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Abstract
Background and Objectives: Adaptive features may increase flexibility and efficiency of clinical trials, and improve participants’
chances of being allocated to better interventions. Our objective is to provide thorough guidance on key methodological considerations
for adaptive clinical trials.

Methods: We provide an overview of key methodological considerations for clinical trials employing adaptive stopping, adaptive arm
dropping, and response-adaptive randomization. We cover pros and cons of different decisions and provide guidance on using simulation to
compare different adaptive trial designs. We focus on Bayesian multi-arm adaptive trials, although the same general considerations apply to
frequentist adaptive trials.

Results: We provide guidance on 1) interventions and possible common control, 2) outcome selection, follow-up duration and model
choice, 3) timing of adaptive analyses, 4) decision rules for adaptive stopping and arm dropping, 5) randomization strategies, 6) perfor-
mance metrics, their prioritization, and arm selection strategies, and 7) simulations, assessment of performance under different scenarios,
and reporting. Finally, we provide an example using a newly developed R simulation engine that may be used to evaluate and compare
different adaptive trial designs.

Conclusion: This overview may help trialists design better and more transparent adaptive clinical trials and to adequately compare
them before initiation. � 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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What is new?

Key Points
� Adaptive clinical trials are flexible and adaptive

features may increase trial efficiency and individ-
ual participants’ chances of being allocated to su-
perior interventions.

� Adaptive trials come with increased complexity
and not all adaptive features may always be
beneficial.

What this adds to what is known?
� This manuscript provides an overview of and guid-

ance on key methodological considerations for
clinical trials employing adaptive stopping, adap-
tive arm dropping, or response-adaptive
randomization.

� In addition, a simulation engine and example on
how to compare adaptive trial designs using simu-
lation is provided.

What is the implication and what should change
now?
� This guidance paper may help trialists design and

plan adaptive clinical trials.
1. Introduction

Most randomized clinical trials (RCTs) compare two in-
terventions at a time and run until a prespecified sample
size (or event number) has been accrued, with few or no
interim analyses [1]. For economic and logistic reasons,
sample size estimations are often based on anticipated
intervention effects substantially larger than the minimal
clinically important differences or plausible effect sizes ex-
pected by peers [2]. Consequently, RCTs may fail to accept
or firmly reject hypotheses about clinically important inter-
vention effects, and lack of statistical significance is often
erroneously interpreted as ‘‘no difference’’ in interventional
trials [3e6]. Ultimately, this may lead to premature aban-
donment of potentially relevant interventions. Further, with
few or no interim analyses (especially if the criteria for
early stopping are very strict [7]), there is a risk that trials
continue longer than necessary if intervention effects are
underestimated in sample size calculations. Conventional
RCTs are thus somewhat inflexible, which may lead to inef-
fectiveness, inconclusiveness, suboptimal use of research
resources, incorrect promises to trial participants, and ulti-
mately slower improvements in quality of care.

For these reasons, there is increased interest in more
elaborate, flexible, and adaptive trial designs [1], including
adaptive multi-arm and platform trials [8]. Adaptive trials
are trials where results from adaptive (interim) analyses
are used to modify aspects of the trial [9,10], by, for
example, including adaptive stopping rules or sample sizes,
adaptive arm dropping, and response-adaptive randomiza-
tion (RAR) [8,11]. Adaptive trials use adaptive (interim)
analyses to, for example, adjust the target sample size, up-
date allocation ratios, drop inferior intervention arms early,
or stop the trial if a prespecified statistical decision rule is
met [8e10]. This may lead to increased efficiency and
more conclusive trials [12e14], especially if multiple inter-
ventions are compared simultaneously or against the same
control group, with inferior arms dropped early [8,11].
However, adaptive features increase complexity and may
not always increase efficiency, and thus may not always
be ideal [15e22].

Given these considerations, it is paramount that trialists
planning adaptive trials carefully consider the ideal design,
including the advantages and disadvantages of different
methodological choices. In this manuscript, we provide an
overview of the key methodological considerations when
planning adaptive trials and provide practical guidance on
how to use simulation to make informed comparisons and
decide between multiple possible adaptive trial designs. We
focus on adaptive multi-arm trials conducted using Bayesian
statistical methods and employing adaptive stopping, adap-
tive arm dropping and RAR, although the decisions and con-
siderations discussed also apply to other adaptive trials.
2. Overview

2.1. Scope

We describe the key methodological considerations
when planning adaptive clinical trials, focusing on adaptive
stopping, adaptive arm dropping, and RAR. While we focus
on adaptive multi-arm (O2 arms), late-stage pragmatic
trials of interventions already in clinical use, similar con-
siderations apply to two-arm adaptive trials and to some
earlier-phase trials. Of note, we do not specifically cover
adaptive dose-finding studies or specific regulatory require-
ments for approval of new drugs or devices. General design
considerations applicable to all RCTs (including more con-
ventional RCTs) are discussed elsewhere [1], and trial fea-
tures not directly related to the adaptive features themselves
(for example, allocation concealment and blinding) are not
covered here.

We focus on adaptive trials using Bayesian statistical
methods, as these are commonly applied in complex adaptive
trials [8], and as Bayesian probabilities from the most recent
adaptive analysis in a trial have the same interpretation
regardless of the intended or actual number of adaptive ana-
lyses conducted [23]. Despite methodological differences,
similar concerns apply as to adaptive trials using frequentist
methods. These include an increased risk of erroneous con-
clusions due to random fluctuations when an increased
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number of analyses are conducted, all else being equal. Thus,
despite being frequentist concepts, Bayesian analogues to
power and type 1 and 2 errors are commonly evaluated for
Bayesian adaptive trial designs [16,21,23], as recommended
by regulatory authorities [24,25]. In a Bayesian context, po-
wer may be defined as the overall probability of a conclusive
result (or of declaring an arm superior); type 1 error risk may
be defined as the probability of declaring an intervention su-
perior when no differences between intervention arms exist
(including in simulations); and type 2 error risk may be
defined as the risk of an inconclusive adaptive trial (or a trial
that conclusively claims that there is no difference) despite
differences being present.
Fig. 1. Key methodological considerations in trial designs with adap-
tive stopping, adaptive arm dropping, or adaptive randomization. De-
cisions do not necessarily have to be made in this order, and
iteratively refining trial designs according to simulation results will
often be necessary, hence the circular design. As different design de-
cisions interact, simulation-based comparisons evaluate all decisions
simultaneously. Additional details on each consideration are provided
in sections 3-9 in the text.
2.2. Simulation-based example and simulation engine

To evaluate and compare complex adaptive clinical trial
designs, simulations are required [26,27]. Thus, in addition
to a comprehensive review of the keymethodological consid-
erations, we have developed a simulation enginedthe
‘‘adaptr’’ R statistical software package [28]dto aid fellow
trialists. The package (installation instructions are provided
in Supplement 1) allows specification and simulation of
adaptive trials and calculation of performance metrics. We
provide a simulation-based example comparing different
adaptive trial designs along with additional methodological
details and complete analysis code in Supplement 1 and 2,
where additional technical details and discussion of the sim-
ulations conducted are also provided.

While the ‘‘adaptr’’ package provides a freely accessible,
well-documented, open-source simulation engine, it comes
with some limitations [28]. These include the limited number
of outcome types supported out-of-the-box (binary,
binomially distributed outcomes and continuous, normally
distributed outcomes only, although the package supports
user-written function for analyzing other outcomes), the lack
of the ability to simulate losses to follow-up and varying in-
clusion rates, and the selected forms of RAR available [29],
and others. These limitations are further discussed in the
Supplement 1. Of note, other software options for planning
and comparing adaptive trials exist [30e32], all with
different advantages and disadvantages. Importantly, the
considerations outlined in this manuscript are relevant
regardless of the software package used.
2.3. Considerations

The key methodological considerations specific to adap-
tive trials are summarized in Figure 1, with each point dis-
cussed in detail in the following sections and further
scrutinized in the simulation-based worked example
included in Supplement 1. Importantly, the considerations
are intertwined and may not always be made in the speci-
fied order. The process is thus iterative, with possible
changes in decisions based on simulation results until a
final design is chosen.
3. Consideration #1: interventions and possible com-
mon control

3.1. Interventions

Select interventions (treatments) to be compared. The
number of intervention arms should match the clinical
question but also consider expected recruitment rates, as
more arms require larger total sample sizes and increase
clinical and logistical complexity. If the total number of in-
terventions of interest is higher than what is considered
feasible to study simultaneously, adaptive platform trial de-
signs where new arms can be introduced during trial
conduct may be considered [8,33], although not discussed
further here.

3.2. Control arm

If one intervention can be considered standard of care,
this may be used as a common control against which all
other arms are compared, which may increase efficiency.
Otherwise, all arms may be compared with each other
simultaneously. This will affect trial design performance
metrics and several of the choices discussed below.
4. Consideration #2: outcome, follow-up duration, and
model choice

4.1. Outcome and follow-up duration

Select the outcome used to guide the adaptive analyses
and consider duration of follow-up and expected data
completeness. Longer durations of follow-up will make tri-
als slower to adapt [9], and increase the risk of different es-
timates when follow-up for all randomized patients
(including those without outcome data available at the time



Fig. 2. Decision rules in trial designs with a common control. This
figure illustrates different decisions rules for a single comparison of
a noncontrol arm with a common control and an undesirable binary
outcome. The posterior probability distribution of absolute differences
(as percentage points, with values O 0 favoring the control arm) is
illustrated. The probabilities (Pr) of superiority and inferiority corre-
spond to the probability mass below/above no difference, respectively
(the probability of inferiority equals 100 - the probability of superior-
ity; thus, stopping rules for inferiority are often specified as a low
probability of an arm being superior). The probability of practical
equivalence corresponds to the probability mass between limits
defined by the minimal clinically important difference in either direc-
tion (in this example defined as 5 percentage points). Finally, the
probability of futility corresponds to the probability mass above the
limit defined as the minimal clinically important difference in the
beneficial direction.

48 A. Granholm et al. / Journal of Clinical Epidemiology 153 (2023) 45e54
of the adaptive analysis) concludes compared to when trials
are stopped at an adaptive analysis. Longer follow-up
durations may lead to more missing data due to loss to
follow-up, which may increase complexity of analysis
and interpretation. If the outcome of primary interest has
a long follow-up duration, an intermediate outcome [33]
may be considered to guide adaptation. This can be the
same outcome assessed at an earlier time-point or a
different outcome that is adequately correlated with the
outcome of primary interest. Caution must be taken to
detect and handle unexpected lack of correlation between
such outcomes, especially if a surrogate and possibly less
patient-important outcome is chosen to guide adaptation.
For simplicity, we are assuming that a binary, undesirable
outcome (for example, mortality) is selected in the rest of
the text, but the same concerns apply for other types of
outcomes.
4.2. Model choice

Specify the primary statistical model used to assess the
primary outcome including the priors used in Bayesian an-
alyses; often weakly- or non-informative priors are used for
the primary analyses of adaptive trials, but other choices
may be used as well [1,28,34,35]. A detailed discussion
of statistical models and priors is beyond the scope of this
text, but the statistical model (including priors) used in sim-
ulations should roughly correspond to the model that will
be used in the primary analysis of the trial. Simplifications
may be made during simulations (as in conventional sample
size calculations), for example, covariate adjustment may
be omitted as simulating covariance patterns is difficult
and time-consuming when running simulations. As covari-
ate adjustment generally increases power [36], using
simpler analyses may make simulations slightly conserva-
tive. Importantly, adaptive and final analyses of actual trials
may employ as complex models as required, even if simpler
models are used in simulations.
5. Consideration #3: timing of adaptive analyses

5.1. Start and ‘‘burn-in’’

Consider a ‘‘burn-in’’ period at the beginning of the trial
with no adaptive analyses conducted until a minimum num-
ber of patients have been enrolled in order to limit the risk
of inappropriate adaptations due to random fluctuations
when limited data have been collected [16,21,33] and to
ensure that an acceptable number of subjects have been
enrolled to allow for more complex statistical analyses
(for example, adjustment for multiple covariates).

5.2. Frequency of adaptive analysis

Specify the frequency of adaptive analyses according to
follow-up rates (for example, each time 200 patients com-
plete follow-up) or time intervals (for example, monthly);
the latter may ease coordination of data collection across
centers in practice. All else being equal, the risk of random
errors grows with the number of adaptive analyses, while
fewer adaptive analyses limit the benefits of conducting
an adaptive trial [21]. Of note, adaptive analyses on the
way to a predefined maximum sample size may be called
‘‘interim analyses’’ as in conventional RCTs, while the
term ‘‘adaptive analysis’’ is more appropriate in adaptive
trials without a prespecified target sample size. For feasi-
bility reasons (for example, economical or logistic con-
straints), a maximum sample size may be specified a priori.
6. Consideration #4: decision rules for adaptive stop-
ping and arm dropping

6.1. Decision rules

Multiple probabilistic decision rules are described in this
section; these are illustrated in Figure 2 and Figure S1 in
Supplement 1. In addition to the probabilistic decision rules
described below, trials may be stopped at a prespecified
maximum sample size.
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6.2. Superiority

Define a decision rule for superiority as the probability
threshold for an intervention being better than the common
control or the best of all arms. The desired level of evidence
for declaring superiority for an intervention (or a specific
outcome) may vary. Weaker evidence may be sufficient for
choosing between well-known interventions already in clin-
ical use, while stronger evidence may be required for new,
expensive, or invasive interventions [37]; this may be based
on cost-effectiveness analyses [38]. In designs with a com-
mon control group, an intervention declared superior to
the common control may become the new control against
which all remaining arms are subsequently compared
[33,34]. Controlling the type 1 error rate is generally impor-
tant and may be required in regulatory settings and for
approval of new interventions [24,25]. The superiority
threshold in adaptive trials may thus be chosen to match a
desired type 1 error rate [16,34] under a null scenario as dis-
cussed under considerations #6-7 (in sections 8-9).

6.3. Inferiority

Inferior interventions may be dropped from multi-arm
adaptive trials before an overall superior arm has been iden-
tified. Inferiority thresholds can be specified as a low prob-
ability of each arm being the best or better than a common
control. Dropping inferior arms will increase allocation to
the remaining arms and thus increase overall trial efficiency
and power for the remaining comparisons. Temporary arm
dropping may also be considered, with allocation tempo-
rarily paused to interventions if their probabilities of being
the best/better than the control drop below a certain
threshold, and resumed if probabilities change in a later
analysis, for example, due to more undesirable outcomes
in the other arms [16,21]. However, clinical complexity
may ensue with this modality, especially in multicenter tri-
als. Like superiority, an inferiority threshold may be chosen
according to the probability of incorrectly dropping nonin-
ferior arms based on simulation.

6.4. Practical equivalence and futility

A stopping rule for practical equivalence may be defined
as a certain probability of the differences between noncon-
trol arms and the control arm being less than a specified dif-
ference (for example, the minimal clinically important
difference) or in trials without a common control, as an
adequately high probability of differences between the best
and worst arms being less than a similar threshold. Simi-
larly, a stopping rule for futilityda substantially low prob-
ability of an experimental arm being better than the control
arm by, for example, the minimal clinically important
differencedcan be specified in trial designs with a com-
mon control group [39]. Interventions may thus be dropped
for futility without fulfilling the inferiority criteria (Fig. 2).
Typically, somewhat lower probability thresholds are used
for equivalence and futility assessments for practical rea-
sons, as this generally requires substantially more patients
than assessments of superiority/inferiority [39]. Equiva-
lence and futility thresholds may be specified on the abso-
lute or relative scale, with absolute differences preferred as
they are more clinically relevant and easier to interpret [40].
In adaptive designs with a common control group where su-
perior arms are allowed to become the new control group, it
must be decided whether equivalence or futility testing is
only done for the first control arm or also for any superior
arms that become the new control.
7. Consideration #5: randomization strategy

7.1. Initial allocation

Specify initial allocation ratios; initial equal randomiza-
tion to all arms is the most efficient choice if no common
control arm is used. If a common control arm is used and
all other arms are pair-wise compared to the control, rela-
tively higher allocation to the control may increase power
in some design (for example, some designs using RAR),
while power may be highest with equal allocation in other
designs (for example, designs with fixed allocation ratios).
Importantly, increased control group allocation may come
at the expense of a higher total number of patients experi-
encing an undesirable outcome if an experimental arm is
better than the control [16,21,33]. An allocation ratio based
on the square root of the number of noncontrol arms to one
(for each of the remaining arms) has been recommended
where increased control arm allocation is desired to opti-
mize power relative to other nonequal allocation ra-
tios [33,41]. In a four-arm trial with a common control
arm, this corresponds to 1.73:1:1:1 allocation or 36.6%
allocation to the control arm and 21.1% allocation to each
noncontrol arm.

7.2. Fixed randomization, RAR, combinations, and
limitations

Decide on the use of fixed randomization, RAR, or com-
binations. If RAR is not used, the initial allocation ratios
will remain unchanged until arms are dropped and the re-
maining allocation probabilities are normalized (scaled to
sum to 100%).

When RAR is used, allocation ratios are updated using
the accrued data at the time of an adaptive analysis; multi-
ple specific variants of RAR exist [29]. For example, allo-
cation ratios may be updated according to some function of
the current probabilities of each arm being the best
[8,15,29], and more patients may thus be allocated to inter-
ventions more likely to be superior at the end of the trial.
Compared to fixed, equal allocation, RAR may increase po-
wer and trial efficiency (that is, lower total sample sizes) in
some trial designs, but the opposite may also be the case in
other trial designs [15e19,29]. RAR may thus lead to more
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patients in the trial being allocated to a superior interven-
tion and less total undesirable events (for example, deaths)
within the trial [14], at the potential cost of decreasing
overall efficiency and requiring larger samples in some trial
designs. These designs include two-arm trials [20] and
some multi-arm trial without a common control group
where fixed, equal randomization may be more efficient
[17], and where RAR may delay treatment improvements
for patients external to the trial. Consequently, the use of
RAR has been debated [18e21,29]. Another limitation of
RAR is that updating allocation ratios makes advanced
randomization schemes (for example, stratified block
randomization or minimization [42]) difficult, and, there-
fore, simple, unstratified randomization is generally em-
ployed. Thus, adequate balance between important
stratification variables in smaller trials may be better facil-
itated with fixed, stratified randomization. Finally, if RAR
is used, modeling time drift, that is, changes in control
group event rates due to temporal changes in case-mix or
usual care may be necessary [8], which further increases
complexity. Thus, comparing trial designs using different
randomization strategies is recommended.

If RAR is used, specify for which arms and whether a
fixed or special allocation fraction (possibly larger than
the others) is used for the control arm in relevant designs.
In addition to the square-root-based ratio discussed above,
matching the control group allocation fraction to that of
the best-performing noncontrol arm may be used to maxi-
mize power in comparisons between these two arms
[12,16]. In addition to the randomization strategy, specify
whether a superior arm that becomes the new control
should use its original allocation ratio or change to another
(for example, a higher) allocation ratio.

If RAR is used, consider limitations to decrease
extreme allocation ratios, especially for control arms,
where low allocation ratios may decrease power for all
comparisons [16,21]. Employing unrestricted RAR may
cause a) the probability of an arm appearing best/better
than the control to be lower than the true probability in
an early analysis (due to chance) leading to low allocation
to that arm that may take time to reverse; and b) low allo-
cation to an active arm with a relatively low probability of
being the best, but without low enough probability to be
deemed inferior, increasing the time until the arm can be
dropped due to uncertainty and insufficient power. Thus,
RAR may be restricted to avoid extreme allocation ratios
[12,21], by either capping allocation fractions at lower
and/or upper bounds, or softening them (raising the prob-
ability of each arm being the best to a power between
0 and 1 and normalizing; 1 leaves probabilities unchanged,
0 leads to equal allocation, and 0.5 corresponds to the
square root transformation) [12,35]. Different softening
factors may be used at different times during the trial, to
restrict RAR more at earlier times when less data are avail-
able and the risk of adapting to random, extreme fluctua-
tions is higher [16].
8. Consideration #6: performance metrics, prioritiza-
tion, and arm selection strategies

8.1. Select and prioritize performance metrics

Different trial designs may be preferred depending on
which performance metrics (Table 1) are considered most
important [16,21]. This decision will typically involve con-
siderations related to efficiency for economical/logistic rea-
sons, benefits to internal patients, benefits to external or
future patients, and accuracy of estimated intervention ef-
fects, as detailed in Table 1 [16]. Previous arguments have
been made in favor of designs optimizing benefits to inter-
nal patients [43] as well as designs optimizing efficiency
and value to external/future patients [18e20]; these deci-
sions are complex, and the relative importance of different
metrics must be considered in each trial. If multiple perfor-
mance metrics are considered relevant, a utility function
that simultaneously considers multiple metrics and their
relative importance may be explicitly defined a priori to
help guide the selection of the optimal, final trial design.

8.2. Calculation of performance metrics

To calculate several performance metrics (Table 1), it
must be specified which arm will be selected (that is, used
in practice) if the trial ends without declaring a single inter-
vention superior. A common control arm is the obvious
choice, but in the absence of suchdor if it has been drop-
ped early with no conclusive evidence found for the re-
maining armsdan intervention may be selected based on
the final probabilities of each remaining arm being the best
(despite no stopping thresholds reached), cost, inconve-
nience to patients, availability or practical use, akin to
health technology assessments or clinical practice guide-
lines based on the Grading of Recommendations Assess-
ment, Development and Evaluation (GRADE) approach
[44]. If no intervention of choice can be specified in such
cases, performance metrics may be calculated for trials
ending with a superiority decision only.
9. Consideration #7: scenarios, simulations, and
reporting

9.1. Scenarios

Scenarios with different, but reasonable, expected true
events rates in each arm must be specified for the
simulation-based comparisons of trial designs. As the true
event rates will be unknown at trial initiation, multiple sce-
narios with different expected event rates should be consid-
ered. A null scenario can be included to assess the risk of
type 1 errors (as discussed in sections 2 and 6)
[16,21,23], despite assumptions of exactly no difference
often being implausible in practice. Other scenarios with
different between-arm differences based on, for example,
a previously established baseline event rate and the most



Table 1. Performance metrics

# Metric Description Presentationa

1. Sample size Total sample size, that is, the total number of patients enrolled when the trial
is stopped, regardless of reason (superiority, practical equivalence, futility,
or maximum sample size reached).

Mean, SD, median, IQR, range

2. Total event countb Total number of events across all arms in the trial. Mean, SD, median, IQR, range

3. Total event rateb Total event rate across all arms in the trial (total event count divided by the
total number of patients). This corresponds to the expected (mean) event
rate for patients in the trial.

Mean, SD, median, IQR, range

4. Probability of
conclusiveness (power)

Probability of conclusiveness; definedas the probability of stopping for any other
reason than inconclusiveness at the maximum sample size (that is, stopping
for superiority, practical equivalence or futility before or at the maximum
sample size). Power may be defined as the probability of conclusiveness or as
the probability of stopping for superiority only (see metric #5).

Proportion or percentage

5. Decision probabilities Probabilities of stopping trials with different final decisionsdsuperiority,
practical equivalence of all remaining arms, futility, or inconclusiveness (if
a maximum sample size is reached before a stopping rule is reached).

Proportions or percentages

6. Probabilities of selectingc

each arm
Probabilities of selecting each intervention armc in the trial (see footnotec

regarding arm selection in inconclusive trials).
Proportions or percentages

7. RMSEd of the selectedc

arm’s effect
Root mean squared error (RMSE) of the estimate (for example, the event
probability) in the selected arms across simulations compared to the
‘‘true’’ simulated value.

RMSE

8. RMSEd of the
intervention effect

Root mean squared error (RMSE) of the intervention effect for designs
selectingc a different arm than the common control arm (or another defined
standard of care arm if applicable, in designs where all arms are compared
to each other). Calculated based on the differences between the estimated
effect estimates (for example, the event probability) in the selectedc vs.
the reference arm, compared to the assumed ‘‘true’’ differences in effect
estimates between these arms. Smaller numbers are preferable, as this
indicates that the estimated intervention effects are closer to the assumed
‘‘true’’ intervention effects, meaning that the design is less likely to
overestimate intervention effects due to stopping at random, extreme
fluctuations.

RMSE

9. Ideal design
percentage (IDP)e

A combined measure of arm selection probabilities and the importance or
consequences of selecting an inferior arm (for example, incorrectly
selecting an arm with a 1 percentage point absolute higher mortality rate
than the best arm is less severe than selecting an arm with a 5 percentage
point higher mortality rate).

Percentage (or proportion)

Abbreviations: IDP, ideal design percentage [16]; IQR, interquartile range; RMSE, root mean squared error; SD, standard deviation.
Overview of different performance metrics, as discussed elsewhere [16,21]. All are calculated across multiple simulations of the same trial

design. Performance metrics may be prioritized according to economic/logistic reasons (that is, total sample sizes); benefits to those included
in the trial, that is, internal patients (total event counts/rates); benefits to future patients and those not included in the trial, that is, external pa-
tients (probability of conclusiveness/superiority, arm selection probabilities, ideal design percentage); and accuracy of the estimated event rate of
the selected arm and accuracy of the intervention effects (RMSE of the event rate of the selected arm and of the intervention effect, if a noncontrol
arm is chosen in designs with a common control arm).

a For metrics where multiple summary statistics may be used (for example, means and medians), trialists will have to select the summary sta-
tistic of primary importance for comparing different designs.

b This metric is only directly applicable for binary outcomes. For non-binary outcomes, other measures summarising outcomes across all arms
in the trial may be used instead, e.g., for the number of days alive and out of hospital, the overall sum or mean value across all arms may be used.

c For the performance measures calculated according to the selected arms, different options for handling trials not stopped for superiority are
possible. If a common control arm is used or if one arm can be defined as the standard of care, it may be reasonable to consider this arm as selected
(unless the arm is dropped at an adaptive analysis before the final analysis; in this case, no arm or the best remaining arm [highest probability of
being the best in the final analysis] may be selected instead). This will likely reflect clinical practice, which is unlikely to change based on an incon-
clusive trial. If no arm can be considered standard of care, an arm may still be selected based on cost, convenience, or other considerations. These
performance metrics can also be calculated for trials ending with a superiority decision only (or either superiority or practical equivalence compared
to a common control), as is also possible for the other performance metrics. If multiple selection strategies may be considered reasonable for incon-
clusive trials, performance metrics may be calculated using multiple selecting strategies based on the same simulations.

d Smaller numbers are preferable, as this indicates that the effect estimates of the selected arms are closer to the assumed ‘‘true’’ effect sizes,
meaning that the trial design is less likely to stop at random, extreme fluctuations.

e Defined according to Viele and colleagues [16]; formulas for calculating the IDP are included in Supplement 1. IDPs closer to 100% are
preferred.
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likely expected effects, the minimal clinically important
difference, and clinically unimportant differences in both
the expected and opposite directions should also be
considered.

9.2. Simulations and reporting

Conduct simulations for all design choices (as per con-
siderations #1-6) and for each scenario, followed by itera-
tive revision of trial designs and decisions as necessary. A
smaller number of simulations (for example, 1,000) may
be used to obtain approximate estimates of relative perfor-
mance that can be used to adjust specifications or abandon
clearly inferior designs, while a higher number of simula-
tions (for example, 10,000 or more) should be preferred
in the later stages of trial design, to increase accuracy of
the final simulation-based estimates. Additional, detailed
guidance on how to use simulations to evaluate adaptive
trial designs are provided elsewhere [45e48].

Report performance metrics for at least the final design
with clear specification of all choices and adaptation rules
in the trial protocol or appendices.
10. Discussion

10.1. Summary and discussion

We have outlined the key methodological considerations
when designing and comparing adaptive trial designs using
adaptive stopping, adaptive arm dropping, and adaptive
randomization strategies with explanations, rationales, and
discussion of pros and cons of different methodological
choices. In addition, we have developed a new simulation
engine (the ‘‘adaptr’’ R package [28]) for conducting sim-
ulations and comparing different adaptive trial designs us-
ing adaptive stopping, arm-dropping and RAR. Finally,
we have exemplified its use (in Supplements 1 and 2) by
comparing multiple designs for a four-arm example trial
under different assumptions regarding intervention effects,
including detailed code to replicate and amend these simu-
lations. This should serve as a thorough introduction and
reference for trialists considering these adaptive methodo-
logical features.

While adaptiveness in the form of adaptive stopping
rules, adaptive arm dropping and adaptive randomization
may increase trial efficiency and offer several other benefits
(such as potentially decreased costs and higher chances of
conclusive trials), these features also increase complexity.
Additionally, some adaptive features (e.g., RAR) may in
some cases lead to substantial worsening of several perfor-
mance metrics [16e20], as also illustrated in the provided
example (Supplements 1 and 2). It is, thus, essential to
recognize that trials employing these adaptive features
require thorough planning, additional methodological
knowledge, and extensive simulation-based comparison.
Importantly, the ideal trial design depends on the
prioritization of different performance metrics; accordingly,
different designs may be preferred in different scenarios
[16,21] and several similarly performing designs may be
reasonable choices (Supplements 1 and 2). While no gen-
eral recommendation can be made for prioritizing perfor-
mance metrics, total sample sizes, total event counts/
rates, probability of conclusiveness or superiority (power)
and the ideal design percentage have straightforward inter-
pretations. In addition, these metrics cover important as-
pects including internal and external benefit, probability
of conclusiveness, and a combined measure of the risk of
selecting inferior arms including its consequences [16].
Further, as different designs may be preferable under
different scenarios with different true event rates, perfor-
mance metrics should ideally be evaluated under multiple
plausible clinical scenarios including a null scenario, if
assessment of the type 1 error risk is desired [16]. Crucially,
all adaptation rules must be clearly prespecified before
actual trial initiation.
10.2. Strengths and limitations

This manuscript has several strengths. First, it thor-
oughly describes the necessary steps needed to assess adap-
tive trial designs under different scenarios and features a
simulation-based example. Second, it discusses important
performance metrics [16,21] and emphasizes that prioritiza-
tion varies with context and should be considered carefully
for each individual trial. Third, it transparently includes all
analysis code and the simulation engine used is freely
available.

There are limitations too. First, we have primarily
focused on multi-arm late-phase trials and have not covered
issues specifically related to earlier-phase trials, including
dose-finding studies. Second, adding intervention arms af-
ter trial initiation, as may be done in adaptive platform tri-
als [8,33,49], increases complexity and has not been
covered here. Third, while this manuscript and the example
focus on a single, undesirable, binary outcome guiding ad-
aptations, the same considerations apply to other adaptive
designs guided by single outcomes, regardless of type. Mul-
tiple outcomes may be considered simultaneously in adap-
tation rules, and as long as they can be combined to a single
probability of each arm being the best, the same general
considerations apply. This, however, increases complexity
and is beyond the scope of most adaptive trial designs
and this manuscript. Fourth, we have not considered the
handling of different subgroups in regard to different allo-
cation ratios, separate adaptive decisions, and adaptive
enrichment [50]. Fifth, while we provide complete simula-
tion code that may be adapted to other scenarios, there
are some methodological features that are not supported
by the simulation engine used, as discussed above, in
Supplement 1, and elsewhere [28]. Finally, as for sample
size calculations in conventional trials, all simulation-based
comparisons of adaptive trial designs require certain
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assumptions that are unverifiable before trial conduct, as well
as several simplifications compared to the complex clinical
reality. The benefit of this, however, is that such assumptions
are made explicit which facilitates scrutiny. As such, evalu-
ating adaptive trial designs should be done under multiple,
different assumed scenarios, as emphasized in this text.
11. Conclusion

In conclusion, we have described the key methodolog-
ical considerations when planning and comparing adaptive
trials designs using adaptive stopping rules, adaptive arm
dropping, and adaptive randomization. This work may help
trialists design better and more transparent adaptive clinical
trials and to adequately compare them before trial
initiation.
Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.jclinepi.2022.11.002.
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