npv = 1 2/15 5/15 1/15
npv = 2 × 1/15 ×

TABLE II
PROBABILITIES FOR THE POLYNOMIAL DEGREE USED TO SIMULATE

CGM DEVICES. THE × IS USED FOR CASES WHICH WERE NOT

REPORTED IN THE LITERATURE AND THUS HAS NO PROBABILITY

coefficients of the calibration gain error polynomial α =
[α0 α1 α2]

T and the coefficients of calibration additive error
polynomial β = [β0 β1 β2]

T, a normal distribution is fitted
for the coefficients α ∼ N (µαΣα), and β ∼ N (µβ ,Σβ)
based on a collection of the coefficient’s statistics provided
in the references [9]–[12], [24] with

µα =
[
1.001 2.066× 10−5 0

]T
, (11a)

Σα = diag
(

0.0625 7.225× 10−5 1.936× 10−5
)
, (11b)

µβ =
[
−0.0175 0.002 4.480× 10−5

]T
, (11c)

Σβ = diag
(

4.297 5.138× 10−7 2.009× 10−9
)
. (11d)

Moreover, a negative cross correlation term of −0.95 be-
tween the coefficients for the calibration gain error polyno-
mials and the coefficients for the calibration additive error
polynomials is added according to the reported results by [9].
Finally, the coefficient for the two AR(2) process are taken
from the population reported in [10]. Simulating CGM errors
with this approach produces a wide variety of cases to test
against due to the way the parameters are sampled. This is
in line with the aim of this paper which is to test the validity
of using GP models as CGM error models derived with
one CGM device and SMBG measurements. Note that this
simulation approach can generate improbable cases. However
it does not invalidate the method used in this paper, quite
the contrary, it demonstrates the robustness of the method.
For the SMBG measurements, the two zones skew normal
distributions for One Touch Ultra 2 (OTU2) device is used
[11].



VII. RESULTS AND DISCUSSION

Each of the 100 patients’ CGM and SMBG, generated
as described in section VI, were used in Algorithm 1 with
the three proposed different models in Table I. The prior for
each parameter was chosen to be uniform between 0 and 10
since all of them are positives. The algorithm was used to
generate M = 10000 Markov chain samples of x1:N and
θ. For sample x1:N [m] of the Markov chain, 300 samples
of parameters are drawn using the MH strategy and only
the last sample is taken to be θ[m]. This is done to try to
ensure that the Markov chain sample of the MH strategy is an
approximate sample from the posterior in (V). For the PGAS,
the number of particles is chosen to be 20. To ensure that the
samples of trajectory and parameters are from the smoothing
and posterior distribution respectively, the last 1000 of the
Markov chain sample are considered.

To asses the smoothing and modeling strategy in this
paper, the last 1000 smoothed samples {x1:N [m]}Mm=M−1000

are used to generate estimates of {x̂1:Ng [m]}Mm=M−1000 using
(7). Figure 2 shows the results for one subject using the three
different models. As seen from the figure, the first model
performs poorly with the CGM errors and cannot be used to
obtain an estimate of the actual blood glucose concentration
when compared to the second and third model. The second
and third model perform similarly. The chosen covariance
functions for the second and third models give the possibility
to produce highly correlated time series which are suitable
for biases and drifts. It is also seen from the figure that the
third model performs slightly better on the first day than the
second model while the second model perform slightly better
on the second day than the third model.

Additionally, a fit is computed between each sample from
{x̂1:Ng [m]}Mm=M−1000 and the true BG concentration x1:Ng as
following

fit[m] = 1−

√(
x1:Ng − x̂1:Ng [m]

)T (
x1:Ng − x̂1:Ng [m]

)
√(

x1:Ng − 1
N 1Tx1:Ng

)T (
x1:Ng − 1

N 1Tx1:Ng

) .
(12)

The mean and standard deviation for the fits over all m ∈
{M − 1000, . . . ,M} are then computed in Table III and
reported as a percentage for each model from Table I. It
is seen from Table III that the first model performs poorly
in general when compared with the other models. It also
exhibits a higher uncertainty in the fits (std fits) when
compared with the second and the third model. This can also
be seen from the subject in Figure 2. The second and third
model appear to perform relatively similar. It is seen also
that the uncertainty of the fits for the second and third model
is much lower than the first model. To asses the precision
of the fitted parameters, the dispersion of the posterior is
measured by the Quartile Coefficient of Dispersion (QCD)
QCD = Q3−Q1

Q3+Q1
with Q1 and Q3 being the first and the

third quantile respectively. The QCD is computed for the
posterior of each parameter using the last 1000 samples and
the results are reported in Table IV. The reported numbers

Model mean fit std fit
Model 1 72% 14.3%
Model 2 92.5% 5.03%
Model 3 94.2% 1.61%

TABLE III
MEAN AND STANDARD DEVIATION OF FITS

Model θg θv σc σ1 σ2
Model 1 0.21, 0.18 0.18, 0.184, 0.23 0.094 0.42 0.31
Model 2 0.11, 0.16 0.112, 0.06 0.064 0.412 0.29
Model 3 0.13, 0.21 0.162, 0.08 0.044 0.425 0.33

TABLE IV
QCD VALUES FOR THE POSTERIOR OF THE PARAMETERS. NOTE THAT

THE NUMBER OF REPORTED QCD VALUES FOR θg AND θv IS BASED ON

THEIR DIMENSION.

shows that the parameters θg, θv, σc were estimated to a
better precision when compared to σ1 and σ2. This is because
for subjects who almost never experienced low BG levels in
the simulation, σ2 was estimated much better than σ1 since
most the time their BG levels were far from 4.2 [mmol/l]
which is the threshold in (8). On the other hand, σ1 was
estimated better for subjects who has lower BG levels for
most of the time. Moreover, since more subjects have higher
BG levels, the reported QCD values for σ2 are better than
σ1.

VIII. CONCLUSION AND FUTURE WORK

The suggestion of using TGP in this paper with the
presented smoothing strategy has been shown to be able
to model correlated and time dependent CGM errors with
only one CGM device and SMBG measurements. The TGP
models can handle varying parameters for both multiplicative
and additive measurement errors on CGM devices. Moreover,
the fact that the models and the strategy can be applied with
one CGM device and SMBG measurements only make them
suitable for subject-specific modeling. For future work, one
can investigate different model choices. Additionally, one
can use the proposed strategy with the suggested models
with real CGM patient data accompanied with detailed BG
concentration data sampled at a rate similar to the real
CGM device for conformation. Finally, an investigation for
improving the smoothing strategy or proposing an alternative
one can be carried out.
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