

Aalborg Universitet

ARCH-COMP22 category report: Artificial intelligence and neural network control
systems (AINNCS) for continuous and hybrid systems plants

Lopez, Diego Manzanas; Althoff, Matthias; Benet, Luis; Chen, Xin; Fan, Jiameng; Forets,
Marcelo; Huang, Chao; Johnson, Taylor T.; Ladner, Tobias; Li, Wenchao; Schilling, Christian;
Zhu, Qi
Published in:
9th International Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH22)

DOI (link to publication from Publisher):
10.29007/wfgr

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Lopez, D. M., Althoff, M., Benet, L., Chen, X., Fan, J., Forets, M., Huang, C., Johnson, T. T., Ladner, T., Li, W.,
Schilling, C., & Zhu, Q. (2022). ARCH-COMP22 category report: Artificial intelligence and neural network control
systems (AINNCS) for continuous and hybrid systems plants. In G. Frehse, M. Althoff, E. Schoitsch, & J.
Guiochet (Eds.), 9th International Workshop on Applied Verification of Continuous and Hybrid Systems
(ARCH22) (pp. 142-184). EasyChair. https://doi.org/10.29007/wfgr

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -

https://doi.org/10.29007/wfgr
https://vbn.aau.dk/en/publications/70c626b2-eb32-4e66-ba02-7ace09f85c28
https://doi.org/10.29007/wfgr

EPiC Series in Computing

Volume 90, 2022, Pages 142–184

Proceedings of 9th International Workshop on Applied
Verification of Continuous and Hybrid Systems (ARCH22)

ARCH-COMP22 Category Report:

Artificial Intelligence and Neural Network Control Systems

(AINNCS) for Continuous and Hybrid Systems Plants

Diego Manzanas Lopez1, Matthias Althoff5, Luis Benet2, Xin Chen6, Jiameng
Fan8, Marcelo Forets3, Chao Huang7, Taylor T. Johnson1, Tobias Ladner5,

Wenchao Li8, Christian Schilling4, Qi Zhu9,

1 Vanderbilt University
Nashville, TN

{diego.manzanas.lopez, taylor.johnson}@vanderbilt.edu
2 Instituto de Ciencias F́ısicas, Universidad Nacional Autónoma de México (UNAM), México

benet@icf.unam.mx
3 Universidad de la República, Montevideo, Uruguay

mforets@gmail.com
4 Aalborg University, Aalborg, Denmark

christianms@cs.aau.dk
5 Technische Universität München (TUM), Munich, Germany

{althoff, tobias.ladner}@tum.de
6 University of Dayton, Dayton OH, USA

xchen4@udayton.edu
7 University of Liverpool, Liverpool, UK

chao.huang2@liverpool.ac.uk
8 Boston University, Boston, USA

{jmfan, wenchao}@bu.edu
9 Northwestern University, Evanston, USA

qzhu@northwestern.edu

Abstract

This report presents the results of a friendly competition for formal verification of
continuous and hybrid systems with artificial intelligence (AI) components. Specifically,
machine learning (ML) components in cyber-physical systems (CPS), such as feedforward
neural networks used as feedback controllers in closed-loop systems are considered, which
is a class of systems classically known as intelligent control systems, or in more modern
and specific terms, neural network control systems (NNCS). We more broadly refer to this
category as AI and NNCS (AINNCS). The friendly competition took place as part of the
workshop Applied Verification for Continuous and Hybrid Systems (ARCH) in 2022. In
the fourth edition of this AINNCS category at ARCH-COMP, four tools have been applied
to solve 10 different benchmark problems. There are two new participants: CORA and
POLAR, and two previous participants: JuliaReach and NNV. The goal of this report is

G. Frehse, M. Althoff, E. Schoitsch and J. Guiochet (eds.), ARCH22 (EPiC Series in Computing, vol. 90),
pp. 142–184

ARCH-COMP22 AINNCS Manzanas Lopez et al.

to be a snapshot of the current landscape of tools and the types of benchmarks for which
these tools are suited. The results of this iteration significantly outperform those of any
previous year, demonstrating the continuous advancement of this community in the past
decade.

1 Introduction

Neural Networks (NNs) have demonstrated an impressive ability for solving complex problems
in numerous application domains [57]. The success of these models in contexts such as adaptive
control, non-linear system identification [41], image and pattern recognition, function approxi-
mation, and machine translation, has stimulated the creation of technologies that are directly
impacting our everyday lives [50], and has led researchers to believe that these models possess
the power to revolutionize a diverse set of arenas [46].

Despite these achievements, there have been reservations in utilizing them within high-
assurance systems for a variety of reasons, such as their susceptibility to unexpected and errant
behavior caused by slight perturbations in their inputs [36]. In a study by Szegedy et al. [51],
the authors demonstrated that by carefully applying a hardly perceptible modification to an
input image, one could cause a successfully trained neural network to produce an incorrect
classification. These inputs are known as adversarial examples, and their discovery has caused
concern over the safety, reliability, and security of neural network applications [57]. As a result,
there has been a large research effort directed towards obtaining an explicit understanding of
neural network behavior.

Neural networks are often viewed as “black boxes,” whose underlying operation is often
incomprehensible, but the last several years have witnessed numerous promising white-box
verification methods proposed towards reasoning about the correctness of their behavior. How-
ever, it has been demonstrated that neural network verification is an NP-complete problem [33],
and while current state-of-the-art verification methods have been able to deal with small net-
works, they are incapable of dealing with the complexity and scale of networks used in practice
([37, 21, 6]). Additionally, while in recent years there has been a large amount of work focused
on verifying pre-/post-conditions for neural networks in isolation, reasoning about the behavior
of their usage in cyber-physical systems, such as in neural network control systems, remains a
key challenge.

The following report aims to provide a survey of the landscape of the current capabilities
of verification tools for closed-loop systems with neural network controllers, as these systems
have displayed great utility as a means for learning control laws through techniques such as
reinforcement learning and data-driven predictive control [19, 53]. Furthermore, this report
aims to provide readers with a perspective of the intellectual progression of this rapidly growing
field and stimulate the development of efficient and effective methods capable of use in real-life
applications.

Disclaimer The presented report of the ARCH-COMP friendly competition for closed-
loop systems with neural network controllers, termed in short AINNCS (Artificial Intelli-
gence / Neural Network Control Systems), aims to provide the landscape of the current
capabilities of verification tools for analyzing these systems that are classically known as
intelligent control systems. This AINNCS ARCH-COMP category is complementary to
the ongoing Verification of Neural Networks Competition (VNN-COMP) [9], the latter of

143

ARCH-COMP22 AINNCS Manzanas Lopez et al.

which focuses on open-loop specifications of neural networks, while the AINNCS category
focuses on closed-loop behaviors of dynamical systems incorporating neural networks. We
would like to stress that each tool has unique strengths—not all of the specificities can be
highlighted within a single report. To reach a consensus in what benchmarks are used,
some compromises had to be made so that some tools may benefit more from the presented
choice than others. To establish further trustworthiness of the results, the code with which
the results have been obtained is publicly available at gitlab.com/goranf/ARCH-COMP.

Specifically, this report summarizes results obtained in the 2022 friendly competition of the
ARCH workshop1 for verifying systems of the form

ẋ(t) = f(x(t), u(x, t)),

where x(t) and u(x, t) correspond to the states and inputs of the plant at time t, respectively, and
where u(x, t) is the output of a feedforward neural network provided an input of the plant state x
at time t. This year is the fourth iteration of the AINNCS category at ARCH-COMP and builds
on the previous iterations and reports from 2019, 2020, and 2021 [38, 31, 30]. Participating
tools are summarized in Sec. 2. Please, see [57] for further details on these and additional
tools. The results of our selected benchmark problems are shown in Sec. 3 and are obtained
on the tool developers’ own machines. Thus, one has to factor in the computational power of
the processors used, summarized in Appendix A, as well as the efficiency of the programming
language of the tools. The architecture of the closed-loop systems we will evaluate is depicted
in Figure 1, where the input to the NN controller is additionally sampled.

Figure 1: Closed-loop architecture of the benchmarks to be verified.

The goal of the friendly competition is not to rank the results, but rather to present the
landscape of existing solutions in a breadth that is not possible with scientific publications in
classical venues. Such publications would typically require the presentation of novel techniques,
while this report showcases the current state-of-the-art tools. The selection of the benchmarks
has been conducted within the forum of the ARCH website (cps-vo.org/group/ARCH), which
is visible for registered users and registration is open for anyone.

1Workshop on Applied Verification for Continuous and Hybrid Systems (ARCH), cps-vo.org/group/ARCH

144

https://gitlab.com/goranf/ARCH-COMP
http://cps-vo.org/group/ARCH
http://cps-vo.org/group/ARCH

ARCH-COMP22 AINNCS Manzanas Lopez et al.

2 Participating Tools

We present a brief overview of all the participating tools in this friendly competition. The tools
are CORA, JuliaReach, NNV, and POLAR. The tools participating in the Artificial Intelli-
gence / Neural Network Control Systems in Continuous and Hybrid Systems Plants (AINNCS)
category are introduced subsequently in alphabetical order.

JuliaReach (Luis Benet, Marcelo Forets, Christian Schilling) JuliaReach [15] is an open-
source software suite for reachability computations of dynamical systems, written in the Julia
language and available at http://github.com/JuliaReach. The package ClosedLoopReacha-
bility.jl handles the closed-loop analysis and queries sub-problems to our other library Reach-
abilityAnalysis.jl for continuous-time analysis of plant models. Additional set computations
are performed with LazySets.jl [24]. The algorithm we use is described in [47]. For the plant
analysis we use the sound algorithm TMJets based on interval arithmetic and Taylor models,
which is implemented in Taylor models [11, 14], which itself integrates TaylorSeries.jl [12, 13]
and TaylorIntegration.jl [42]. The algorithm is a form of jet transportation using a Taylor
polynomial with interval coefficients and uses the following main parameters for tweaking: the
absolute tolerance abstol and two parameters to define the order at which the Taylor expan-
sion is cut in time (orderT) resp. in space (orderQ). For neural-network analysis we use an
abstract interpretation based on zonotopes [49]. For falsification, JuliaReach chooses an initial
point but uses set-based analysis since, although most models are deterministic, non-validated
simulations may yield wrong results.

NNV NNV (Neural Network Verification Tool) [55, 52, 54, 60, 62, 59, 58, 56, 61, 1] is a Mat-
lab toolbox that implements reachability analysis methods for neural network verification, with
a particular focus on applications of closed-loop neural network control systems in autonomous
cyber-physical systems. NNV uses a star-set state-space representation and reachability algo-
rithm that allows for a layer-by-layer computation of exact or overapproximate reachable sets for
feed-forward and convolutional neural networks. The star-set based algorithm is naturally par-
allelizeable, which allowed NNV to be designed to perform efficiently on multi-core platforms.
Additionally, in the event that a particular safety property is violated, NNV can be used to con-
struct and visualize the complete set of counterexample inputs for a neural network. Using NNV
in combination with HyST [8, 7] and CORA [2, 3, 4] allows for the verification of closed-loop
neural network control systems with nonlinear plant dynamics. The tool along with all of the
relevant experiments and publications can be found at https://github.com/verivital/nnv.

CORA The COntinuous Reachability Analyzer (CORA) [2] is a collection of MATLAB
classes for the formal verification of cyber-physical systems using reachability analysis and
is available at https://cora.in.tum.de. CORA integrates various vector and matrix set
representations and operations on them as well as reachability algorithms of various dynamic
system classes. For this competition, we used the approach described in [35] for open-loop
and closed-loop neural network verification based on polynomial zonotopes [34]. Polynomial
zonotopes are particularly well suited for the verification of neural networks due to their poly-
nomial time complexity on many operations. The approach described in [35] realizes a fast
layer-based computation of an over-approximation of the output set of networks with various
activation functions, including ReLU, sigmoid, and tanh. Our neural network verification ap-
proach is naturally integrated in our reachability analysis methods for linear and nonlinear
plant dynamics.

145

http://github.com/JuliaReach
https://github.com/JuliaReach/ClosedLoopReachability.jl
https://github.com/JuliaReach/ClosedLoopReachability.jl
https://github.com/JuliaReach/ReachabilityAnalysis.jl
https://github.com/JuliaReach/ReachabilityAnalysis.jl
https://github.com/JuliaReach/LazySets.jl
https://github.com/JuliaIntervals/TaylorModels.jl
https://github.com/JuliaDiff/TaylorSeries.jl
https://github.com/PerezHz/TaylorIntegration.jl
https://github.com/verivital/nnv
https://cora.in.tum.de

ARCH-COMP22 AINNCS Manzanas Lopez et al.

POLAR POLAR (POLynomial ARithmetic-based framework) [26] is a C++ open-source
tool for efficient time-bounded reachability analysis of neural-network controlled systems, which
is available at https://github.com/ChaoHuang2018/POLAR_Tool. The tool is implemented
based on the GNU open-source libraries and the C++ library of Flow* [16]. The purpose
of POLAR is not to compute range-overeapproximations for NNCS reachable sets. It seeks
to compute functional overapproximations for the flowmap that defines all executions of
the system. The tool enables precise layer-by-layer propagation of Taylor Models (TMs) for
general feed-forward neural networks. The basic TM arithmetic cannot handle ReLU that
is non-differentiable (cannot produce the polynomial), and also suffers from low approxima-
tion precision (large remainder). POLAR addresses these challenges through a novel use
of univariate Bernstein polynomial approximation and symbolic remainders. Motivated by
ReachNN* [27, 23, 22], univariate Bernstein polynomial approximation enables the handling
of non-differentiable activation functions and local refinement of Taylor models. Symbolic re-
mainders which is originally presented in [17] can taper the growth of interval remainders by
avoiding the so-called wrapping effect [29] in linear mappings.

3 Benchmarks

For the competition, we have selected 10 benchmarks, 3 more than last iteration, increasing the
complexity of the competition. A few of them, such as the TORA benchmark, are presented
with several different controllers that can be analyzed. We now describe these benchmarks in no
particular order and we have made them readily available online.2 All benchmarks are derived
for continuous time. Given the continuous dynamics ẋ = f(x), where x ∈ Rn is the state vector,
the discrete-time versions for a time increment of ∆t are obtained in this competition using
forward Euler integration:

x(k + 1) = x(k) + f(x)∆t.

3.1 Adaptive Cruise Controller (ACC)

The Adaptive Cruise Control (ACC) benchmark is a system that tracks a set velocity and
maintains a safe distance from a lead vehicle by adjusting the longitudinal acceleration of an
ego vehicle [40]. The neural network computes optimal control actions while satisfying safe
distance, velocity, and acceleration constraints using model predictive control (MPC) [44]. For
this case study, the ego car is set to travel at a set speed vset = 30 and maintains a safe distance
Dsafe from the lead car. The car’s dynamics are described by the following equations [53, p.
17]:

ẋlead(t) = vlead(t), v̇lead(t) = alead(t), ȧlead(t) = −2alead(t) + 2ac,lead − uv2lead(t),

ẋego(t) = vego(t), v̇ego(t) = aego(t), ȧego(t) = −2aego(t) + 2ac,ego − uv2ego(t),
(1)

where xi is the position, vi is the velocity, ai is the acceleration of the car, ac,i is the acceleration
control input applied to the car, and u = 0.0001 is a coefficient for air drag, where i ∈ {ego,
lead}. For this benchmark we evaluate a neural network controller with five layers and 20
neurons each. The inputs of the controller are the set speed vset, the desired time gap Tgap, the
ego velocity vego, the distance Drel = xlead − xego, as well as the relative velocity vrel, and the
output is ac,ego.

2https://github.com/verivital/ARCH-COMP2022

146

https://github.com/ChaoHuang2018/POLAR_Tool
https://github.com/verivital/ARCH-COMP2022

ARCH-COMP22 AINNCS Manzanas Lopez et al.

Specifications The verification objective of this system is that given a scenario where both
cars are driving safely, the lead car suddenly slows down with ac,lead = -2. We want to check
whether there is a collision in the following 5 s. Formally, this safety specification of the system
can be expressed as Drel ≥ Dsafe, where Dsafe = Ddefault + Tgap · vego, and Tgap = 1.4 s and
Ddefault = 10. The initial conditions are: xlead(0) ∈ [90,110], vlead(0) ∈ [32,32.2], alead(0) =
aego(0) = 0, vego(0) ∈ [30, 30.2], xego ∈ [10,11]. A control period of 0.1 s is used.

3.2 Sherlock-Benchmark-9 (TORA)

This benchmark considers translational oscillations by a rotational actuator (TORA) [19, 28],
where a cart is attached to a wall with a spring and is free to move on a friction-less surface.
The cart itself has a weight attached to an arm inside it, which is free to rotate about an
axis. This serves as the control input, in order to stabilize the cart at x = 0. The model is a
four-dimensional system, given by the following equations [28, eq. (4)]:

ẋ1 = x2, ẋ2 = −x1 + 0.1 sin(x3), ẋ3 = x4, ẋ4 = u. (2)

There are three neural network controllers for this benchmark: the first one has three ReLU
hidden layers and a linear output layer. This controller was trained using a data-driven model
predictive controller proposed in [20]. Note that the output of the neural network f(x) needs
to be normalized in order to obtain u, namely u = f(x) − 10. The sampling time for this
controller is 1 s and we verify it against specification 1 below. The other two controllers have
three hidden layers of 20 neurons each, and one output layer. In contrast to the first controller,
we use sigmoid activation functions for the hidden layers and a tanh output layer. The sampling
time of these controllers is 0.5 s, the output of the neural network f(x) needs to be postprocessed
as u = 11 · f(x), and we verify them against specification 2 below.

Specification 1. This is a safety specification. For an initial set of x1 ∈ [0.6, 0.7], x2 ∈
[−0.7,−0.6], x3 ∈ [−0.4,−0.3], and x4 ∈ [0.5, 0.6], the system states have to stay within the
box x ∈ [−2, 2]4 for a time window of 20 s.

Specification 2. For an initial set of x1 ∈ [-0.77, -0.75], x2 ∈ [-0.45, -0.43], x3 ∈ [0.51,
0.54], and x4 ∈ [−0.3,−0.28], it is required that the system reaches the set x1 ∈ [−0.1, 0.2],
x2 ∈ [−0.9,−0.6] within a time window of 5 s.

3.3 Sherlock-Benchmark-10 (Unicycle Car Model)

This benchmark considers a unicycle model of a car [19] with the x and y coordinates on a
two-dimensional plane, the velocity magnitude (speed), and steering angle as state variables.
The dynamic equations are (see [5, Sec. III.B]; a different input is used here):

ẋ1 = x4 cos(x3), ẋ2 = x4 sin(x3), ẋ3 = u2, ẋ4 = u1 + w, (3)

where w is a bounded error in the range 10−4[−1, 1]. A neural network controller was trained for
this system using a model predictive controller as a “demonstrator” or “teacher”. The trained
network has one hidden layer with 500 neurons. Note that the output of the neural network
f(x) needs to be normalized in order to obtain (u1, u2), namely ui = f(x)i− 20. The sampling
time for this controller is 0.2 s.

147

ARCH-COMP22 AINNCS Manzanas Lopez et al.

NMAC zone

�

�

h

τ

|ḣ0|

Figure 2: VerticalCAS encounter geometry

Specification This is a reachability specification. For an initial set of x1 ∈ [9.5, 9.55], x2 ∈
[−4.5,−4.45], x3 ∈ [2.1, 2.11], and x4 ∈ [1.5, 1.51], the system has to reach the set x1 ∈
[−0.6, 0.6], x2 ∈ [−0.2, 0.2], x3 ∈ [−0.06, 0.06], x4 ∈ [−0.3, 0.3] within a time window of 10 s.

3.4 VCAS Benchmark

This benchmark is a closed-loop variant of the aircraft collision avoidance system ACAS X. The
scenario involves two aircraft, the ownship and the intruder, where the ownship is equipped with
a collision avoidance system referred to as VerticalCAS [32]. Every second, VerticalCAS issues
vertical climb rate advisories to the ownship pilot to avoid a near mid-air collision (NMAC).
Near mid-air collisions are regions in which the ownship and the intruder are separated by less
than 100ft vertically and 500ft horizontally. The ownship (black) is assumed to have a constant
horizontal speed, and the intruder (red) is assumed to follow a constant horizontal trajectory
towards ownship, see Figure 2. The current geometry of the system is described by

• h, intruder altitude relative to ownship,

• ḣ0, ownship vertical climb rate, and

• τ , the time until the ownship (black) and intruder (red) are no longer horizontally sepa-
rated.

We can, therefore, assume that the intruder is static and the horizontal separation τ de-
creases by one each second. There are nine advisories and each of them instructs the pilot to
accelerate until the vertical climb rate of the ownship complies with the advisory:

1. COC: Clear Of Conflict;

2. DNC: Do Not Climb;

3. DND: Do Not Descend;

4. DES1500: Descend at least 1500 ft/s;

5. CL1500: Climb at least 1500 ft/s;

6. SDES1500: Strengthen Descent to at least 1500 ft/s;

7. SCL1500: Strengthen Climb to at least 1500 ft/s;

8. SDES2500: Strengthen Descent to at least 2500 ft/s;

9. SCL2500: Strengthen Climb to at least 2500 ft/s.

148

ARCH-COMP22 AINNCS Manzanas Lopez et al.

In addition to the parameters describing the geometry of the encounter, the current state of
the system stores the advisory adv ∈ {1, . . . , 9} (numbers correspond to the above list) issued to
the ownship at the previous time step. VerticalCAS is implemented as nine ReLU networks Ni,
one for each (previous) advisory, with three inputs (h, ḣ0, τ), five fully-connected hidden layers
of 20 units each, and nine outputs representing the score of each possible advisory. Therefore,
given a current state (h, ḣ0, τ, adv), the new advisory adv′ is obtained by computing the argmax
of the output of Nadv on (h, ḣ0, τ).

Given the new advisory, the pilot can choose acceleration ḧ0 as follows. If the new advisory
is COC, then it can be any acceleration from the set {− g

8 , 0,
g
8}. For all remaining advisories, if

the previous advisory coincides with the new one and the current climb rate complies with the
new advisory (e.g., ḣ0 is non-positive for DNC and ḣ0 ≥ 1500 for CL1500), the acceleration ḧ0
is 0; otherwise, the pilot can choose any acceleration ḧ0 from the given sets:

• DNC: {− g
3 ,−

7g
24 ,−

g
4};

• DND: { g4 ,
7g
24 ,

g
3};

• DES1500: {− g
3 ,−

7g
24 ,−

g
4};

• CL1500: { g4 ,
7g
24 ,

g
3};

• SDES1500: {− g
3};

• SCL1500: { g3};

• SDES2500: {− g
3};

• SCL2500: { g3},

where g represents the gravitational constant 32.2 ft/s
2
.

It was proposed to tweak the benchmark for the tools that cannot account for all possible
choices of acceleration efficiently. Those tools can consider two strategies for picking a single
acceleration at each time step:

• a worst-case scenario selection, where we choose the acceleration that will take the ownship
closer to or less far apart from the intruder.

• always select the acceleration in the middle.

Given the current system state (h, ḣ0, τ, adv), the new advisory adv′ and the acceleration
ḧ0, the new state of the system can be computed by the following equations [32, eq. (15)]:

h(k + 1) = h(k)− ḣ0(k)∆τ − 0.5ḧ0(k)∆τ
2

ḣ0(k + 1) = ḣ0(k) + ḧ0(k)∆τ
τ(k + 1) = τ(k) + ∆τ

adv(k + 1) = adv′

where ∆τ = 1.

Specification The ownship has to be outside of the NMAC zone after k ∈ {1, . . . , 10} time
steps, i.e., h(k) > 100 or h(k) < −100, for all possible choices of acceleration by the pilot. The
set of initial states considered is: h(0) ∈ [−133,−129], ḣ0(0) ∈ {−19.5,−22.5,−25.5,−28.5},
τ(0) = 25 and adv(0) = COC.

149

ARCH-COMP22 AINNCS Manzanas Lopez et al.

3.5 Single-Pendulum Benchmark

We consider a classical inverted pendulum. A ball of mass m is attached to a massless beam of
length L. The beam is actuated with a torque T and we assume viscous friction with a friction
coefficient of c. The governing equation of motion can be obtained as [39, eq. (1)]:

θ̈ =
g

L
sin θ +

1

mL2

(
T − c θ̇

)
, (4)

where θ is the angle of the link with respect to the upward vertical axis and θ̇ is the angular
velocity. After defining the state variables x1 = θ and x2 = θ̇, the dynamics in state-space form
is

ẋ1 =x2 (5a)

ẋ2 =
g

L
sinx1 +

1

mL2
(T − c x2) (5b)

Controllers are trained using behavior cloning, a supervised learning approach for training
controllers. The code as well as training procedures are provided. The model parameters are
chosen as

m = 0.5, L = 0.5, c = 0, g = 1 (6)

and the time step for the controller and the discrete-time model is ∆t = 0.05. The initial set is

x ∈ [1.0, 1.2]× [0.0, 0.2].

Specification ∀t ∈ [0.5, 1] : θ ∈ [0, 1] (analogously for k ∈ [10, 20] in discrete time).

3.6 Double-Pendulum Benchmark

The double pendulum is an inverted two-link pendulum with equal point masses m at the end
of connected mass-less links of length L. The links are actuated with torques T1 and T2 and
we assume viscous friction exists with a coefficient of c. The governing equations of motion are
described by the following equations [39, eq. (3a-b)]:

2θ̈1 + θ̈2 cos(θ2 − θ1)− θ̇22 sin(θ2 − θ1)− 2
g

L
sin θ1 +

c

mL2
θ̇1 =

1

mL2
T1 (7a)

θ̈1 cos(θ2 − θ1) + θ̈2 + θ̇21 sin(θ2 − θ1)−
g

L
sin θ2 +

c

mL2
θ̇2 =

1

mL2
T2 (7b)

150

ARCH-COMP22 AINNCS Manzanas Lopez et al.

1

2 g

x

y

Figure 3: Inverted double pendulum. The goal is to keep the pendulum upright (dashed
schematics)

where θ1 and θ2 are the angles of the links with respect to the upward vertical axis (see Figure 3)
and g is the gravitational acceleration. After defining the state vector as x = [θ1, θ2, θ̇1, θ̇2]

T ,
the dynamics in state-space form is

ẋ1 =x3 (8a)

ẋ2 =x4 (8b)

ẋ3 =
1

2
(

cos2(x1−x2)
2 − 1

) cos (x1 − x2)

(
x3

2 sin (x1 − x2)− cos (x1 − x2)

(
g sin (x1)

L
(8c)

−x4
2 sin (x1 − x2)

2
+
T1 − c x3
2L2m

)
+
g sin (x2)

L
+
T2 − c x4
L2m

)
(8d)

− x4
2 sin (x1 − x2)

2
+
g sin (x1)

L
+
T1 − c x3
2L2m

(8e)

ẋ4 =
−1

cos2(x1−x2)
2 − 1

(
x3

2 sin (x1 − x2)− cos (x1 − x2)

(
g sin (x1)

L
− x4

2 sin (x1 − x2)

2
(8f)

+
T1 − c x3
2L2m

)
+
g sin (x2)

L
+
T2 − c x4
L2m

)
, (8g)

The controllers for the double pendulum benchmark are obtained using the same methods
as the controllers for the single pendulum benchmark; also here, the code as well as training
procedures are provided. The model parameters are chosen as in (6) The initial set is

x ∈ [1.0, 1.3]4.

Specification 1 ∀t ∈ [0, 1] : x ∈ [−1.0, 1.7]4 (analogously for k ∈ [0, 20] in discrete time) for
∆t = 0.05.

151

ARCH-COMP22 AINNCS Manzanas Lopez et al.

Specification 2 ∀t ∈ [0, 0.4] : x ∈ [−0.5, 1.5]4 (analogously for k ∈ [0, 20] in discrete time)
for ∆t = 0.02.

We verify controller double pendulum less robust against specification 1 and controller double
pendulum more robust against specification 2.

3.7 Airplane Benchmark

The airplane example consists of a dynamical system that is a simple model of a flying airplane
as shown in Figure 4. The state is

x = [sx, sy, sz, vx, vy, vz, ϕ, θ, ψ, r, p, q]
T , (9)

where (sx, sy, sz) is the position of the center of gravity, (vx, vy, vz) are the components of
velocity in (x, y, z) directions, (p, q, r) are body rotation rates, and (ϕ, θ, ψ) are the Euler angles.
The equations of motion are reduced to [39, eq. (7)]:

v̇x =− g sin θ +
Fx
m

− qvz + rvy (10a)

v̇y =g cos θ sinϕ+
Fy
m

− rvx + pvz (10b)

v̇z =g cos θ cosϕ+
Fz
m

− pvy + qvx (10c)

Ixṗ+ Ixz ṙ =Mx − (Iz − Iy)qr − Ixzpq (10d)

Iy q̇ =My − Ixz
(
r2 − p2

)
− (Ix − Iz)pr (10e)

Ixz ṗ+ Iz ṙ =Mz − (Iy − Ix)qp− Ixzrq. (10f)

The mass of the airplane is denoted with m and Ix, Iy, Iz and Ixz are the moment of inertia
with respect to the indicated axis; see Figure 4. The control parameters include three force
components Fx, Fy and Fz and three moment componentsMx,My,Mz. Note that for simplicity,
we assume that the aerodynamic forces are absorbed in the force vector F . In addition to these
six equations, we have six additional kinematic equations [39, eq. (8,9)]:ṡxṡy

ṡz

 =

cosψ − sinψ 0
sinψ cosψ 0
0 0 1

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

vxvy
vz

 (11)

and ϕθ
ψ

 =

1 tan θ sinϕ tan θ cosϕ
0 cosϕ − sinϕ
0 sec θ sinϕ sec θ cosϕ

pq
r

 . (12)

As in the pendulum benchmarks, controllers are trained for the airplane problem using
behavior cloning. The system involves the model parameters

m = 1, Ix = Iy = Iz = 1, Ixz = 0, g = 1

and the time step for the controller and the discrete-time model is ∆t = 0.1. The initial set is

x = y = z = r = p = q = 0, [vx, vy, vz, ϕ, θ, ψ] ∈ [0.0, 1.0]6.

152

ARCH-COMP22 AINNCS Manzanas Lopez et al.

x

z

top view

front view

x

y

y
z

Figure 4: The airplane example.

Specification ∀t ∈ [0, 2] : sy ∈ [−0.5, 0.5], [ϕ, θ, ψ] ∈ [−1.0, 1.0]3 (analogously for k ∈ [0, 20]
in discrete time).

We verify controller airplane against the above specification.

3.8 Benchmark: Attitude Control

We consider the attitude control of a rigid body with six states and three inputs [43, 48]. The
system dynamics is given by [43, Sec. V]:

ω̇1 = 0.25(u0 + ω2ω3), ω̇2 = 0.5(u1 − 3ω1ω3), ω̇3 = u2 + 2ω1ω2,

ψ̇1 = 0.5
(
ω2(ψ

2
1+ψ

2
2+ψ

2
3−ψ3)+ω3(ψ

2
1+ψ

2
2+ψ2+ψ

2
3)+ω1(ψ

2
1+ψ

2
2+ψ

2
3+1)

)
,

ψ̇2 = 0.5
(
ω1(ψ

2
1+ψ

2
2+ψ

2
3+ψ3)+ω3(ψ

2
1−ψ1+ψ

2
2+ψ

2
3)+ω2(ψ

2
1+ψ

2
2+ψ

2
3+1)

)
,

ψ̇3 = 0.5
(
ω1(ψ

2
1+ψ

2
2−ψ2+ψ

2
3)+ω2(ψ

2
1+ψ1+ψ

2
2+ψ

2
3)+ω3(ψ

2
1+ψ

2
2+ψ

2
3+1)

)
,

wherein the state x = (ωT , ψT)T consists of the angular velocity vector in a body-fixed frame
ω ∈ R3 and the Rodrigues parameter vector ψ ∈ R3.

The control torque u ∈ R3 is updated every 0.1 s by a neural network with three hidden
layers, each of which has 64 neurons. The activations of the hidden layers are sigmoid and
identity, respectively. We train the neural-network controller using supervised learning methods
to learn from a known nonlinear controller [43]. The initial state set is:

ω1 ∈ [−0.45,−0.44], ω2 ∈ [−0.55,−0.54], ω3 ∈ [0.65, 0.66],

ψ1 ∈ [−0.75,−0.74], ψ2 ∈ [0.85, 0.86], ψ3 ∈ [−0.65,−0.64].

153

ARCH-COMP22 AINNCS Manzanas Lopez et al.

Specification The system should not reach the following unsafe set in 3 s (30 time steps):

ω1 ∈ [−0.2, 0], ω2 ∈ [−0.5,−0.4], ω3 ∈ [0, 0.2],

ψ1 ∈ [−0.7,−0.6], ψ2 ∈ [0.7, 0.8], ψ3 ∈ [−0.4,−0.2].

We would like to show that the above specification does not hold.

3.9 Benchmark: QUAD

This benchmark studies a neural-network controlled quadrotor (QUAD) with twelve state vari-
ables [10]. We have the inertial (north) position x1, the inertial (east) position x2, the altitude
x3, the longitudinal velocity x4, the lateral velocity x5, the vertical velocity x6, the roll angle
x7, the pitch angle x8, the yaw angle x9, the roll rate x10, the pitch rate x11, and the yaw rate
x12. The control torque u ∈ R3 is updated every 0.1 s by a neural network with 3 hidden layers,
each of which has 64 neurons. The activations of the hidden layers and the output layer are
sigmoid and identity, respectively. The dynamics are given by the following equations [10, eq.
(12-16)]:

ẋ1 =cos(x8) cos(x9)x4 + (sin(x7) sin(x8) cos(x9)− cos(x7) sin(x9))x5

+ (cos(x7) sin(x8) cos(x9) + sin(x7) sin(x9))x6

ẋ2 =cos(x8) sin(x9)x4 + (sin(x7) sin(x8) sin(x9) + cos(x7) cos(x9))x5

+ (cos(x7) sin(x8) sin(x9)− sin(x7) cos(x9))x6

ẋ3 =sin(x8)x4 − sin(x7) cos(x8)x5 − cos(x7) cos(x8)x6

ẋ4 =x12x5 − x11x6 − g sin(x8)

ẋ5 =x10x6 − x12x4 + g cos(x8) sin(x7)

ẋ6 =x11x4 − x10x5 + g cos(x8) cos(x7)− g − u1/m

ẋ7 =x10 + sin(x7) tan(x8)x11 + cos(x7) tan(x8)x12

ẋ8 =cos(x7)x11 − sin(x7)x12

ẋ9 =
sin(x7)

cos(x8)
x11 −

cos(x7)

cos(x8)
x12

ẋ10 =
Jy − Jz
Jx

x11x12 +
1

Jx
u2

ẋ11 =
Jz − Jx
Jy

x10x12 +
1

Jy
u3

ẋ12 =
Jx − Jy
Jz

x10x11 +
1

Jz
τψ

where

g = 9.81, m = 1.4, Jx = 0.054,

Jy = 0.054, Jz = 0.104, τψ = 0.

The initial set is:

x1 ∈ [−0.4, 0.4], x2 ∈ [−0.4, 0.4], x3 ∈ [−0.4, 0.4], x4 ∈ [−0.4, 0.4],

x5 ∈ [−0.4, 0.4], x6 ∈ [−0.4, 0.4], x7 = 0, x8 = 0, x9 = 0, x10 = 0, x11 = 0, x12 = 0.

154

ARCH-COMP22 AINNCS Manzanas Lopez et al.

Specification The control goal is to stabilize the attitude x3 to a goal region [0.94, 1.06] and
remain within these bounds with a time horizon of 5 s (50 time steps).

3.10 2D Spacecraft Docking

In the 2D spacecraft docking environment, the state of an active deputy spacecraft is expressed
relative to the passive chief spacecraft in Hill’s reference frame [25]. The dynamics are given
by a first-order approximation of the relative motion dynamics between the deputy and chief
spacecraft, which is given by Clohessy-Wiltshire [18] equations [45, eq. (12)],

ṡx
ṡy
s̈x
s̈y

 =

0 0 1 0
0 0 0 1

3n2 0 0 2n
0 0 −2n 0

sx
sy
ṡx
ṡy

+

0 0
0 0
1
m 0
0 1

m

u, (13)

where m = 12 (kg), n = 0.001027 (rad/s), and u ∈ R2.
The neural network controller was trained on the Docking 2D environment with reinforce-

ment learning using the training procedure described in [45]. However, the training procedure
differed in providing only the full state (position and velocity) as input and with hard clipping
of output actions replaced with soft tanh clipping. The neural network architecture was a shal-
low multilayer perceptron with 2 hidden layers of 256 neurons and tanh activation functions,
and a linear output layer. The pre-processing and post-processing of the controller has been
incorporated into the model as linear layers. The controller was trained with a sampling time
of 1 s.

Specification The spacecraft should satisfy the following safety constraints for 40 s:

(ṡ2x + ṡ2y)
1
2 ≤ 0.2 + 2n(s2x + s2y)

1
2 , (14)

given the initial set is

sx ∈ [70, 106], sy ∈ [70, 106], ṡx ∈ [−0.28, 0.28], ṡy ∈ [−0.28, 0.28].

4 Verification Results

For each of the participating tools, we obtained verification results for each of the proposed
benchmarks. Reachable sets are shown for those methods that are able to construct them.

4.1 JuliaReach

This subsection presents the results of JuliaReach. JuliaReach was able to analyze eight bench-
mark problems (four verified, four falsified). For each problem, JuliaReach uses slightly different
settings as described below.

4.1.1 ACC

Using the parameters abstol=1e-6, orderT=6, orderQ=1, JuliaReach verifies the property
Drel ≥ Dsafe for the whole time horizon in less than a second. The reach sets of Drel and Dsafe

together with some simulations are shown in Figure 5.

155

ARCH-COMP22 AINNCS Manzanas Lopez et al.

Figure 5: JuliaReach. Analysis results for the ACC benchmark and the ReLU controller (left)
resp. the tanh controller (right). The plot additionally shows simulations.

Figure 6: JuliaReach. Analysis results for the TORA benchmark for the ReLU controller
(top), the sigmoid controller (bottom left), resp. the ReLU/tanh controller (bottom right). The
plots additionally show simulations.

4.1.2 Sherlock-Benchmark-9

We analyze three different controllers for the TORA benchmark problem. For the ReLU con-
troller, the approximation error is hard to tame for the JuliaReach approach. To maintain
enough precision to prove correctness, the initial states are split into 4 × 4 × 3 × 5 boxes.
While each box spawns an independent analysis that could be parallelized, the run time of

156

ARCH-COMP22 AINNCS Manzanas Lopez et al.

Figure 7: JuliaReach. Analysis results for the Unicycle benchmark. The first two plots show
the overall reach sets and simulations. The other two plots show a close-up of the target set.
The orange subset of the last reach set is obtained at time point t = 10.

the sequential execution is 34 minutes. We use the parameters abstol=1e-10, orderT=8,

orderQ=3. The reach sets of all 240 runs together with some simulations, projected to x1/x2
resp. x3/x4, are shown in Figure 6. The sigmoid and ReLU/tanh controllers reach the target
set within the given time constraints, as shown in the x1/x2 projections in Figure 6. The latter
analyses take 7 s respectively 2 s.

4.1.3 Sherlock-Benchmark-10

The disturbance w is modeled here as a constant with uncertain initial value. Simulations show
that the target set is reached only in the last moment, so the analysis requires a high precision
to prove containment of the last reach set. Using the parameters abstol=1e-15, orderT=10,

orderQ=1 and splitting the initial states into 3×1×8×1 boxes, JuliaReach verifies the property
in 93 s. The reach sets of all 24 runs together with some simulations, projected to x1/x2 resp.
x3/x4, are shown in Figure 7. JuliaReach can evaluate the Taylor polynomial at the time point
t = 10 (rather than the last time interval), which results in a more precise result (as shown in
the plots), although additional precision is not required for this problem, as the reach set for
the last time interval is already fully contained in the target set.

157

ARCH-COMP22 AINNCS Manzanas Lopez et al.

Figure 8: JuliaReach. Simulations of the VCAS benchmark.

Figure 9: JuliaReach. Analysis results for the Single-Pendulum benchmark until time t = 0.55.
The plot additionally shows a simulation.

4.1.4 VCAS

The VCAS benchmark problem differs from the other problems in that it uses multiple con-
trollers and discrete time. There is currently no native support for this setting in JuliaReach,
so a custom simulation algorithm that always chooses the central acceleration was used. Ju-
liaReach produces ten simulations in 1 s, which indicate satisfaction for the initial values
ḣ(0) ∈ {−19.5,−22.5} but show violation of the property for the other initial values. The
simulation results are shown in Figure 8.

4.1.5 Single Pendulum

This system violates the specification; hence it suffices to start the analysis from a subset of
the initial states and interrupt when a violation is detected. Here, starting from the highest
coordinate in each dimension, a violation occurs within eleven control periods. Using the
parameters abstol=1e-7, orderT=4, orderQ=1, JuliaReach falsifies the property in 0.5 s.
Figure 9 shows the reach sets together with a simulation projected to time and θ.

158

ARCH-COMP22 AINNCS Manzanas Lopez et al.

Figure 10: JuliaReach. Analysis results for the double-pendulum benchmark, including a
simulation. The first plot shows the results for the less robust controller until time t = 0.25.
The second plot shows the results for the more robust controller until time t = 0.14.

Figure 11: JuliaReach. Analysis results for the airplane benchmark until time t = 0.4,
including a simulation.

4.1.6 Double Pendulum

Similarly to the single-pendulum problem, this system violates the specification for both con-
trollers; hence it suffices to start the analysis from a subset of the initial states and interrupt
when a violation is detected. Considering the less robust controller, when starting from the
highest value in each dimension, a violation occurs within five control periods. Similarly, con-
sidering the more robust controller and starting from the lowest value in each dimension, a
violation occurs within seven control periods. Using the parameters abstol=1e-9, orderT=8,

orderQ=1 and an older version of the Taylor-model algorithm, JuliaReach falsifies the property
in 11 s (less robust controller) resp. 2 s (more robust controller). Figure 10 shows the reach
sets together with a simulation projected to θ̇1/θ̇2.

159

ARCH-COMP22 AINNCS Manzanas Lopez et al.

Figure 12: JuliaReach. Analysis results for the attitude control benchmark, including simu-
lations.

Figure 13: JuliaReach. Analysis results for the quadrotor benchmark, including simulations.

4.1.7 Airplane

This system violates the specification; hence it suffices to start the analysis from a subset of
the initial states and interrupt when a violation is detected. When starting from the highest
coordinate in each dimension, a violation occurs immediately in dimension θ and within four
control periods in dimension y. To obtain some nontrivial results, JuliaReach ignores the viola-
tion in dimension θ. Using the parameters abstol=1e-10, orderT=7, orderQ=1, JuliaReach
falsifies the property in 9 s. The reach sets together with a simulation, projected to y/ϕ, are
shown in Figure 11.

4.1.8 Attitude Control

Using the parameters abstol=1e-6, orderT=6, orderQ=1, JuliaReach verifies the property in
3 s. The reach sets together with some simulations are shown in Figure 12.

160

ARCH-COMP22 AINNCS Manzanas Lopez et al.

Figure 14: JuliaReach. Analysis results for the Spacecraft benchmark, including simulations.

4.1.9 Quadrotor

Although simulations indicate that this controller is safe, the precision of JuliaReach is not high
enough to prove it. The property can be proven for a smaller initial set [−0.004, 0.004]6×{0}6.
Using the parameters abstol=1e-8, orderT=5, orderQ=1, JuliaReach verifies the property in
14 s. The reach sets together with some simulations are shown in Figure 13.

4.1.10 Spacecraft

Although simulations indicate that this controller is safe, the precision of JuliaReach is not high
enough to prove it. The property can be proven for a smaller initial set [87, 89]2× [−0.01, 0.01]2.
Using the parameters abstol=1e-10, orderT=5, orderQ=1, JuliaReach verifies the property
in 1 s. The reach sets together with some simulations are shown in Figure 14. Since the property
is four-dimensional, it cannot be illustrated in the plot.

4.2 NNV

We present the results utilizing NNV on each of the benchmarks. We have been able to
encode all the benchmarks into NNV and attempted to verify all of them, however, due to the
conservativeness of our methods and the complexity of the different benchmarks, we were only
able to verify or falsify the ACC, TORA with one out of the 3 controllers, VCAS, airplane,
single pendulum, and double pendulum. NNV was unable to verify the unicycle, quadrotor,
attitude and docking spacecraft benchmarks.

4.2.1 ACC

NNV is able to verify the safety property Drel ≥ Dsafe for the whole time horizon in 18.6 s. The
reach sets of Drel and Dsafe are shown in Figure 15.

4.2.2 Tora

NNV is able to verify one of the three controllers for the tora benchmark, the relu/tanh controller
in 1 hour and 17 minutes, by partitioning the initial state into 4×8×6×4 boxes. The reach sets
are shown in Figure 16.

161

ARCH-COMP22 AINNCS Manzanas Lopez et al.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s)

40

50

60

70

80

90

100

110

D
is

ta
nc

e
(m

)

Figure 15: NNV. Analysis results for the ACC benchmark showing the sets of Drel and Dsafe.

(a) Trajec-
tory

-0.1 -0.05 0 0.05 0.1 0.15 0.2

x1

-0.9

-0.85

-0.8

-0.75

-0.7

-0.65

-0.6
x2

(b) Last

Figure 16: NNV. Analysis results for the Tora benchmark showing the tora sets in blue and
the goal region in green, when using the controller with relu hidden layers and tanh output
layer.

4.2.3 VCAS

NNV is able to verify the NMAC safety property for the whole time horizon for each of the
cases. There are 5 cases where we prove that the system is unsafe, and 3 where the system
is safe, which corresponds to [middle, 19.5], [middle, 22.5] and [worst, 19.5]. These results are
depicted in Figures 17 and 18.

4.2.4 Single Pendulum

For the single pendulum it is sufficient to start with a smaller initial state to verify that the
safety property is violated. NNV is able to compute the reach sets in 1.5 s. The reach sets
along with random simulations are depicted in Figure 19.

162

ARCH-COMP22 AINNCS Manzanas Lopez et al.

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-300

-250

-200

-150

-100

-50

0

50

100
D

is
ta

nc
e

(f
t)

(a) 19.5

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-350

-300

-250

-200

-150

-100

-50

0

50

100

D
is

ta
nc

e
(f

t)

(b) 22.5

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-300

-250

-200

-150

-100

-50

0

50

100

D
is

ta
nc

e
(f

t)

(c) 25.5

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-250

-200

-150

-100

-50

0

50

100

D
is

ta
nc

e
(f

t)

(d) 28.5

Figure 17: NNV. Analysis results for the VCAS benchmark showing the aircraft sets in blue
and the unsafe region in red, when selecting the middle acceleration value at each control period

4.2.5 Double Pendulum

Similar to the single pendulum, we can verify that the property is violated starting from a
smaller initial set. The results are depicted in Figure 20, and the computation times are 23.4 s
for the less robust controller, and 23.2 s for the more robust controller.

4.2.6 Airplane

NNV is able to verify in 7 s that the property is violated by computing the reach sets from a
smaller initial region. The results are depicted in Figure 21.

4.3 CORA

We present the results utilizing CORA on each of the benchmarks. CORA is able to show
verification/violation of the specifications in all benchmarks except one using the entire input
set without splitting. For details about the reachability parameters used, such as the step
size of our algorithm for continuous time or the parameters for the propagation through the

163

ARCH-COMP22 AINNCS Manzanas Lopez et al.

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-300

-250

-200

-150

-100

-50

0

50

100
D

is
ta

nc
e

(f
t)

(a) 19.5

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-250

-200

-150

-100

-50

0

50

100

D
is

ta
nc

e
(f

t)

(b) 22.5

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-250

-200

-150

-100

-50

0

50

100

D
is

ta
nc

e
(f

t)

(c) 25.5

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-250

-200

-150

-100

-50

0

50

100

D
is

ta
nc

e
(f

t)

(d) 28.5

Figure 18: NNV. Analysis results for the VCAS benchmark showing the aircraft sets in blue
and the unsafe region in red, when selecting the worst possible acceleration value at each control
period.

neural network, we refer to the submission code available at https://gitlab.com/goranf/

ARCH-COMP/-/tree/master/2022/AINNCS/cora. We provide exact times for each step in the
verification process for better comparability. All time values are in seconds. In addition, we
provide accompanying plots for each benchmark.

4.3.1 ACC

CORA is able to verify all specifications. The computed reachable set along with some simula-
tions are shown in Figure 22.

Time to compute random simulations: 0.94224

Time to check violation by simulations: 0.0030243

Time to compute reachable set: 1.5869

Time to check verification: 0.049175

Result: VERIFIED

Total Time: 2.5813

164

https://gitlab.com/goranf/ARCH-COMP/-/tree/master/2022/AINNCS/cora
https://gitlab.com/goranf/ARCH-COMP/-/tree/master/2022/AINNCS/cora

ARCH-COMP22 AINNCS Manzanas Lopez et al.

0 0.1 0.2 0.3 0.4 0.5 0.6

Time (s)

0.95

1

1.05

1.1

1.15

1.2

1.25

Figure 19: NNV. Analysis results for the single pendulum benchmark showing the sets in blue
and the unsafe region in red.

-1 -0.5 0 0.5 1 1.5 2

x3

-1.5

-1

-0.5

0

0.5

1

1.5

2

x4

(a) Less

-0.5 0 0.5 1 1.5

x3

-1

-0.5

0

0.5

1

1.5
x4

(b) More

Figure 20: NNV. Analysis results for the double pendulum benchmark with the less and more
robust controllers, showing the reach sets in blue and the goal region in green.

4.3.2 Sherlock-Benchmark-9 (TORA)

The computed reachable set along with some simulations are shown in Figure 23.

Specification 1 CORA is able to verify the specifications from the original benchmark.
Time to compute random simulations: 0.43501

Time to check violation by simulations: 0.0089707

Time to compute reachable set: 10.6547

Time to check verification: 0.27649

Result: VERIFIED

Total Time: 11.3752

Specification 2 CORA is able to verify specification 2 for both controllers.
Sigmoid controller:

165

ARCH-COMP22 AINNCS Manzanas Lopez et al.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

x
2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x 5

Figure 21: NNV. Analysis results for the airplane benchmark showing the reach sets in blue
and the goal region in green.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time

40

50

60

70

80

90

100

110

d
is

ta
n
ce

Distance

Safe Distance

Simulations

Figure 22: CORA. Analysis results for the ACC benchmark, including simulations.

Time to compute random simulations: 0.28046

Time to check violation by simulations: 0.0042218

Time to compute reachable set: 11.0289

Time to check verification: 0.056999

Result: VERIFIED

Total Time: 11.3705

ReLU/Tanh controller:
Time to compute random simulations: 0.25347

Time to check violation by simulations: 0.003146

Time to compute reachable set: 12.126

Time to check verification: 0.06485

Result: VERIFIED

Total Time: 12.4474

166

ARCH-COMP22 AINNCS Manzanas Lopez et al.

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Safe Set

Reachable Set

Initial Set

Simulations

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Safe Set

Reachable Set

Initial Set

Simulations

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

Goal Set

Reachable Set

Initial Set

Simulations

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

Goal Set

Reachable Set

Initial Set

Simulations

Figure 23: CORA. Analysis results for the Sherlock-Benchmark-9 (TORA) benchmark: spec-
ification 1 (top) and specifications 2 for the sigmoid (bottom left) and ReLU/tanh (bottom
right) controller, including simulations.

4.3.3 Sherlock-Benchmark-10 (Unicycle)

CORA is able to verify the specifications of the Sherlock-Benchmark-10 (Unicycle) benchmark.
The computed reachable set along with some simulations are shown in Figure 24.

Time to compute random simulations: 1.0836

Time to check violation by simulations: 0.012185

Time to compute reachable set: 2.6859

Time to check verification: 0.16118

Result: VERIFIED

Total Time: 3.9429

167

ARCH-COMP22 AINNCS Manzanas Lopez et al.

-2 0 2 4 6 8 10

x

-5

-4

-3

-2

-1

0

1

y

Goal Set

Reachable Set

Initial Set

Simulations

Figure 24: CORA. Analysis results for the Sherlock-Benchmark-10 (Unicycle) benchmark,
including simulations.

4.3.4 VCAS

The VCAS benchmark has discrete time steps and multiple controllers, which is currently not
supported by CORA. Thus, a custom algorithm was built for this benchmark. To deal with the
discrete input set ḣ0(0) ∈ {−19.5,−22.5,−25.5,−28.5}, we ran a simulation with each element
of the input set individually. As proposed in the benchmark specifications, we show the results
when always the middle acceleration of the controllers is chosen and the results when always
the worst acceleration is chosen.

VCAS (middle acceleration) Here we always use the middle of the possible accelerations.
We are able to verify the benchmark for ḣ0(0) ∈ {−19.5,−22.5} and can show violations for
ḣ0(0) ∈ {−25.5,−28.5}. The computed reachable set along with some simulations are shown
in Figure 25. The times below are from the run with ḣ0(0) = −19.5.

Time to compute random simulations: 0.015016

Time to check violation by simulations: 0.0029496

Time to compute reachable set: 0.03363

Time to check verification: 0.0011118

Result: VERIFIED

Total Time: 0.052707

VCAS (worst acceleration) Here we always use the worst possible acceleration. We
are able to verify the benchmark for ḣ0(0) ∈ {−19.5} and can show violations for ḣ0(0) ∈
{−22.5,−25.5,−28.5}. The computed reachable set along with some simulations are shown in
Figure 26. The times below are from the run with ḣ0(0) = −19.5.

Time to compute random simulations: 0.013097

Time to check violation by simulations: 0.0011991

Time to compute reachable set: 0.026289

Time to check verification: 0.0022797

Result: VERIFIED

Total Time: 0.042864

168

ARCH-COMP22 AINNCS Manzanas Lopez et al.

Figure 25: CORA. Simulation runs for the VCAS (middle acceleration) benchmark.

Figure 26: CORA. Simulation runs for the VCAS (worst acceleration) benchmark.

4.3.5 Single Pendulum

CORA is able to show specification violations of the single-pendulum benchmark. The simula-
tion runs for this benchmark are shown in Figure 27.

Time to compute random simulations: 1.0298

Time to check violation by simulations: 0.0030485

Result: VIOLATED

Total Time: 1.0328

4.3.6 Double Pendulum

We report the results from the double-pendulum benchmark.

Double Pendulum (less robust) CORA is able to show specification violations. The
simulation runs for this benchmark are shown in Figure 28.

169

ARCH-COMP22 AINNCS Manzanas Lopez et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Unsafe Set

Safe Set

Figure 27: CORA. Simulation runs for the single pendulum benchmark.

-1 -0.5 0 0.5 1 1.5 2

1

-1

-0.5

0

0.5

1

1.5

2

2

Safe Set

Initial Set

Simulations

-1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

2

Safe Set

Initial Set

Simulations

Figure 28: CORA. Simulation runs for the double pendulum (less robust) benchmark.

Time to compute random simulations: 0.7995

Time to check violation by simulations: 0.002714

Result: VIOLATED

Total Time: 0.80222

Double Pendulum (more robust) CORA is able to show specification violations. The
simulation runs for this benchmark are shown in Figure 29.
Time to compute random simulations: 0.57492

Time to check violation by simulations: 0.0023562

Result: VIOLATED

Total Time: 0.57727

4.3.7 Airplane

CORA is able to show specification violations of the airplane benchmark. The simulation runs
for this benchmark are shown in Figure 30.

170

ARCH-COMP22 AINNCS Manzanas Lopez et al.

-0.5 0 0.5 1 1.5

1

-0.5

0

0.5

1

1.5

2
Safe Set

Initial Set

Simulations

-2 -1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

Safe Set

Initial Set

Simulations

Figure 29: CORA. Simulation runs for the double pendulum (more robust) benchmark.

-0.5 0 0.5 1 1.5 2

y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Safe Set

Initial Set

Simulations

Figure 30: CORA. Simulation runs for the airplane benchmark.

Time to compute random simulations: 1.457

Time to check violation by simulations: 0.0032885

Result: VIOLATED

Total Time: 1.4603

4.3.8 Attitude Control

CORA is able to verify the specifications of the attitude control benchmark. The computed
reachable set along with some simulations are shown in Figure 31.

Time to compute random simulations: 0.55773

Time to check violation by simulations: 0.0053589

Time to compute reachable set: 1.0156

Time to check verification: 0.011554

Result: VERIFIED

Total Time: 1.5902

171

ARCH-COMP22 AINNCS Manzanas Lopez et al.

0 0.5 1 1.5 2 2.5 3

time

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2
1

Unsafe Set

Reachable Set

Initial Set

Simulations

0 0.5 1 1.5 2 2.5 3

time

-0.6

-0.55

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

2

Unsafe Set

Reachable Set

Initial Set

Simulations

Figure 31: CORA. Analysis results for the attitude control benchmark, including simulations.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time

-0.5

0

0.5

1

1.5

2

2.5

a
lti

d
u

te

Goal Set

Reachable Set

Initial Set

Simulations

Figure 32: CORA. Analysis results for the QUAD benchmark, including simulations.

4.3.9 QUAD

CORA is able to verify the specifications of the QUAD benchmark by computing a tighter
over-approximation of the neural network’s output: The first nonlinear layer is approximated
using a quadratic polynomial and an approximation error is added to obtain a sound over-
approximation. All other nonlinear layers are approximated using linear polynomials. The
computed reachable set along with some simulations are shown in Figure 32.

Time to compute random simulations: 0.86463

Time to check violation by simulations: 0.003554

Time to compute reachable set: 3941.286

Time to check verification: 0.34886

Result: VERIFIED

Total Time: 3942.503

172

ARCH-COMP22 AINNCS Manzanas Lopez et al.

0 5 10 15 20 25 30 35 40

time

-50

0

50

100

150

200

x

Reachable Set

Simulations

Figure 33: CORA. Analysis results for the spacecraft docking benchmark, including simula-
tions.

4.3.10 Spacecraft Docking

The spacecraft docking benchmark appeared difficult to verify for our approach. Simulation
runs seem to be stable, though. The computed reachable set along with some simulations are
shown in Figure 33.

Time to compute random simulations: 1.5695

Time to check violation by simulations: 0.0084425

Time to compute reachable set: 4.1904

Time to check verification: 5.2892

Result: UNKOWN

Total Time: 11.0576

4.4 POLAR

We present the experimental results utilizing POLAR on each of the benchmarks in Table 1.
All of the results are numerically conservative. We skipped the VCAS benchmark, since some
of the dynamics cannot be modeled by the current API of POLAR. The more detailed settings
are given as follows.

ACC. This benchmark was verified by POLAR to be safe in 1.9 s, and the octagon overap-
proximation of the Taylor model (TM) flowpipes are presented in Figure 34.

Sherlock-Benchmark-9: TORA. There are two specifications given in this benchmark, and
two neural network controllers in the second specification. For the first specification, the initial
set is uniformly subdivided to 3×3×2×2 boxes, and the safety of the system is verified in 502 s.
The reachable set overapproximations are shown in Figure 35. For the second specification,
the verification tasks for the ReLU-tanh and the sigmoid controller take 0.14 s and 0.39 s,
respectively, and the reachable sets are shown in Figure 36. No subdivision is performed.

Sherlock-Benchmark-10: Unicycle Car. POLAR verified the safety of this benchmark in
4.8 s without subdividing the initial set, and the result is given in Figure 37.

Single Pendulum. This benchmark was verified by POLAR to be unsafe in 0.1 s from the
initial state [1.2, 0.2], and the reachable set can be found in Figure 38.

173

ARCH-COMP22 AINNCS Manzanas Lopez et al.

Table 1: For each benchmark, we show the activation used in the neural network controller as σ,
and the numbers of neuron in all the layers as size. In the POLAR setting, δ denotes the step-
size, kT denotes the order of Taylor models, kB denotes the order of Bernstein approximations,
and ε denotes the cutoff threshold, i.e., the threshold for truncating the small polynomial terms
to the remainders. The runtime in seconds is shown in T (s) column. ‘Y’: POLAR verifies the
system is safe. ‘U’: the property is not verified. ‘N’: POLAR verifies the system is unsafe. *For
docking, we do the verification for four different initial sets, and we demonstrate the average
computation time here.

Benchmark
NN Controller POLAR

σ size δ kT kB ε T (s)

ACC ReLU 5x20x20x20x20x20 0.1 3 2 1e-6 1.9 (Y)

TORA
ReLU 100x100x100 0.025 7 2 1e-6 502 (Y)

ReLU-tanh 20x20x20 0.1 4 2 1e-6 0.14 (Y)
sigmoid 20x20x20 0.1 4 2 1e-6 0.39 (Y)

Unicycle Car ReLU 500 0.05 3 2 1e-6 4.8 (Y)

Single Pendulum ReLU 25x25 0.02 4 2 1e-6 0.10 (N)

Double Pendulum
ReLU (less) 25x25 0.01 4 2 1e-6 0.51 (N)
ReLU (more) 25x25 0.01 4 2 1e-6 0.24 (N)

Airplane ReLU 100x100x20 0.05 4 2 1e-7 0.10 (N)

Attitude Control sigmoid 64x64x64 0.1 3 2 1e-5 10.5 (Y)

QUAD sigmoid 64x64x64 0.005 4 4 1e-6 647 (Y)

Docking tanh 4x256x256x4 0.05 4 2 1e-8 57.4 (U)*

 70

 75

 80

 85

 90

 95

 100

 105

-1 0 1 2 3 4 5

x2
-x

3

t

Figure 34: POLAR: ACC.

Double Pendulum. The reachability of this benchmark with a less robust and a more robust
controller was verified by POLAR to be unsafe in 0.51 s and 0.24 s, respectively, when the
initial state is [1.3, 1.3, 1.3, 1.3]. We show the computed reachable set in Figure 39.

Airplane. Starting from the initial state [0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0], POLAR immediately
proved the unsafety of the system.

Attitude Control. This benchmark was verified by POLAR to be safe in 10.5 s, and the
reachable set can be found in Figure 40.

QUAD. This benchmark was verified by POLAR to be safe in 647 s, and the reachable sets
are given in Figure 41.

174

ARCH-COMP22 AINNCS Manzanas Lopez et al.

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x1

x0

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1.5 -1 -0.5 0 0.5 1 1.5

x3

x2

Figure 35: POLAR: Sherlock-B9: RELU network.

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

x1

x0

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

x1

x0

Figure 36: POLAR: TORA Heterogeneous.

Docking. The benchmark has not been fully verified. We consider four different corner initial
sets and computed the reachable sets shown in Figure 42. Each of them costs around 57.4 s.
No safety violation was found.

5 Category Status and Challenges

In the fourth iteration of the AINNCS category at ARCH-COMP, the participating tools CORA,
JuliaReach, NNV and POLAR successfully analyzed different aspects of the benchmark prob-
lems, with the exception of the newly introduced docking spacecraft. This year’s competition
saw an improvement in the verified instances, going from 60% (2021) success rate to 75% (2022)
success rate, despite the increasing benchmark complexity. In spite of some success analyzing
the benchmarks in the AINNCS category, there are challenges remaining for the category, which
we discuss these next along with some of the improvements with respect to previous competi-
tions.

175

ARCH-COMP22 AINNCS Manzanas Lopez et al.

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0 1 2 3 4 5 6 7 8 9 10

x1

x0

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

-0.5 0 0.5 1 1.5 2 2.5 3

x3

x2

Figure 37: POLAR: Sherlock-Benchmark-10: Unicycle Car.

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

 1.22

-0.1 0 0.1 0.2 0.3 0.4 0.5

x0

t

Figure 38: POLAR: Single Pendulum.

Hybrid Controllers: Some controllers involve a hybrid nature, such as the the VCAS bench-
mark. This is a very complex control system formed by 9 different neural networks that are
chosen based on plant’s states. These controllers have also a bang-bang output characteristic,
meaning that the output range is not continuous, but is chosen from a discrete set of values
depending on the current neural network executed, as well as all output values and the aircraft
states. We observe that 3 out of 4 tools successfully verified this benchmark, which is an im-
provement from previous iterations, i.e. 2 out of 3 of the tools were able to verify the system
last year compare to 3 out of 4 this year.

Activation Function Types (controllers): For this year’s set of benchmarks, all neural
network controllers contain one or more of the following activation functions: ReLU, linear,
sigmoid, and tanh, same as last year. The main difference is the improvement in support for
each activation function, as all 4 tools have support for all the types, linear, piecewise linear
(ReLU) and nonlinear activation functions.

176

ARCH-COMP22 AINNCS Manzanas Lopez et al.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6

x3

x2

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

x3

x2

Figure 39: POLAR: Double Pendulum.

-0.6

-0.55

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2

x1

x0

-0.84

-0.82

-0.8

-0.78

-0.76

-0.74

-0.72

-0.7

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

x3

x2

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

x5

x4

Figure 40: POLAR: Attitude Control.

Plant Models: This year we have considered linear and nonlinear plants, both in discrete
and continuous time. We plan to add hybrid automata plants in future iterations, as we look to
report a more complete analysis of the participating verification tools. Hybrid automata plants
will be especially interesting with the complex nature of combined continuous and discrete
dynamics, which is very challenging for current AINNCS verification tools.

Neural Network Architectures and Parameterization: Similar to last year, when we
compare the neural network architectures presented in this work with some of the networks
that can be analyzed in absence of the plant, these are fairly simple, in the sense none of
the networks have more than a thousand neurons, and none exceed 5 hidden layers in their
architecture. Also, the maximum number of inputs and outputs of the controllers are 12 and 6,
respectively, in the airplane benchmark. If we consider the VCAS benchmark, these networks
have 9 outputs, although these are translated into a single input to the plant model. However,
for some benchmarks, there are still state-space explosion and scalability issues to address in
both the neural network controllers and plant analysis.

Time horizons: Similar to previous iterations, all the tools performed bounded (finite)
time horizon verification analysis, also known as bounded model checking, where the main
difference is that all the participating tools rely on reachability analysis methods to analyze
safety. Alternative approaches for performing unbounded (infinite) time horizon verification

177

ARCH-COMP22 AINNCS Manzanas Lopez et al.

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 1 2 3 4 5

x3

t

Figure 41: POLAR: QUAD.

 88

 90

 92

 94

 96

 98

 100

 102

 104

 106

 88 90 92 94 96 98 100 102 104 106

x1

x0

(a) 102 ≤ x0, x1 ≤ 106,
−0.28 ≤ x2, x3 ≤ −0.24

-0.34

-0.33

-0.32

-0.31

-0.3

-0.29

-0.28

-0.27

-0.26

-0.25

-0.24

-0.23

-0.34 -0.33 -0.32 -0.31 -0.3 -0.29 -0.28 -0.27 -0.26 -0.25 -0.24 -0.23

x3

x2

(b) 102 ≤ x0, x1 ≤ 106,
−0.28 ≤ x2, x3 ≤ −0.24

 90

 92

 94

 96

 98

 100

 102

 104

 106

 108

 88 90 92 94 96 98 100 102 104 106 108

x1

x0

(c) 102 ≤ x0, x1 ≤ 106,
0.24 ≤ x2, x3 ≤ 0.28

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

x3

x2

(d) 102 ≤ x0, x1 ≤ 106,
0.24 ≤ x2, x3 ≤ 0.28

 58

 60

 62

 64

 66

 68

 70

 72

 74

 60 62 64 66 68 70 72 74

x1

x0

(e) 70 ≤ x0, x1 ≤ 74,
−0.28 ≤ x2, x3 ≤ −0.24

-0.29

-0.28

-0.27

-0.26

-0.25

-0.24

-0.23

-0.29 -0.28 -0.27 -0.26 -0.25 -0.24 -0.23 -0.22

x3

x2

(f) 70 ≤ x0, x1 ≤ 74,
−0.28 ≤ x2, x3 ≤ −0.24

 60

 62

 64

 66

 68

 70

 72

 74

 76

 60 62 64 66 68 70 72 74 76

x1

x0

(g) 70 ≤ x0, x1 ≤ 74,
0.24 ≤ x2, x3 ≤ 0.28

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

x3

x2

(h) 70 ≤ x0, x1 ≤ 74,
0.24 ≤ x2, x3 ≤ 0.28

Figure 42: POLAR: Docking.

exist, such as those building on barrier certificates, a form of continuous analog of the classical
inductive invariance proof rule. The existing methods could incorporate invariance checks on
the computed reachable states to attempt to determine if the reachability analysis reaches a
fixed-point (if the reachability analysis terminates, which for the class of systems considered,
is not guaranteed as the reachability analysis with nonlinear plants is undecidable). However,
no current methods evaluated in the competition utilize this approach, and this is a promising
avenue for future work to provide guarantees beyond finite time horizons.

178

ARCH-COMP22 AINNCS Manzanas Lopez et al.

Model Formats: Similar to last year, we have found more useful and convenient to simply
share the plant models in a plain format, such as MATLAB functions, where the participants
could easily extract the ODEs. As for the neural network models, we provide them in the
ONNX format3, .mat format4, and the original format used by proposer of the benchmark.
ONNX format was very convenient, as most of the participating tools have integrated ONNX
into their frameworks this year. However, we found that there are still discrepancies among
the different versions and frameworks these ONNX models were created from (e.g., different
input/output transformations are not always supported by every framework as experienced on
the Docking spacecraft benchmark). Having a unified ONNX version remains a challenge, but
the community is closer to achieving this goal with the continuous development of these ONNX
importers. In addition, initiatives more focused on neural network verification, such as VNN-
LIB5 and VNN-COMP6, may help toward this goal. In terms of specifications, we are planning
to make use of the vnnlib format to define the formal specifications for each benchmark in a
similar manner that VNN-COMP has used for this year’s competition to further automate the
verification process.

6 Conclusion and Outlook

This report presents the results on the fourth ARCH friendly competition for closed-loop sys-
tems with neural network controllers. For this edition, four tools have participated and at-
tempted to solve 10 benchmarks: CORA, JuliaReach, NNV, and POLAR. The problems elu-
cidated in this paper are challenging and diverse; the presented results probably provide the
most complete assessment of current tools for the safety verification in AINNCS. The report
provides a good overview of the intellectual progression of this rapidly growing field, and it is
our hope to stimulate the development of efficient and effective methods capable of use in real-
world applications. In the past three years, the complexity of the benchmarks has consistently
increased along with the capabilities of the participant tools, leading to the most challenging
competition and the best verification results thus far, which is a good indicator for this growing
and maturing field. This has been achieved by to the continuous development and improve-
ments in some of the tools that have participated in previous iterations (NNV, JuliaReach),
and new tools being developed every year, such as the recent CORA and POLAR that help
push this field forward.

7 Acknowledgments

The material presented in this report is based upon work supported by the National Science
Foundation (NSF) under grant numbers FMiTF 2220401, 2220426, 2220426, EPCN 2028001,
CCF 1646497, CCF 1834324, CNS 1834701, IIS 1724341, the Defense Advanced Research
Projects Agency (DARPA) Assured Autonomy program through contract number FA8750-18-
C-0089, the US Air Force Research Laboratory (AFRL) under contract number FA8650-16-C-
2642, the Air Force Office of Scientific Research (AFOSR) under contract number FA9550-22-1-
0019, and the Office of Naval Research (ONR) grant N00014-19-1-2496. The U.S. Government is
authorized to reproduce and distribute reprints for Government purposes notwithstanding any

3Open Neural Network Exchange: https://github.com/onnx/onnx
4Direct input format used by NNV without transformation.
5http://www.vnnlib.org/
6https://github.com/verivital/vnn-comp/

179

https://github.com/onnx/onnx
http://www.vnnlib.org/
https://github.com/verivital/vnn-comp/

ARCH-COMP22 AINNCS Manzanas Lopez et al.

copyright notation thereon. The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of AFOSR, AFRL, DARPA, or NSF. Luis Benet acknowledges sup-
port from PAPIIT grant IG-101122. Christian Schilling acknowledges the support from DIREC
- Digital Research Centre Denmark and the Villum Investigator Grant S4OS. Tobias Ladner
gratefully acknowledges financial support from the project FAI funded by the German Research
Foundation (DFG) under project number 286525601.

A Specification of Used Machines

A.1 MJuliaReach

• Processor: Intel Core i7-10610U CPU @ 1.80GHz x64

• Memory: 32 GB

• OS: Ubuntu 22.04

A.2 MCORA

• Processor: 11th Gen Intel(R) Core(TM) i7-11800H @ 2.30GHz

• Memory: 64 GB

• OS: Windows 11

A.3 Mnnv

• Processor: AMD Ryzen 9 5900X @ 3.70 GHz x 12 (x64)

• Memory: 64 GB

• OS: Windows 10

A.4 MPOLAR

• Processor: Apple M1 @ 3.2 GHz

• Memory: 8 GB

• OS: macOS Monterey

References

[1] Proceedings of the 7th International Conference On Formal Methods In Software Engineering,
FormaliSE 2019, collocated with ICSE 2019, Montréal, Canada, May 27, 2019. ACM, 2019.

[2] M. Althoff. An introduction to CORA 2015. In Proc. of the Workshop on Applied Verification for
Continuous and Hybrid Systems, pages 120–151, 2015.

[3] M. Althoff and D. Grebenyuk. Implementation of interval arithmetic in CORA 2016. In Proc.
of the 3rd International Workshop on Applied Verification for Continuous and Hybrid Systems,
pages 91–105, 2016.

180

ARCH-COMP22 AINNCS Manzanas Lopez et al.

[4] M. Althoff, D. Grebenyuk, and N. Kochdumper. Implementation of Taylor models in CORA
2018. In Proc. of the 5th International Workshop on Applied Verification for Continuous and
Hybrid Systems, 2018.

[5] M. Althoff, M. Koschi, and S. Manzinger. CommonRoad: Composable benchmarks for motion
planning on roads. In Proc. of the IEEE Intelligent Vehicles Symposium, pages 719–726, 2017.

[6] Rajeev Alur. Formal Verification of Hybrid Systems. In Proceedings of the Ninth ACM Inter-
national Conference on Embedded Software, EMSOFT ’11, pages 273–278, New York, NY, USA,
2011. ACM.

[7] S. Bak, S. Bogomolov, T. A. Henzinger, T. T. Johnson, and P. Prakash. Scalable static hybridiza-
tion methods for analysis of nonlinear systems. In Proc. of the 19th ACM International Conference
on Hybrid Systems: Computation and Control, pages 155–164, 2016.

[8] Stanley Bak, Sergiy Bogomolov, and Taylor T. Johnson. Hyst: A source transformation and
translation tool for hybrid automaton models. In Proceedings of the 18th International Conference
on Hybrid Systems: Computation and Control, HSCC ’15, pages 128–133, New York, NY, USA,
2015. ACM.

[9] Stanley Bak, Changliu Liu, and Taylor Johnson. The second international verification of neural
networks competition (vnn-comp 2021): Summary and results. 2021.

[10] Randal W. Beard. Quadrotor dynamics and control. Technical report, 2008.

[11] Luis Benet, Marcelo Forets, David P. Sanders, and Christian Schilling. Taylormodels.jl: Taylor
models in julia and its application to validated solutions of ODEs. In SWIM, 2019.

[12] Luis Benet and David P. Sanders. TaylorSeries.jl: Taylor expansions in one and several variables
in Julia. Journal of Open Source Software, 4(36):1043, 2019.

[13] Luis Benet and David P. Sanders. JuliaDiff/TaylorSeries.jl. https://github.com/JuliaDiff/

TaylorSeries.jl, 2021.

[14] Luis Benet and David P. Sanders. JuliaIntervals/TaylorModels.jl. https://github.com/

JuliaIntervals/TaylorModels.jl, 2021.

[15] Sergiy Bogomolov, Marcelo Forets, Goran Frehse, Kostiantyn Potomkin, and Christian Schilling.
JuliaReach: a toolbox for set-based reachability. In HSCC, pages 39–44. ACM, 2019.

[16] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. Flow*: An analyzer for non-linear
hybrid systems. In Proc. of CAV’13, volume 8044 of LNCS, pages 258–263. Springer, 2013.

[17] Xin Chen and Sriram Sankaranarayanan. Decomposed reachability analysis for nonlinear systems.
In Proceedings of the 37th IEEE Real-Time Systems Symposium (RTSS’16), pages 13–24. IEEE
Computer Society, 2016.

[18] W. H. CLOHESSY and R. S. WILTSHIRE. Terminal guidance system for satellite rendezvous.
Journal of the Aerospace Sciences, 27(9):653–658, 1960.

[19] Souradeep Dutta, Xin Chen, and Sriram Sankaranarayanan. Reachability analysis for neural
feedback systems using regressive polynomial rule inference. In Proceedings of the 22nd ACM
International Conference on Hybrid Systems: Computation and Control, HSCC 2019, Montreal,
QC, Canada, April 16-18, 2019., pages 157–168, 2019.

[20] Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. Learning and ver-
ification of feedback control systems using feedforward neural networks. IFAC-PapersOnLine,
51(16):151 – 156, 2018. 6th IFAC Conference on Analysis and Design of Hybrid Systems ADHS
2018.

[21] Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy A. Mann, and Pushmeet
Kohli. A Dual Approach to Scalable Verification of Deep Networks. CoRR, abs/1803.06567, 2018.

[22] Jiameng Fan, Chao Huang, Wenchao Li, Xin Chen, and Qi Zhu. Towards verification-aware knowl-
edge distillation for neural-network controlled systems. In IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), pages 1–8. IEEE, 2019.

181

https://github.com/JuliaDiff/TaylorSeries.jl
https://github.com/JuliaDiff/TaylorSeries.jl
https://github.com/JuliaIntervals/TaylorModels.jl
https://github.com/JuliaIntervals/TaylorModels.jl

ARCH-COMP22 AINNCS Manzanas Lopez et al.

[23] Jiameng Fan, Chao Huang, Wenchao Li, Xin Chen, and Qi Zhu. ReachNN*: A tool for reacha-
bility analysis ofneural-network controlled systems. In to appear on International Symposium on
Automated Technology for Verification and Analysis (ATVA), 2020.

[24] Marcelo Forets and Christian Schilling. LazySets.jl: Scalable symbolic-numeric set computations.
Proceedings of the JuliaCon Conferences, 1(1):11, 2021.

[25] G. W. Hill. Researches in the lunar theory. American Journal of Mathematics, 1(1):5–26, 1878.

[26] Chao Huang, Jiameng Fan, Xin Chen, Wenchao Li, and Qi Zhu. POLAR: A polynomial arith-
metic framework for verifying neural-network controlled systems. In To appear on International
Symposium on Automated Technology for Verification and Analysis (ATVA), 2022.

[27] Chao Huang, Jiameng Fan, Wenchao Li, Xin Chen, and Qi Zhu. ReachNN: Reachability analysis of
neural-network controlled systems. ACM Transactions on Embedded Computing Systems (TECS),
18(5s):1–22, 2019.

[28] M. Jankovic, D. Fontaine, and P. V. Kokotovic. Tora example: cascade- and passivity-based
control designs. IEEE Transactions on Control Systems Technology, 4(3):292–297, May 1996.

[29] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied Interval Analysis. Springer, 2001.

[30] Taylor T. Johnson, Diego Manzanas Lopez, Luis Benet, Marcelo Forets, Sebasti\’an Guadalupe,
Christian Schilling, Radoslav Ivanov, Taylor J. Carpenter, James Weimer, and Insup Lee. Arch-
comp21 category report: Artificial intelligence and neural network control systems (ainncs) for
continuous and hybrid systems plants. In Goran Frehse and Matthias Althoff, editors, 8th Interna-
tional Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH21), volume 80
of EPiC Series in Computing, pages 90–119. EasyChair, 2021.

[31] Taylor T Johnson, Diego Manzanas Lopez, Patrick Musau, Hoang-Dung Tran, Elena Botoeva,
Francesco Leofante, Amir Maleki, Chelsea Sidrane, Jiameng Fan, and Chao Huang. Arch-comp20
category report: Artificial intelligence and neural network control systems (ainncs) for continuous
and hybrid systems plants. In Goran Frehse and Matthias Althoff, editors, ARCH20. 7th Interna-
tional Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH20), volume 74
of EPiC Series in Computing, pages 107–139. EasyChair, 2020.

[32] K. D. Julian and M. J. Kochenderfer. A reachability method for verifying dynamical systems with
deep neural network controllers. CoRR, abs/1903.00520, 2019.

[33] Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex: An
efficient smt solver for verifying deep neural networks. In Rupak Majumdar and Viktor Kunčak,
editors, Computer Aided Verification, pages 97–117, Cham, 2017. Springer International Publish-
ing.

[34] Niklas Kochdumper and Matthias Althoff. Sparse polynomial zonotopes: A novel set representa-
tion for reachability analysis. IEEE Transactions on Automatic Control, 66(9):4043–4058, 2020.

[35] Niklas Kochdumper, Christian Schilling, Matthias Althoff, and Stanley Bak. Open-and closed-loop
neural network verification using polynomial zonotopes. arXiv preprint arXiv:2207.02715, 2022.

[36] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
CoRR, abs/1607.02533, 2016.

[37] Weibo Liu, Zidong Wang, Xiaohui Liu, Nianyin Zeng, Yurong Liu, and Fuad E. Alsaadi. A Survey
of Deep Neural Network Architectures and their Applications. Neurocomputing, 234:11 – 26, 2017.

[38] Diego Manzanas Lopez, Patrick Musau, Hoang-Dung Tran, Souradeep Dutta, Taylor J. Carpen-
ter, Radoslav Ivanov, and Taylor T. Johnson. Arch-comp19 category report: Artificial intelligence
and neural network control systems (ainncs) for continuous and hybrid systems plants. In Goran
Frehse and Matthias Althoff, editors, ARCH19. 6th International Workshop on Applied Verifica-
tion of Continuous and Hybrid Systems, volume 61 of EPiC Series in Computing, pages 103–119.
EasyChair, 2019.

[39] Amir Maleki and Chelsea Sindrane. Benchmark examples for ainncs-2020, 2020.

[40] MathWorks. Adaptive Cruise Control System block. https://www.mathworks.com/help/mpc/

ref/adaptivecruisecontrolsystem.html, 2018.

182

https://www.mathworks.com/help/mpc/ref/adaptivecruisecontrolsystem.html
https://www.mathworks.com/help/mpc/ref/adaptivecruisecontrolsystem.html

ARCH-COMP22 AINNCS Manzanas Lopez et al.

[41] K. S. Narendra and K. Parthasarathy. Identification and control of dynamical systems using neural
networks. IEEE Transactions on Neural Networks, 1(1):4–27, March 1990.

[42] Jorge A. Pérez-Hernández and Luis Benet. PerezHz/TaylorIntegration.jl. https://github.com/

PerezHz/TaylorIntegration.jl, 2021.

[43] S. Prajna, P.A. Parrilo, and A. Rantzer. Nonlinear control synthesis by convex optimization.
volume 49, pages 310–314, 2004.

[44] S. Joe Qin and Thomas A. Badgwell. An overview of nonlinear model predictive control appli-
cations. In Frank Allgöwer and Alex Zheng, editors, Nonlinear Model Predictive Control, pages
369–392, Basel, 2000. Birkhäuser Basel.

[45] Umberto J. Ravaioli, James Cunningham, John McCarroll, Vardaan Gangal, Kyle Dunlap, and
Kerianne L. Hobbs. Safe reinforcement learning benchmark environments for aerospace control
systems. In 2022 IEEE Aerospace Conference (AERO), pages 1–20, 2022.

[46] Stuart Russell, Daniel Dewey, and Max Tegmark. Research Priorities for Robust and Beneficial
Artificial Intelligence. AI Magazine, 36(4):105, 2015.

[47] Christian Schilling, Marcelo Forets, and Sebastián Guadalupe. Verification of neural-network
control systems by integrating Taylor models and zonotopes. In AAAI, pages 8169–8177. AAAI
Press, 2022.

[48] Malcolm D. Shuster. Survey of attitude representations. Journal of the Astronautical Sciences,
41(4):439–517, October 1993.

[49] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin T. Vechev. Fast
and effective robustness certification. In NeurIPS, pages 10825–10836, 2018.

[50] Peter Stone, Rodney Brooks, Erik Brynjolfsson, Ryan Calo, Oren Etzioni, Greg Hager, Ju-
lia Hirschberg, Shivaram Kalyanakrishnan, Ece Kamar, Kevin Leyton-Brown, David C. Parkes,
William Press, AnnaLee Saxenian, Julie Shah, Milind Tambe, and Astro Teller. ”artificial intelli-
gence and life in 2030.” one hundred year study on artificial intelligence: Report of the 2015-2016
study panel, 2016.

[51] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Good-
fellow, and Rob Fergus. Intriguing properties of neural networks. CoRR, abs/1312.6199, 2013.

[52] Hoang-Dung Tran, Stanley Bak, Weiming Xiang, and Taylor T. Johnson. Verification of deep
convolutional neural networks using imagestars. In 32nd International Conference on Computer-
Aided Verification (CAV). Springer, July 2020.

[53] Hoang-Dung Tran, Feiyang Cai, Manzanas Lopez Diego, Patrick Musau, Taylor T. Johnson, and
Xenofon Koutsoukos. Safety verification of cyber-physical systems with reinforcement learning
control. ACM Trans. Embed. Comput. Syst., 18(5s), October 2019.

[54] Hoang-Dung Tran, Diago Manzanas Lopez, Patrick Musau, Xiaodong Yang, Luan Viet Nguyen,
Weiming Xiang, and Taylor T. Johnson. Star-based reachability analysis of deep neural networks.
In Maurice H. ter Beek, Annabelle McIver, and José N. Oliveira, editors, Formal Methods – The
Next 30 Years, pages 670–686. Springer International Publishing, 2019.

[55] Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez, Patrick Musau, Luan Viet Nguyen,
Weiming Xiang, Stanley Bak, and Taylor T. Johnson. NNV: The neural network verification
tool for deep neural networks and learning-enabled cyber-physical systems. In 32nd International
Conference on Computer-Aided Verification (CAV), July 2020.

[56] Weiming Xiang and Taylor T. Johnson. Reachability analysis and safety verification for neural
network control systems. CoRR, abs/1805.09944, 2018.

[57] Weiming Xiang, Patrick Musau, Ayana A. Wild, Diego Manzanas Lopez, Nathaniel Hamilton,
Xiaodong Yang, Joel A. Rosenfeld, and Taylor T. Johnson. Verification for machine learning,
autonomy, and neural networks survey. CoRR, abs/1810.01989, 2018.

[58] Weiming Xiang, Hoang-Dung Tran, and Taylor T. Johnson. Output reachable set estimation and
verification for multi-layer neural networks. CoRR, abs/1708.03322, 2017.

183

https://github.com/PerezHz/TaylorIntegration.jl
https://github.com/PerezHz/TaylorIntegration.jl

ARCH-COMP22 AINNCS Manzanas Lopez et al.

[59] Weiming Xiang, Hoang-Dung Tran, and Taylor T. Johnson. Reachable set computation and safety
verification for neural networks with relu activations. CoRR, abs/1712.08163, 2017.

[60] Weiming Xiang, Hoang-Dung Tran, and Taylor T. Johnson. Output reachable set estimation and
verification for multi-layer neural networks. IEEE Transactions on Neural Networks and Learning
Systems (TNNLS), 2018.

[61] Weiming Xiang, Hoang-Dung Tran, and Taylor T. Johnson. Specification-guided safety verification
for feedforward neural networks. CoRR, abs/1812.06161, 2018.

[62] Weiming Xiang, Hoang-Dung Tran, Xiaodong Yang, and Taylor T. Johnson. Reachable set esti-
mation for neural network control systems: A simulation-guided approach. IEEE Transactions on
Neural Networks and Learning Systems, pages 1–10, 2020.

184

	1 Introduction
	2 Participating Tools
	3 Benchmarks
	3.1 Adaptive Cruise Controller (ACC)
	3.2 Sherlock-Benchmark-9 (TORA)
	3.3 Sherlock-Benchmark-10 (Unicycle Car Model)
	3.4 VCAS Benchmark
	3.5 Single-Pendulum Benchmark
	3.6 Double-Pendulum Benchmark
	3.7 Airplane Benchmark
	3.8 Benchmark: Attitude Control
	3.9 Benchmark: QUAD
	3.10 2D Spacecraft Docking

	4 Verification Results
	4.1 JuliaReach
	4.1.1 ACC
	4.1.2 Sherlock-Benchmark-9
	4.1.3 Sherlock-Benchmark-10
	4.1.4 VCAS
	4.1.5 Single Pendulum
	4.1.6 Double Pendulum
	4.1.7 Airplane
	4.1.8 Attitude Control
	4.1.9 Quadrotor
	4.1.10 Spacecraft

	4.2 NNV
	4.2.1 ACC
	4.2.2 Tora
	4.2.3 VCAS
	4.2.4 Single Pendulum
	4.2.5 Double Pendulum
	4.2.6 Airplane

	4.3 CORA
	4.3.1 ACC
	4.3.2 Sherlock-Benchmark-9 (TORA)
	4.3.3 Sherlock-Benchmark-10 (Unicycle)
	4.3.4 VCAS
	4.3.5 Single Pendulum
	4.3.6 Double Pendulum
	4.3.7 Airplane
	4.3.8 Attitude Control
	4.3.9 QUAD
	4.3.10 Spacecraft Docking

	4.4 POLAR

	5 Category Status and Challenges
	6 Conclusion and Outlook
	7 Acknowledgments
	A Specification of Used Machines
	A.1 MJuliaReach
	A.2 MCORA
	A.3 Mnnv
	A.4 MPOLAR

	References

