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Abstract 12 

The GNSS tomography provides the opportunity to estimate atmospheric wet refractivity, 13 

which is important for precise positioning and navigation, as well as for constraining weather 14 

and climate models. The GNSS-derived water vapor is often estimated by implementing 15 

voxel-based inversions, but this technique is numerically unstable due to the high number of 16 

unknown parameters especially in networks covering large areas or when the spatial 17 

resolution increases. To mitigate this problem, in this study, we introduce functional based 3 18 

and 4 dimensional (3D and 4D) inversions. Here, the horizontal changes are modelled by the 19 

spherical cap harmonic functions. For the vertical component, empirical orthogonal functions 20 

derived from ERA5 (Empirical Reanalysis Fifth generation) are applied as background 21 

model. The time-dependency is accounted for by applying polynomial spline functions. 22 

Numerical results are based on a network of about 190 GPS stations in Germany during 15 23 

days in summer and winter of 2018. Observations from 8 radiosonde stations are applied for 24 

comparisons. Our results indicate that the functional tomography is effective and retrieves 25 

wet refractivity indices with the mean RMSE (Root Mean Square Error) of about 1.9 ppm. 26 

These values are found to be up to 22% smaller than those derived by comparing ERA5 with 27 

the radiosonde data. 28 

Keywords: Water Vapor; GNSS; Functional-based Tomography; 3D and 4D model 29 

 30 

1. Introduction 31 

Water vapor or wet refractivity index in the atmosphere is one of the most substantial 32 

parameters for weather forecasting models, and its temporal and spatial changes can be an 33 

indicator of climate change. Today, using assimilation of various satellite and in-situ 34 

observations of different spatial and temporal resolutions, analysis and reanalysis weather 35 

products are being generated. Global Circulation Models (GCMs) reproduce both the large-36 

scale and mesoscale patterns of atmospheric circulations in which water vapor can be 37 

considered as one of their valuable outputs. As the resolution of numerical models increases 38 

in both temporal and spatial scale, more detailed atmospheric products are available. The 39 

European Center for Medium Range Weather Forecast (ECMWF) provides global forecasts, 40 

analysis and re-analysis at different spatial resolutions, e.g., 0.08° × 0.08°. The state-of-the-41 
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art of global scale products may however be insufficient to represent small-scale and terrain-1 

driven meteorological features (Carvalho et al. , 2014).  2 

In order to present the state of the atmosphere in a smaller scale and to consider specific 3 

dynamical processes, regional numerical models, such as the Weather Research and 4 

Forecasting Model (WRF) are utilized (Skamarock et al. , 2008; Lian et al. , 2018). For 5 

producing more realistic estimates, these models are needed to be constrained by 6 

observations as shown by, e.g., Leontiev et al. (2021).  7 

Different observation tools are available to measure wet refractivity indices such as the 8 

radiosonde stations, satellite-based microwave interferometry, radiometer on-board 9 

satellites, radio occultation, and the ground-based Global Navigation Satellite System 10 

(GNSS) stations (see a review in Guerova et al. , 2016). The heterogeneous distribution of 11 

water vapor, its drastic spatial and temporal changes, as well as the resolution limitations of 12 

satellite-based observations and radiosonde stations data are among the main challenges for 13 

accurate representation of this variable (see more details in, e.g., Bevis et al. , 1992).  14 

By emerging the GNSS technology a new opportunity has been opened for atmospheric 15 

investigations such as precipitation and rainfall prediction, global and local climate change 16 

studies, and natural hazard prediction (Stierman, 2017). Particularly, the ground based GNSS 17 

stations are built in many regions to facilitate accurate positioning and navigation, where 18 

their measurements can also be used for estimating water vapor with high temporal 19 

resolution. Generally speaking, the atmosphere causes delay on GNSS that are predominantly 20 

known as the ionosphere and troposphere effects (Hofmann-Wellenhof et al. , 2007). By 21 

analyzing GNSS networks, the tropospheric wet delay can be estimated and used for 22 

assessing water vapor or its equivalent wet refractivity indices (Subirana et al. , 2013).  23 

From GNSS constellations, most of the existing studies utilize observations by the US’s 24 

Global Positioning System (GPS) to estimate water vapor in the atmosphere since it is the 25 

oldest constellation with relatively stable number of satellites in the view of ground based 26 

stations. For example, Bevis et al. (1992) applied GPS measurements to estimate the 27 

Perceptible Water Vapor (PWV) and showed that they are in agreement with the radiosonde 28 

data with an accuracy of 1-2 millimeter. For the study of climate changes, Alshawaf et al. 29 

(2017) estimated changes between -1.5 and 2 mm/decade in PWV trends for time series about 30 

10 to 19 years using GNSS observation over Germany. Li et al. (2015) used multi-GNSS 31 

observations for estimating real-time Integrated Water Vapor (IWV) and showed that the 32 

accuracy of estimates are increased to about 1.5 mm as a result of using the higher number 33 

of observations from multi-constellations compared with using only one of them.  34 

In order to quantify water vapor, i.e., its spatial and temporal distribution in the atmosphere, 35 

the tomography method is introduced in previous studies (e.g., Ding et al., 2017, Flores et 36 

al., 2000, Nilsson and Gradinarsky, 2006, Xia et al., 2013). This is often implemented by 37 

estimating the wet refractive index from a GNSS network (Bosy et al. , 2010) using voxel-38 

based approaches that formulate delays between GNSS satellites and receivers based on the 39 

direction and length of signals passing through each voxel box (Flores et al., 2000, Hirahara, 40 

2000). However, the voxel-based formulation is an ill-posed inversion problem caused by 41 

the heterogeneous station's distribution within the network and the parallelism of some 42 

observational signals. As a result, some voxels remain empty and the GNSS signals do not 43 

pass through them (Bender and Raabe, 2007). Another problem is that the coefficients need 44 
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to be estimated for each voxel are highly correlated so that in general the equation system is 1 

not stable to be solved using an ordinary least squares optimization. Therefore, the estimation 2 

of tomographic unknown parameters using direct and iterative regularization methods has 3 

been under investigation since many years (Adavi and Mashhadi-Hossainali, 2015, Chen and 4 

Liu, 2014, Hirahara, 2000). The iterative regularization methods is often used in tomography 5 

problems. Because they do not need matrix inversion procedure and the optimum solution is 6 

obtained by iterative algorithms (Bender et al., 2011), where example include: the Algebraic 7 

Reconstruction Technique (ART) (Eggermont et al., 1981), the Simultaneous Iterative 8 

Reconstruction Technique (SIRT) (Trampert and Leveque, 1990), and the Multiplicative 9 

Iterative Reconstruction Technique (MART, Raymund et al., 1993). The advantage of these 10 

methods is the simplicity of calculations and the small amount of memory for 11 

implementation. 12 

To improve on the distribution of GNSS measurements within a simulated voxel based 13 

inversion (employing iterative regularization methods), Wang et al. (2014) applied the 14 

measurements of BeiDou constellation and compared them that with GPS only observations. 15 

They obtained the Root Mean Square (RMS) of about 4 ppm for estimating wet refractivity 16 

indices in joint observation method. Xiaoying et al. (2014) used Gaussian constraints in the 17 

iterative regularization methods to account for voxels that are not passed by slants, and they 18 

showed that the accuracy of estimation can be improved. However, the iterative 19 

regularization methods have limitations such as their dependency on initial values and their 20 

sensitivity to the noise level of measurements. Besides, direct regularization methods require 21 

large amounts of memory due to the inverse matrix processing and matrix decomposition, 22 

which limits their application for dense tomography purposes. 23 

An alternative approach to stabilize the voxel-based inversion can be realized by applying 24 

functional-based representations that considerably reduce the number of unknown 25 

parameters to be estimated for the modelling. The basic idea of this approach is to expand 26 

the spatial and temporal changes using basis functions that are often mutually orthogonal (to 27 

ease the computational procedure). This view has often been implemented in the area of 28 

ionosphere tomography using GNSS measurements (for details see e.g., Al-Fanek, 2013, 29 

Alizadeh, 2013, Farzaneh and Forootan, 2018, Limberger, 2015, Liu, 2004, Liu et al., 2011, 30 

2014).  31 

The aim of this study is to demonstrate the ability of 3D and 4D functional-based tomography 32 

formulations in retrieving the wet refractivity indices. To demonstrate the results, the 33 

horizontal (dimensions 1 and 2) changes are represented by the spherical cap basis functions, 34 

while the vertical changes (the 3rd dimension) are accounted for by introducing Empirical 35 

Orthogonal Functions (EOFs) from the wet refractivity fields of the latest ECMWF 36 

(European Centre for Medium-Range Weather Forecasts) reanalysis numerical model, i.e., 37 

ERA5 (Hersbach et al., 2020). The polynomial Spline basis functions are then used for 38 

modelling the time-dependent distribution of wet refractivity in the region of interest (the 4th 39 

dimension). Our motivation in selecting the spherical caps is due to their popularity (Liu, 40 

Chen, 2014, Liu, Chen, 2011, Razin and Voosoghi, 2017) and their simple computational 41 

requirements. The presented approach is however formulated in a generic form that other 42 

basis functions such as the Slepian functions (Farzaneh and Forootan, 2018) and 2D B-43 

Splines (Limberger, 2015) can be replaced. The reliability of ERA5 for water vapor 44 
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estimation is shown, e.g., in (Yang et al. , 2019) and (Hu and Mallorquí, 2019). The numerical 1 

evaluations are performed over a network of about 190 GPS stations in Germany. The 2 

tomography time was also selected on days between January 13th till 2nd February 2018, 3 

and July 4th till 18th July 2018, at 12 and 24 UTC (Coordinated Universal Time). Data from 4 

eight radiosonde stations on the network have been used to evaluate the tomography results.  5 

2. Methodology  6 

2.1. Voxel-based tomography 7 

Atmospheric tomography is referred to reconstructing parameters that have an effect on the 8 

GNSS signals passing through the atmosphere (Aster et al. , 2005). In the voxel-based 9 

formulation, the Slant Wet Delay (SWD) of GNSS is used as input, where the area of study 10 

is divided into voxels covering the area between surface of the Earth and satellites. Then a 11 

design matrix is built by calculating the length of arrays that pass through these voxels. 12 

Afterward, an inverse problem needs to be solved, from which the wet refractive index within 13 

the region of interest can be determined (Adavi and Mashhadi-Hossainali, 2014).  14 

Here, we present the SWD estimation from the Global Positioning System (GPS) 15 

constellation. This can be extended to all GNSS constellations as shown by (Dong and Jin, 16 

2018). The GPS slant wet delay measurements can be written as (Bevis, Businger, 1992): 17 

𝑆𝑊𝐷 = 10−6 ∫ 𝑁𝑊 𝑑𝑙

𝐿

  (1) 

Where SWD represents the tropospheric slant wet delay, L is the signal length, and NW is 18 

the wet term of refractivity. Assuming that the refractive index is constant in each voxel, Eq. 19 

(1) for wet tropospheric delay can be written in a discrete form (Bender et al. , 2013): 20 

SWD =  ∑ 𝑁𝑖,𝑗,𝑘 𝐷𝑖,𝑗,𝑘
𝑖,𝑗,𝑘

 (2) 

Where the subscripts i, j and k indicate the voxel position, Ni,j,k are the wet tropospheric 21 

delay, and Di,j,k is the signal length passing through the specified voxel. Providing all the 22 

wet tropospheric delay measurements, the observation equation is: 23 

𝐘 = 𝐀 𝐍 (3) 

Where 𝐘 is the vector of wet tropospheric delay measurements, A is the tomographic design 24 

matrix, and 𝐍 is vector of unknown parameters (i.e., wet refractivity values). 25 

 26 

2.2. Spherical Cap Harmonics 27 

 28 
The wet refractivity expression using the spherical harmonics expansion can be written as:  29 

𝑁𝑖(λ, θ) = ∑ ∑ [an
m cos(mλ) + bn

m sin(mλ)]

n

m=0

k

n=0

Pn
m(cosθ) (4) 
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Where 𝑁𝑖 is the 2D wet refractivity, an
m and bn

m are the coefficients of spherical harmonics 1 

expansion, λ and θ are the geographic longitudes and colatitudes, and Pn
m(cosθ) is the 2 

normalized Legendre function of order m and degree n. If the region of study is part of a 3 

sphere, the spherical harmonics are not the most appropriate basis for the expansion because 4 

the Legendre functions lose their orthogonality (Haines, 1985). To overcome this problem, 5 

the spherical cap harmonics has been proposed with the Legendre functions whose 6 

derivatives are zero at the corners of the cap-shaped region with a half-angle θ0, see details 7 

in (Haines, 1985).  8 

Boundary conditions for implementing spherical cap harmonics can be written as follows 9 

(Haines, 1985): 10 

 11 

d𝑃𝑛𝑘
𝑚(𝑐𝑜𝑠θ0)

dθ
= 0              for k − m = even (5) 

𝑃𝑛𝑘
𝑚(𝑐𝑜𝑠θ0) = 0                for k − m = odd   (6) 

 12 

The solution of the above equation determines the nk values. Thus, 𝑁𝑖(λ, θ) in Eq. (4) can 13 

be written using the new Legendre functions:  14 

𝑁𝑖(λ𝑐, θ𝑐) = ∑ ∑ [𝑎𝑛
𝑚 cos(𝑚λ𝑐) + 𝑏𝑛

𝑚 sin(𝑚λ𝑐)]

𝑘

𝑚=0

𝑘𝑚𝑎𝑥

𝑘=0

𝑃𝑛𝑘
𝑚(𝑐𝑜𝑠θ𝑐) (7) 

Where kmax is the maximum degree yielding the nearest approximation of the specified 15 

function, λc and θc are longitudes and colatitudes in the spherical cap coordinate system 16 

(Al-Fanek, 2013). The new Legendre functions 𝑃𝑛𝑘
𝑚(𝑐𝑜𝑠θ𝑐) in Eq. (7) are of order m and the 17 

non-integer degree n and its detailed computation can be found in (Al-Fanek, 2013). 18 

Therefore, Eq. (3) can be rearranged as: 19 

𝐘 = 𝐀(𝐀′𝐱) (8) 

Where 𝐀′ is a matrix that contains the spherical cap harmonic basis functions. The matrix 𝐱 20 

contains the expansion coefficients that is equals to (kmax + 1)2. 21 

 22 

2.3. Empirical Orthogonal Function (EOF) 23 
 24 
The empirical orthogonal functions (EOFs) are data driven orthogonal basis function that 25 

represent the maximum variance of a data set (Forootan, 2014). The EOFs in this study are 26 

obtained from the ERA5’s humidity and temperature data on 37 pressure levels. This model's 27 

data have 1-hour temporal resolution and about 31-kilometer spatial resolution. Using the 28 

ERA5 data, wet refractivity can be calculated as: 29 

(9) 𝑒𝑠 = 𝑎 ∗ 𝑒(
𝑏∗𝑡
𝑡+𝑐

)
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(10) 𝑒 =
𝐻 ∗ 𝑒𝑠

100
 

(11) 𝑁𝑤 = 3.732 ∗ 105 ∗
𝑒

𝑇2
 

 1 
Where 𝑒𝑠 represents the saturation vapor pressure in hpa, 𝑡 is temperature in Celsius, 𝐻 is 2 

relative humidity and T is temperature in Kelvin. The constant coefficients are 𝑎 = 6.1121, 3 

𝑏 = 17.502  and 𝑐 = 240.97, which are taken from (Recommendation, 2001). It is worth 4 

mentioning here that the latency of ERA5 is about 5 days. Thus, for real-time tomography 5 

applications, this model cannot be used. In such cases, alternative model outputs, such as in-6 

house WRF1 model runs, might replace those of ERA5. To compute the EOFs, the wet 7 

refractivity index profiles matrix are arranged as: 8 
 9 

𝑁𝑤 = [
𝑁(𝜆𝑐1, 𝜑𝑐1, ℎ1, 𝑡1) ⋯ 𝑁(𝜆𝑐1, 𝜑𝑐1, ℎ1, 𝑡𝑛)

⋮ ⋱ ⋮
𝑁(𝜆𝑐𝑘 , 𝜑𝑐𝑘 , ℎ𝑘, 𝑡1) ⋯ 𝑁(𝜆𝑐𝑘 , 𝜑𝑐𝑘 , ℎ𝑘 , 𝑡𝑛)

] (12) 

 10 
Where 𝜆𝑐𝑖 and 𝜑𝑐𝑗 represents are longitudes and colatitudes in the spherical cap coordinate 11 

system for kth voxel, ℎ𝑘 indicate altitude for the corresponding voxel, and 𝑡𝑛 represents the 12 

considered time. In this matrix, rows and columns indicate spatial and temporal changes of 13 

the wet refractivity indices, respectively. The eigenvectors of the matrix 𝑁𝑤 are the EOFs 14 

(Adavi and Mashhadi-Hossainali, 2015). The EOFs that correspond to bigger eigenvalues 15 

represent dominant role in describing the data’s variance. The other EOFs that correspond to 16 

small eigenvalues are likely associated to noise (Bjornsson and Venegas, 1997). The vertical 17 

basis function using EOF's can be written as follows: 18 

F =  ∑ 𝛼j(EOF)j =  ∑ Zj

p

j=1

 

p

j=1

 (13) 

Where 𝛼𝑗  are vertical basis function coefficients and p is the maximum number of EOF’s. 19 

Combining SCH and EOF’s, the wet refractivity values can be expanded as: 20 

𝑁𝑖(λ𝑐, θ𝑐, h) =  ∑ ∑ ∑ [𝑎𝑛
𝑚 cos(𝑚λ𝑐) + 𝑏𝑛

𝑚 sin(𝑚λ𝑐)]

𝑘

𝑚=0

𝑘𝑚𝑎𝑥

𝑘=0

𝑃𝑛𝑘
𝑚(𝑐𝑜𝑠θ𝑐)𝑍𝑞(λ𝑐, θ𝑐, h)  

𝑄

𝑞=1

 (14) 

 21 
Here, h indicates the altitude of the corresponding voxel, 𝑍𝑞(λ𝑐, θ𝑐, h) represent the EOFs, 22 

and 𝑞 = 1: 𝑄 represents their order. Thus, the number of unknown coefficients to determine 23 

N is Q × (𝑘𝑚𝑎𝑥 + 1)2 . In this study, the EOFs are obtained from the ERA5 model in a two-24 

hour period before the tomography epoch. Fig. 1 displays the first 2 EOF derived from ERA5 25 

data and their corresponding singular values. Fig. 1b indicates that the first EOF (EOF1) 26 

forms about 98% of the variance and the second EOF (EOF2) contains about 1% of variance. 27 

These two components are used to model the water vapor in the next section.  28 

 
1 https://www.mmm.ucar.edu/weather-research-and-forecasting-model 
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 1 

Fig. 1. An example of empirical orthogonal functions (EOFs) from ERA 5 data on 4th July 2018 over 2 

Germany. In a) The two profiles indicate the first two dominant EOFs, and in b) the corresponding 3 

singular values are shown. 4 

The spectral or spatial resolution of SHCs and number of EOFs can be specified according 5 

to the coverage and strength of the signal and noise in measurements. But, using any base 6 

function technique introduces smoothing features in the estimated solution due to its simpler 7 

modelled representation. If the actual atmosphere state does not follow the variations 8 

described by these models, the changes in the strength of the events will be reflected by the 9 

measurements and the model coefficients will be estimated to minimize the residuals. From 10 

the used base functions, only EOFs are estimated empirically and as mentioned, the EOFs 11 

only introduce the general vertical variations, for which one parameter is estimated to control 12 

the amplitude and peak of the vertical curve.  13 

2.4. B-Spline function for modelling temporal variability 14 
 15 
The B-spline functions are used as in (Schmidt et al. , 2011) to represent a time-dependent 16 

variations. Any temporal signal, shown as ℎ(𝑡), can be expanded using the polynomial B-17 

splines as: 18 

h(t) = ∑ 𝑐𝑘
𝑗
ɸk

j
(t)

𝑘𝑗−1

k=0

 (15) 

Where 𝑐𝑘
𝑗

 are the unknown coefficients correlated in time, ɸk
j

 are the normalized 19 

polynomial B-splines of order 𝑚 , j  is the B-spline surface resolution, and 𝑘𝑗  is set of 20 

polynomial B-splines for selected surface resolution (Schmidt, Dettmering, 2011). In order 21 

to obtain a 4D model, coefficients of spherical cap harmonics can be written as follows: 22 

𝑐𝑛,𝑚(𝑡𝑞) =  ∑ 𝑐𝑛,𝑚,𝑘
𝑗

ɸ𝑘
𝑗

(𝑡𝑞)

𝑘𝑗−1

𝑘=0

 (16) 

Eq. (16) can be expressed for all unknown coefficients as: 23 
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𝐜𝐪 = 𝐂𝐮𝐪 (17) 

Where 𝑪  contains the expansion of coefficients in time and 𝐮𝐪  are the B-spline basis 1 

functions. Substituting Eq. (17) into Eq. (8) yields: 2 

𝐘 = 𝐀𝐂𝐔 (18) 

Where 𝐘 is the observation matrix and 𝐔 = [𝐮𝟏, 𝐮𝟐, … , 𝐮𝐪] indicates the expansion of B-3 

spline basis functions (in time). To compute the unknowns in matrices 𝐂, Eq. (18) should be 4 

rewritten using a tensor product approach as follows (Schmidt, Dettmering, 2011): 5 

vec𝐘 = (𝐔𝐓 ⊗ 𝐀)vec𝐂  (19) 

in which vec(.) is an operator that arranges the columns of matrices as a vector (Schmidt, 6 

Dettmering, 2011). While recognizing 𝐗𝟏 =  𝐔𝐓 ⊗ 𝐀 and defining  𝛃𝟏 =  vec𝐂 yields: 7 

𝛃�̂� =  (𝐗𝟏
𝐓𝐏𝐗𝟏)−1𝐗𝟏

𝐓𝐏 vec𝐘 (20) 

Where 𝐏 is the weight matrix of the observations and can be weighted, e.g., with respect to 8 

the elevation of GPS satellites in the time of observation. The time-correlated unknown 9 

coefficients can be estimated by utilizing Eq. (20). The level of ill-posed condition of Eq. 10 

(20) can be examined using condition number as follows (Hansen, 1998): 11 

𝑘 =
𝜎𝑚𝑎𝑥

𝜎𝑚𝑖𝑛
 (21) 

Where 𝜎𝑚𝑎𝑥  and 𝜎𝑚𝑖𝑛  are the largest and smallest singular values of matrix 𝐗𝟏 , 12 

respectively. When 𝑘 becomes large the discrete Picard condition will not be satisfied and 13 

the least-squares solution is not reliable (Hansen, 1990). In this study, the Tikhonov 14 

regularization method (Tikhonov and Arsenin, 1977), as discussed in (Farzaneh and 15 

Forootan, 2018), is used to estimate the unknown coefficients of the functional model. 16 

3. Region of study and observations 17 
 18 

The study area is the network of GPS stations in Germany that covers region between [6.85, 19 

13.3] degrees for latitudes, and [47.9, 54] degrees for longitude. Tomography time is also 20 

considered on 15 days in summer and also 15 days in winter of the year 2018, to evaluate the 21 

implemented tomography in different atmospheric conditions. Fig. 2 displays the gridded 22 

network and the distribution of GPS stations in the region of study for epochs of 13th January 23 

and 4th July. The number of existing GPS stations is about 194 on day 13th January and 185 24 

on 4th July. The lowest altitude of the stations is about 48 meters, therefore the first level of 25 

atmosphere segmentation is considered at the zero altitude. Since the wet refractivity index 26 

is close to the zero for altitudes higher than 10 km, the maximum height for the wet 27 

refractivity index estimation in the atmosphere can be assumed at about 10 km (Bender, Dick, 28 

2011). Therefore, maximum height studied is 10 km, and the vertical resolution of voxels is 29 

set to be 500 meters. The area of the region under study is 720 km × 675 km and the horizontal 30 

distribution of the voxels is considered 45 km. Therefore, based on the network gridding 31 

choices, there are 4800 voxels in the region of study. To evaluate the accuracy of the 32 
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implemented tomography, the obtained wet refractivity profiles will be compared with the 8 1 

existing radiosonde stations in the region. The radiosonde profiles have been obtained from 2 

University of Wyoming archive (http://weather.uwyo.edu). Survo et al. (Survo et al. , 2015) 3 

compared radiosonde Integrated Precipitable Water(IPW) column measurements with GPS 4 

and microwave radiometer instrument observations and showed that all agreed within 1 5 

millimeter. Also in this study, the comparison of Cryogenic Frostpoint Hygrometer and 6 

Vaisala Radiosonde resulted in differences of mean humidity about 1%. The distribution of 7 

radiosonde stations in the region can be seen in Fig. 2. Also, radiosonde stations coordinate 8 

have been listed in table 1.    9 
 10 

 11 

Fig. 2. The gridded network area including Germany. The red circles show GPS stations and the purple 12 

triangles represent radiosonde stations in the region. In a) we represent the distribution of GPS stations 13 

on January 13th, 2018, and in b) the distribution on July 4th, 2018. 14 

Table 1. Radiosonde stations coordinate 15 

Station name Longitude(deg) Latitude(deg) Altitude(m) 

Stuttgart 48.83 9.20 321 

Idar 49.70 7.33 377 

Meiningen 50.56 10.38 450 

Essen 51.40 6.97 147 

Bergen 52.81 9.93 69 

Norderney 53.71 7.15 11 

Muenchen 48.25 11.55 492 

Kuemmersbruck 49.43 11.90 418 

 16 

The values of the wet tropospheric delay at 30 second intervals estimated from the GPS 17 

network are used as input to the tomography approach. The IGS (International GNSS 18 

Service) final orbits are used in the solution, and the IGS final products are also considered 19 

for the interpolation of the satellites at 30-second time intervals, which is necessary for 20 

computing the signal length at different voxels. Here, we only use the data of Global 21 

Positioning System (GPS) constellation to treat all the receivers in the same manner. The cut 22 

http://weather.uwyo.edu/
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of angle of 15 degrees is chosen to eliminate erroneous observations. The GPT (Global 1 

Pressure and Temperature) model is used to calculate the initial value of dry tropospheric 2 

delay, and the VMF1 (Vienna Mapping Function) model is applied as mapping function for 3 

projecting the wet and dry tropospheric delays. The temporal resolution of the tomography 4 

is considered to be one-hour and is set in a way that the unknowns fall on the last epoch of 5 

each one-hour interval. The estimated unknowns and the radiosonde data are compared by 6 

computing Root Mean Squares of Errors (RMSEs), and statistical biases as (Xia, Cai, 2013): 7 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑( 𝑁𝑤𝑚

𝑖 − 𝑁𝑤0
𝑖  )2

𝑛

𝑖=1

   (22) 

𝑏𝑖𝑎𝑠 =  
1

𝑛
∑( 𝑁𝑤𝑚

𝑖 − 𝑁𝑤0
𝑖  )

𝑛

𝑖=1

   

(23) 

 

where 𝑛 is the number of unknowns in the retrieved profile, Nwm
i  is the wet refractivity 8 

values estimated from the tomography solution in voxel 𝑖 and Nw0
i  is the wet refractivity 9 

values from the corresponding radiosonde data. The Pearson product-moment correlation 10 

coefficient (PCC as in Eq. (24)) (Lee Rodgers and Nicewander, 1988) is used for measuring 11 

the similarity of estimated profiles with those of radiosonde data as:  12 
 13 

𝑃𝐶𝐶 =
∑ (𝑁𝑤𝑚

𝑖 − 𝑁𝑤
̅̅ ̅̅ ) (𝑁𝑤0

𝑖 − 𝑁𝑤0
̅̅ ̅̅ ̅)𝑛

𝑖=1

√∑ (𝑁𝑤𝑚
𝑖 − 𝑁𝑤

̅̅ ̅̅ )2𝑛
𝑖=1  √∑ (𝑁𝑤0

𝑖 − 𝑁𝑤0
̅̅ ̅̅ ̅)2𝑛

𝑖=1

 (24) 

In this equation . ̅ indicates the temporal average of variables. For showing the lack of 14 

correlation more visible, the value of 𝟏 − 𝑷𝑪𝑪 has been calculated. 15 

4. Results and discussions 16 

4.1 Modelling 3D and 4D wet refractivity indices  17 

The mathematical models for the 3D and 4D wet refractivity indices modelling are developed 18 

in 12 UTC and 24 UTC during 15 days in summer between 13 January and 2 February and 19 

also 15 days in winter between 4 July and 18 July of year 2018. Considered days in winter 20 

are not consecutive due to the lack of GPS stations in the network. Also in considered 21 

tomography epochs, for station Stuttgart in times 12 and 24 UTC of 5 July and station Bergen 22 

on time 24 UTC 7 July, radiosonde data was not available. Considering Eq. (14) and (15), 23 

the SCH degree (𝑘𝑚𝑎𝑥), the maximum number of EOFs (Q), the order of B-splines (m), and 24 

resolution of B-splines (j) needs to be fixed. This is determined empirically by model (Al-25 

Fanek, 2013), a function model will be developed for considered groups of parameters and 26 

the wet refractivity will be estimated. By comparing the tomography derived wet refractivity 27 

profiles with radiosonde measurements, the group of parameters that have the minimum 28 

mean RMSE will be selected as functional model parameters. For defining the resolution of 29 

functional model, the RMSE values of six radiosonde stations are considered and two stations 30 

are left out for independent comparisons. As mentioned in Section 2.3, the first EOF can 31 

recover about 98% of the wet refractivity behavior so the number of EOFs is considered equal 32 

to one (Q=1). To determine the remaining parameters, SCH degree considered between [2, 33 
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5], and B-spline level and resolution considered between [1, 5] and [0, 5] respectively. Then 1 

the functional model has been developed in the four tomography times for different groups 2 

of parameters. For example, in epochs of 12 UTC and 24 UTC on January 13th, 2018 and on 3 

July 4th, 2018, the average value of RMSE for considered model parameters in radiosonde 4 

stations can be seen in Fig. 3 5 

 6 

 7 
Fig. 3. Mean RMSE value of the 4D model parameters at the location of radiosonde stations for 𝑘𝑚𝑎𝑥 8 

between [2, 5], order of B-Spline between [1, 5], and resolution of B-spline [0, 5] in epochs of 12 UTC 9 

and 24 UTC on January 13th, 2018 and on July 4th, 2018. The x-axis of each diagram shows the 10 

different SCH degrees, the y-axis shows the different levels of the B-spline function, and the z-axis 11 

displays the B-spline surface resolutions for different parameters. The group of parameters for which the 12 

lowest RMSE is obtained is shown with blue squares. 13 

As can be seen in Fig. 3, the range of RMSE changes about 0.3 ppm for two epochs of January 14 

13th, 2018 but this variation is about 1 ppm for two epochs of July 4th, 2018. The reason for 15 

this may be attributed to the higher amount of water vapor in the atmosphere on July 4th 16 

compared because vigorous changes of the wet refractive index in the summertime lead to 17 

more sensitivity to the estimated parameters of the functional model.  18 

To show the advantage of the implemented functional models over the conventional methods 19 

of solving the Eq. (3), the condition number (Hansen, 1998), as well as the discrete Picard 20 

condition (Hansen, 1990) are examined for epoch of 24 UTC on July 4th, 2018. According 21 

to the considered horizontal and vertical resolution for the region of study, the number of 22 

unknown parameters is equal to 4800. From Eq. (14), the parameters of the 3D functional 23 

model are 𝑘𝑚𝑎𝑥 and 𝑄. So with respect to Fig. 3d, 𝑘𝑚𝑎𝑥 and 𝑄 have been chosen equal to 24 

2 and 1 respectively. Therefore, the number of unknown parameters for the 3D functional 25 

model is equal to 9 in this epoch. In Fig. 4, the discrete Picard condition for conventional 26 

tomography method and 3D functional model has been shown. In this figure the red line 27 

indicates the singular value of the design matrix (σ𝑖), the blue line shows Fourier coefficients 28 

(|𝑢𝑖
𝑇𝑏|), and the green line shows the proportion of Fourier coefficients to singular values 29 
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(
|𝑢𝑖

𝑇𝑏|

𝜎𝑖
). In Fig. 4b it can be shown that Fourier coefficients decay faster to zero compared to 1 

the corresponding singular values so the discrete Picard condition is satisfied. But in Fig. 4a, 2 

the last singular values decay faster to zero compared to the corresponding Fourier 3 

coefficients. So it can be seen that by using function-based tomography the problem becomes 4 

more well-posed and the discrete Picard condition is satisfied.    5 

 6 

 
 7 

Fig. 4. Examining discrete Picard condition for a) conventional voxel-based tomography method and b) the 8 

3D functional model of this study (Eq.(14)). Singular values of the design matrix (𝜎𝑖), corresponding Fourier 9 

coefficients (|𝑢𝑖
𝑇𝑏|), and the proportion of Fourier coefficients to singular values (

|𝑢𝑖
𝑇𝑏|

𝜎𝑖
) can be seen by the red 10 

line, blue stars, and the green circles, respectively. 11 

4.2 Comparison of results with radiosonde profiles  12 
 13 

According to the functional model parameters that have the minimum mean RMSE value, 14 

the wet refractivity can be estimated in the 3D (Eq. (14)) and 4D (Eq. (15)) models. In each 15 

1 hours considered epochs, wet refractivity profiles derived from tomographic results have 16 

been compared to the corresponding radiosonde values as well as the calculated wet 17 

refractivity profiles from the ERA5 model. For example, Fig. 5 shows the differences 18 

between the 3D, 4D, and ERA5 vertical profiles with radiosonde measurements, in epochs 19 

of 12 UTC and 24 UTC on January 13th, 2018 and on July 4th, 2018. For all considered 20 

epochs, the 3D and 4D functional models have been developed and compared with 21 

radiosonde observations and ERA5 data, where the corresponding statistics at each 22 

tomography epoch are shown in Fig. 6. In all considered tomography epochs, the mean 23 

RMSE in different altitudes are calculated and can be seen in Fig. 7. 24 

 25 
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Fig. 5. Differences between the radiosonde data and the 3D-, 4D-tomography, and the ERA5-derived 1 

wet refractivity in epochs of 12 UTC and 24 UTC on January 13th, 2018 and on July 4th, 2018. The 2 

blue line indicates the difference of the ERA5 profile with radiosonde data, the red line shows the 3 

difference of the 4D model wet refractivity profiles with radiosonde data, the green line shows the 4 

difference of the 3D model profiles with radiosonde data at different altitudes. Locations of the 5 

radiosonde stations can be seen in Fig. 2. 6 

 7 
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Fig. 6. The values of RMSE, bias, and 1-PCC at each tomography epoch. Red line correspond to the 1 

4D model statistic parameters, green line show statistic parameters of the 3D models and blue line 2 

represent statistic parameters of the ERA5 data.  3 

 4 
Fig. 7. Mean RMSE at different altitudes for the 4D, 3D, and ERA5 data in red, green, and blue lines 5 

respectively. 6 



16 

 

 

Fig. 8. Statistic Parameters for the RMSE, Bias, and 1-PCC value in all considered tomography epochs for 1 

4D models, 3D models , and ERA5 data in magenta, green , and cyan charts respectively. 2 

For all considered epoch and stations in the Fig. 6, Statistic parameters such as Mean, 3 

Standard deviation(STD), Maximum, and Minimum for the 4D model, 3D model, and 4 

ERA5 data for RMSE, Bias, and 1-PCC values have been calculated and displayed in Fig. 5 

8. Also, in considered tomography epochs, the average percentage of improvement in 6 

RMSE value of the 3D and 4D model has been calculated with respect to RMSE of ERA5 7 

profiles as well as the percentage of improvement in RMSE of the 4D model has been 8 

calculated with respect to RMSE of the 3D model. Mean Improvement percentages can be 9 

seen in Fig. 9. 10 

 

Fig. 9. The percentage of improvement of the 4D model versus ERA5 model, 3D model versus ERA5 model, 11 

and 4D model versus 3D model in the red, green, and blue bars, respectively. The mean improvement 12 

percentages are shown by the corresponding coloured lines. 13 

According to Fig. 6c1, c2, c3, c4, c5, c6, c7, and c8, the 3D and 4D models have the same 14 

correlation with respect to the radiosonde data. This can be explained by the usage of the 15 

same vertical basis functions (EOF) for both models. As can be seen in Fig. 6 and Fig. 8, the 16 

implemented functional tomography has lower RMSE and Bias and 1-PCC Value compared 17 

to the ERA5 data with respect to the 8 radiosonde stations data, and also these parameters are 18 

lower for the 4D model compared to the 3D model. From Fig. 9, it can be concluded that 4D 19 

model and 3D model improve ERA5 RMSE value by average of 22 and 17 percent 20 

respectively and in some tomography epochs functional tomography models shows 21 
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improvement more than 50 percent in ERA5 data RMSE. Fig. 9 also shows that 4D model 1 

improves RMSE value by average of about 5 percent compared to the 3D model. 2 

According to Fig. 8, the functional model tomography retrieved the wet refractivity indices 3 

profiles with mean values of RMSE, Bias, and 1-PCC of about 1.9 ppm, 0.45 ppm, and 1 4 

percent respectively. Also from Fig. 8, it can be seen that implemented functional model has 5 

improved the Maximum Mean RMSE, Mean Bias, and Mean 1-PCC value up to 40 percent 6 

compared to ERA5 data. Fig. 8 also shows that in all considered epochs the 4D model has a 7 

positive percentage of improvement with respect to the ERA5 RMSE and the highest 8 

percentage of improvement for the 4D model is about 65 percent. As can be seen in Fig. 7, 9 

the 4D model has the lowest mean RMSE in altitudes below 3 km. This can be explained by 10 

the fact that the lowest altitudes have the most concentration and variation of wet refractivity 11 

index. So developing a time-dependent model decreased the RMSE value in these altitudes.  12 
 13 
4.3 Zenith Wet Delay maps 14 
 15 
After estimation of wet refractivity indices, Zenith Wet Delay (ZWD) for all tomography 16 

epochs can be calculated using Eq. (2) . Here for example ZWD maps in epochs of 12 UTC 17 

and 24 UTC on January 13th, 2018, and on July 4th, 2018 have been compared. For this 18 

purpose ZWD maps in the region of study for 3D, 4D, and ERA5 model as well as, the 19 

difference between represented functional models and ERA5 model can be seen in Fig.  10. 20 

For comparison of ZWD maps between functional model and ERA5 data, mean bias and 21 

PCC has been calculation for each ZWD map with respect to ERA5 calculated ZWD maps, 22 

and can be seen in Fig. 11. 23 

 24 
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Fig. 10. Estimated Zenith Wet Delay for functional-based tomography models and a comparison of 1 

those with ERA5 data. Radiosonde stations are presented with magenta triangles. 2 

  

Fig. 11. Bias and PCC parameters calculated from ZWD maps for each considered method. 3 
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According to Fig.  10g2 and h2, at 24 UTC on 4th July 2018, the ERA5 data has the highest 1 

ZWD value among four considered epochs. Also, as can be seen in Fig. 6a7, b7, a8, and b8, 2 

that in this epoch ERA5 data have high RMSE and Bias Value for Muenchen and 3 

Kuemmersbruck stations. But according to Fig. 6c7, and c8, the Value of 1-PCC does not 4 

differ from functional models value. So for ERA5 data being bias resulted in the highest 5 

mean RMSE value in this epoch.  6 

According to PCC values in Fig. 11a, the mean PCC value between functional models and 7 

ERA5 data is about 0.64. So it can be said that despite using ERA5 data for the construction 8 

of functional models, final tomography results are not completely correlated with ERA5 data 9 

due to effect of the GPS observations.  10 

5. Conclusions and further research 11 

 12 

In this research, a functional tomography approach was developed to retrieve the atmospheric 13 

refractive index, where a combination of the spherical cap harmonic functional models and 14 

the empirical orthogonal functions were applied to represent the three spatial dimensions and 15 

the B-splines were used to account for changes in time. Comparisons with 8 radiosonde 16 

stations in the area of study and the ERA5 data are conducted to investigate the feasibility 17 

and performance of the introduced technique under various tropospheric situations. To do 18 

this, we tested the estimated wet refractivity profiles at hour 12 and 24 UTC, during 30 19 

different days in summer and winter of 2018. The results of study indicate that the wet 20 

refractivity profiles are reasonably well comparable with the radiosonde derived profiles in 21 

all considered station with the range of mean RMSE and Bias of about 1.9 ppm and 0.45 ppm 22 

respectively. The mean RMSEs between the ERA5 and radiosondes are found to be 2.6 ppm, 23 

and therefore in some epochs, the functional tomography is about 65% smaller. The results 24 

also show that the highest miscorrelation (1 − 𝑃𝐶𝐶, where 𝑃𝐶𝐶 is estimated in Eq. (24)) of 25 

the retrieved profiles from the introduced functional tomography is about 20%, compared to 26 

the radiosonde profiles, when that of ERA5 is about 35%.   27 

Tropospheric tomography is known to be an ill-posed inverse problem. Numerous factors 28 

such as the number, quality, and distribution of observations, parameterization and 29 

computation strategy can affect the quality of solving this inverse problem. For example, if 30 

the number of stations is small in some areas or the measured signals have poor geometry, 31 

troposphere modeling based on GPS data only is problematic. In addition, GPS measurements 32 

are not always available at all elevation angles, which will weaken the vertical resolution 33 

relative to the horizontal resolution. As a consequence of these issues, there are limitations 34 

in the quality and resolution of tropospheric tomography solutions. To alleviate these 35 

limitations, a priori information such as data/model derived empirical orthogonal functions 36 

can be used to enhance the vertical distribution of wet refractivity. Also, inclusion of other 37 

data sources in the tomography process might help improving horizontal and vertical 38 

resolution. For example, satellite-based observations such as GPS RO atmospheric profiles 39 

that provide auxiliary information with good vertical coverage, can be used to boost the 40 

number of observations of the upper troposphere. The Galileo, GLONASS and Beidou are 41 

examples of other constellations that can improve the quantity of SWD data, increasing the 42 

data coverage for the proposed inversion. 43 
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