

Aalborg Universitet

Correctness-guaranteed strategy synthesis and compression for multi-agent
autonomous systems

Gu, Rong; Jensen, Peter G.; Seceleanu, Cristina; Enoiu, Eduard; Lundqvist, Kristina

Published in:
Science of Computer Programming

DOI (link to publication from Publisher):
10.1016/j.scico.2022.102894

Creative Commons License
CC BY 4.0

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Gu, R., Jensen, P. G., Seceleanu, C., Enoiu, E., & Lundqvist, K. (2022). Correctness-guaranteed strategy
synthesis and compression for multi-agent autonomous systems. Science of Computer Programming, 224,
Article 102894. https://doi.org/10.1016/j.scico.2022.102894

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1016/j.scico.2022.102894
https://vbn.aau.dk/en/publications/02606337-32f7-47d4-851c-e546e62f97fc
https://doi.org/10.1016/j.scico.2022.102894

Science of Computer Programming 224 (2022) 102894
Contents lists available at ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

Correctness-guaranteed strategy synthesis and compression

for multi-agent autonomous systems

Rong Gu a,∗, Peter G. Jensen b, Cristina Seceleanu a, Eduard Enoiu a,
Kristina Lundqvist a

a Mälardalen University, Sweden
b Aalborg University, Denmark

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 April 2022
Received in revised form 13 October 2022
Accepted 18 October 2022
Available online 24 October 2022

Keywords:
Planning
Multi-agent autonomous systems
Timed games
Reinforcement learning
Strategy compression

Planning is a critical function of multi-agent autonomous systems, which includes path
finding and task scheduling. Exhaustive search-based methods such as model checking and
algorithmic game theory can solve simple instances of multi-agent planning. However,
these methods suffer from state-space explosion when the number of agents is large.
Learning-based methods can alleviate this problem, but lack a guarantee of correctness of
the results. In this paper, we introduce MoCReL, a new version of our previously proposed
method that combines model checking with reinforcement learning in solving the planning
problem. The approach takes advantage of reinforcement learning to synthesize path plans
and task schedules for large numbers of autonomous agents, and of model checking to
verify the correctness of the synthesized strategies. Further, MoCReL can compress large
strategies into smaller ones that have down to 0.05% of the original sizes, while preserving
their correctness, which we show in this paper. MoCReL is integrated into a new version
of Uppaal Stratego that supports calling external libraries when running learning and
verification of timed games models.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Autonomous agents (or shortly, agents), such as driverless cars, drones, and mobile robots, are systems that can move,
carry out tasks, and collaborate with other agents autonomously without human intervention. Multi-Agent Autonomous Sys-
tems (MAS) [1] consist of multiple agents that work together in an environment and aim to achieve a common goal, an
example being a group of construction equipment quarrying, crushing, and transporting stones. Planning for MAS involves
path finding and task scheduling, and is one of the most critical problems when designing such systems [2]. There exist
algorithms that solve each problem, respectively. A* [3] and rapidly-exploring random tree (RRT) [4] are two well-known
algorithms that calculate the shortest paths in an environment with static obstacles. Algorithms for task scheduling have
also been widely researched, resulting in search-based methods [5,6] and learning-based methods [7,8].

Nevertheless, approaches that solve the entire planning problem for MAS, which also provide a correctness guarantee
are often not scalable [9,10]. Learning-based methods address this weakness but fail to provide a formal guarantee of

* Corresponding author.
E-mail addresses: rong.gu@mdu.se (R. Gu), pgj@cs.aau.dk (P.G. Jensen), cristina.seceleanu@mdu.se (C. Seceleanu), eduard.paul.enoiu@mdu.se (E. Enoiu),

kristina.lundqvist@mdu.se (K. Lundqvist).
https://doi.org/10.1016/j.scico.2022.102894
0167-6423/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.scico.2022.102894
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2022.102894&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:rong.gu@mdu.se
mailto:pgj@cs.aau.dk
mailto:cristina.seceleanu@mdu.se
mailto:eduard.paul.enoiu@mdu.se
mailto:kristina.lundqvist@mdu.se
https://doi.org/10.1016/j.scico.2022.102894
http://creativecommons.org/licenses/by/4.0/

R. Gu, P.G. Jensen, C. Seceleanu et al. Science of Computer Programming 224 (2022) 102894
the correctness of their results. A united solution that solves both path finding and task scheduling is still missing. The
difficulties of finding such a solution are threefold. First, the tasks of the agents are of different kinds. Some must be done
individually, whereas some need collaborations, that is, agents gather at the same position and start and finish a common
task simultaneously. In addition, tasks have uncertain completion time, which increases the difficulty of task scheduling
dramatically. Second, tasks can be scheduled differently: periodically (repeatedly perform A), sequentially (perform A, then B,
then C), or as a request-response pair (whenever A occurs, perform B). Third, the complexity of solving the problem increases
exponentially when the number of agents increases linearly. This difficulty stems from the fact that task scheduling is NP-
hard [11]. Solving the problem algorithmically on MAS resulting from composing all agents’ behaviors is computationally
demanding.

We have previously proposed MCRL (Model Checking + Reinforcement Learning) [12,13] as a method that combines
model checking with reinforcement learning to synthesize and verify plans of agents. MCRL benefits from both model check-
ing and reinforcement learning so that the scale of the problem that MCRL can solve is larger than that of search-based
methods, and also the results (a.k.a., plans) are guaranteed to be correct by model checking [11,13,14]. However, MCRL has
some limitations: (i) models are hard to build manually when the environment is big or the agents are many; (ii) MCRL
only supports simple tasks that are executed individually and periodically; (iii) the resulting plan synthesized by MCRL is
larger than needed, as it contains a tabulation of system states that are unreachable under the plan, which is impeding
understandability (by an operator) and the realizability on systems with limited resources.

To alleviate these issues, we propose MoCReL (Model-checked Compressed Reinforcement Learning). MoCReL provides func-
tions of synthesizing, verifying, and compressing plans, and it relies on modeling MAS as (Stochastic) Timed Games in Uppaal
Stratego [15], which is a tool that incorporates a symbolic model checker Uppaal [16], a statistical model checker Uppaal
SMC [17], a solver for Timed Games Uppaal TiGa [18], and solvers for Stochastic Timed Games relying on learning algorithms
[15]. Similar to MCRL, the plan synthesis in MoCReL is an iterative process of a random simulation and reinforcement learn-
ing. The simulation explores the MAS model randomly and samples a user-defined number of execution traces of the model,
which record the executed action at each state of the model and the corresponding reward. Then the learning algorithm
uses these traces to synthesize a plan, which is used in the next round of simulation. This iteration of simulation and learn-
ing ends when reaching a user-defined maximum round of iteration rounds, or a user-defined number of traces are sampled
so that a final plan is considered to be generated. Next, to guarantee the correctness of the plan, MoCReL verifies it by model
checking the MAS model under the control of the plan, that is, the plan controls the model to choose certain actions at
different states. The selected pairs of state and action are labeled during the verification, which in turn helps compressing
the plans. The unlabeled pairs are considered useless for satisfying the requirements, and thus are removed from the plan.
In this way, plans are compressed while preserving the satisfied requirements. All the activities of plan synthesis, verifica-
tion, and compression are implemented as an external library that is linked to Uppaal Stratego, which enables us to easily
change or extend the algorithms for learning and compression.

In addition, to overcome the difficulty of building the models manually, we propose parameterized templates of models.
Uppaal [16] provides a rich language for defining templates in the form of extended Timed Automata, consisting of locations
and edges, and possibly local declarations and parameters. A template is then instantiated by a process assignment. Up-

paal Stratego [15] inherits Uppaal’s template-based way of modeling and extends the templates to support Timed Games.
Thanks to this feature of Uppaal Stratego, our agent models are instantiated from several templates of Timed Games. Our
design of the templates enables users to easily adapt the models without re-constructing the templates according to their
own applications where the environment or the goal of the mission changes. For example, if the number of agents or a
precondition of a task is changed, one only needs to pass a different value of the corresponding parameter of the templates.
In our experiments (Section 5), we leverage this contribution to build a tool for automatic model generation.

In summary, MoCReL overcomes the limitations of MCRL as follows, which are the contributions of this paper:

(i) Parameterized model templates that are easy to adapt according to different applications.
(ii) The model templates allow for various task types, such as collaborations among agents and tasks that are activated by

events.
(iii) MoCReL’s method for plan synthesis and compression is proven to be sound, that is, plans that are synthesized and

compressed by MoCReL are correct-by-construction.
(iv) Experiments of MoCReL on a real industrial case study show that the compressed plans can take down to 0.05% of the

memory space of the original plans, while preserving their properties, e.g., always eventually finishing all tasks.

The remainder of the paper is organized as follows. In Section 2, we introduce the preliminaries: timed games and strategies
in Uppaal Stratego, and reinforcement learning. Section 3 describes the problem of MAS planning. In Section 4, we describe
our proposed methods for strategy synthesis, verification, and compression in MoCReL. Next, we present the experimental
evaluation in Section 5. In Section 6, we discuss the assumptions made by MoCReL and limitations of the approach that
show the potential future work. In Section 7, we compare to related work, and conclude the paper in Section 8, where we
also mention directions for future work.
2

R. Gu, P.G. Jensen, C. Seceleanu et al. Science of Computer Programming 224 (2022) 102894
Fig. 1. An example of a network of TG. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

2. Preliminaries

In this section, we recall the timed automata formalism as used in the UPPAAL tool suite, timed games, and the rein-
forcement learning algorithm used in this paper. We denote non-negative integers as N , and real numbers as R.

2.1. UPPAAL timed automata

A timed automaton (TA) is finite-state automaton extended with real-valued variables [19]. The variables model the logic
clocks in systems, which are zero initially and then increase synchronously with the same rate. Uppaal [16] is a tool for
modeling, simulation, and model checking of Uppaal timed automata (UTA), which is an extension of TA with data variables,
etc. A UTA is defined as a tuple:

< L, l0,�, V , C, E, I >, (1)

where L is a finite set of locations, l0 ∈ L is the initial location, � is a set of actions, V is a set of data variables, C is
a set of real-valued variables called clocks, E ⊆ L × B(C, V) × � × 2C × L is the set of edges, where B(C, V) is the set
of guards over C and V , that is, conjunctive formulas of clock constraints B(C) (of the form x �� n or x − y �� n, where
x, y ∈ C, n ∈N, �� ∈ {<, ≤, =, ≥, >}) and non-clock constraints B(V), and I : L 	→ B(C) is a function assigning invariants to
locations.

The semantics of a UTA is defined as a timed transition system over states q = (l, c), where l is a location, c ∈ RC is the
valuations of the clocks at this location, with the initial state q0 = (l0, c0), where c0 assigns all clocks in C to zero. There
are two kinds of transitions:

(i) delay transitions: qn
d−→ q′

n , where n ∈N , c |= I(l), q′
n = (l, c ⊕d) is the next state delaying from qn , and c ⊕d is obtained

by incrementing all clocks with the delay amount d such that c ⊕ d |= I(l), and

(ii) discrete transitions: qn
a−→ qn+1, where qn+1 = (l′, c′) is the next state traversing via the edge l

g,a,r−−→ l′ from qn , for
which the guard g evaluates to true in the source state qn , a ∈ � is an action, and valuation of c′ on the target state qn+1
are obtained by resetting all clocks in r ⊆ C such that c′ |= I(l′).

2.2. Timed games

A timed game (TG) is a UTA with its set of actions partitioned into controllable (�c) and uncontrollable (�u) ones. Uppaal
Stratego [15] is a tool that supports modeling and verifying TG as well as synthesizing strategies to solve TG. Fig. 1 depicts
two templates of TG in Uppaal Stratego, which consist of locations and edges. A template may also have local declarations
and parameters and can be instantiated by a process assignment (in the system definition) [16]. In a TG template, locations
(e.g., Charging) are blue circles. The double circles (e.g., Home) denote the initial location. Clocks (e.g., t) are special vari-
ables that increase simultaneously at rate 1, when the TG is executed. Invariants (e.g., t<=20) on locations must be true
when the TG stays at the location. Edges connecting locations denote discrete actions, which are partitioned into controllable
ones (solid lines) and uncontrollable ones (dashed lines). Delays allow time to elapse on locations as long as the associated
invariants are not violated. Guards (e.g., t>=10) on edges must be true when the edges are enabled for transition. Assign-
ments on edges reset clocks (e.g., t=0) or update data variables (e.g., fuel = 20). A network of TG is a parallel composition
of TG that can synchronize via channels (e.g., go! is synchronized with go?).

When TG are executed, the choices of delaying at locations or executing discrete actions are non-deterministic, whereas
Stochastic Timed Games (STG) replace the non-deterministic choices with stochastic ones. By default, STG in Uppaal Strat-

ego apply uniform probability distributions on discrete transitions and time-bounded delays, and exponential probability
distributions on unbounded delays.

In this paper, we denote TG (STG) by G (P), and the semantics of a G by SG . A run π of a G is a sequence of alternating

delays (denoted by d) and discrete transitions (denoted by a) of its SG : π = q0
d1−→ q′

0
a1−→ q1

d2−→ q′
1

a2−→ ... dn−→ q′
n−1

an−→ qn
If we denote the last state of a finite run π f as last(π f), a strategy is a function that maps actions, i.e., either a controllable
one a ∈ �c or a delay (delays with no specific duration are denoted by λ), to each of the states. Formally, strategies are
defined as follows [20]:
3

R. Gu, P.G. Jensen, C. Seceleanu et al. Science of Computer Programming 224 (2022) 102894
Definition 1 (Strategy). Let G =< L, l0, �c ∪�u, V , C, E, I > be a TG. A strategy σ over G is a partial function: π f → 2�c∪{λ} \
{∅} such that for any finite run π f ending in state ql = last(π f), if a ∈ σ(π f) ∩ �c , then there must exist a transition
ql

a−→ ql+1 ∈ SG . �
A stochastic strategy of an STG delivers probabilities instead of definite choices of actions [20]. Strategies defined by

Definition 1 can be memoryless, which make decisions on actions depending on the current state only, that is, the function
σ now is: last(π f) → 2�c∪{λ} \ {∅}. Note that strategies in the context of Timed Games conventionally are defined with
history to capture more complex settings (such as partial observability) or complex logical requirements (such as Linear
Temporal Logic). However, for the given subclass of problems that we study here (reachability and safety), memoryless
strategies suffice (both w.r.t. qualitative safety/reachability and quantitative measures such as optimality), and thus it is
sufficient to consider the last state.

If we denote the set of runs in SG as �G , a TG under the control of a strategy σ as G | σ , the outcome of running G | σ
is a subset of �G , denoted as O ut(G | σ). O ut(G | σ) can be defined inductively as follows1:

Definition 2 (Outcome of G | σ). Given ε ∈ O ut(G | σ) with last(ε) = q0 = (l0, c0) ∈ O ut(G | σ),2 if π ∈ O ut(G | σ) and
π ′ = last(π) e−→ q, then π ′ ∈ O ut(G | σ) if either one of the following conditions holds:

1. e ∈ �u , or
2. e ∈ �c and e ∈ σ(last(π)), or

3. e ∈ [0, T] ⊆ R≥0 and ∀e′ < e, last(π) e′−→ q′ for some q′ s.t. σ(q′) � λ, where T is the invariant boundary on the location
of last(π). �
We will use these three conditions in the proof of Theorem 1. Let P be a proposition and the reachability objective for

G , then a finite run π f is winning w.r.t. P , if P is true at the last state of π f . A strategy σ over a G is winning if all
runs in O ut(G|σ) are winning. In this paper, we aim to synthesize winning, memoryless, and non-lazy strategies, that is,
winning strategies that urgently decide on a controllable action to execute, or wait until the environment makes a move.3

For brevity, strategies referred to in the rest of this paper are all memoryless and non-lazy.

2.3. Model checking and temporal properties

Model checking [21] traverses the state space of a formal model (e.g., TA) and checks if it satisfies temporal properties.
The properties in Uppaal are (Timed) Computation Tree Logic ((T)CTL) expressions [22]. In this paper, we use the following
forms of (T)CTL properties, where p is an atomic proposition over the locations, clocks, and data variables of the UTA:

(i) Invariance: E[] p meaning that there exists a run where all the states satisfy p, or A[] p meaning that for all runs,
p is satisfied by all states in each run,

(ii) Liveness: A<> p (A<>≤t p) meaning that for all runs, p is satisfied by at least one state in each run (within t time
units).

2.4. Reinforcement learning

Reinforcement learning (RL) [23] is a kind of machine learning method for training agents by assigning rewards to desired
behaviors and/or penalties to undesired ones, with the purpose of maximizing the accumulated rewards. Fig. 2 depicts how
an agent learns in RL. Without losing generosity, we assume that the agent starts from state S1 and takes action A1. When
taking an action at the current state, the agent obtains the feedback of the action from the environment, including the
immediate reward and the next state that agent is going to transfer to (Fig. 2(a)). Then, the agent calculates the reward of
the current state-action pair and stores it in a score table. When the agent reaches the goal state, or fails, or exceeds the
time limit, one round of learning is accomplished, and the score table is populated with the explored state-action pairs and
their corresponding rewards (Fig. 2(b)).

Based on the types of environment, RL algorithms can be categorized into model-free RL and model-based RL. Model-free
RL relies on samples from the environment, which can be a virtual or a real one, to estimate the rewards of the future state-
action pairs following the agent’s current state. Model-based RL uses the model’s predictions or distributions of state-action
pairs and their rewards to find optimal actions. Therefore, models in the model-based RL must contain the full information
of the environment and agents, which is hardly to obtain in an unexplored or partially observed environment.

1 Definition 2 is adapted from the definition of strategy outcome O ut(σ) [20].
2 An empty trace denoted by ε is a special case of a trace.
3 Memoryless and non-lazy strategies are shown to suffice for optimal scheduling of Duration Probabilistic Automata [5].
4

R. Gu, P.G. Jensen, C. Seceleanu et al. Science of Computer Programming 224 (2022) 102894
Fig. 2. A process of Reinforcement Learning.

Q-learning [24] is one of the model-free algorithms, in which scores of state-action pairs are calculated by a Q function
that satisfies the Bellman optimality equation:

q∗(s,a) = E[R(s,a) + γ max
a′ q∗(s′,a′)], (2)

where q∗(s, a) represents the expected reward of executing action a at state s, E denotes the expected value function,
R(s, a) is the reward obtained by taking the action a at state s, γ ∈ [0, 1] is a discounting value indicating how much the
future reward is evaluated in the calculation of the expected value of the current reward, s′ is the new state coming from
state s by taking action a, and max

a′ q∗(s′, a′) represents the maximum reward that can be achieved by any possible next

state-action pair (s′, a′). When γ is zero, the future reward is not considered at all, which means the learning algorithm
becomes a greedy algorithm that only considers the available actions at the current state. When γ is larger than zero, the
future rewards are taken into consideration. The Bellman equation calculates the rewards of state-action pairs by considering
both the current reward and the discounted maximum future reward. The rewards of the pairs are often stored in a score
table. We show an example of such score tables in Section 3.2.

3. Problem description

In this section, we introduce the planning problem of MAS and its challenges.

3.1. Overall description

MAS are designed to move and execute a series of tasks autonomously. The actions belonging to a MAS can be catego-
rized as: (i) movement, and (ii) executing a task. Whenever an agent moves or starts a task, the environment decides the
ending time of the action. Now, the MAS planning is to order these two kinds of actions such that, no matter how the
environment reacts, the MAS can finish its tasks while satisfying certain requirements, e.g., never let two agents execute a
task simultaneously. The overall goal of MAS planning is:
Overall Goal: Given a MAS and a set of requirements, the goal of planning is to order the agents’ actions of movement and
task execution, according to their variable ending time and occurrences of events, which are decided by the environment,
such that the MAS can finish its tasks and satisfy the requirements.

Remark 1. The planning problem becomes a path-finding problem only, in case the agents do not need to accomplish any
tasks, but only travel to different positions in the environment. Similarly, the planning becomes task scheduling only if the
agents do not need to travel, e.g., scheduling of processes in a multi-core computer system.

Remark 2. The requirements can be functional ones, such as task A always being started after task B, and safety ones, such
as no collision with static obstacles within the environment.
5

R. Gu, P.G. Jensen, C. Seceleanu et al. Science of Computer Programming 224 (2022) 102894
Fig. 3. An example of path finding in an environment with uncertain behaviors and the score table of the path plan.

3.2. Challenges of solving the planning problem

The major challenges of this problem stem from four aspects, which get amplified especially when solving the prob-
lem via algorithmic techniques. While the challenges are exposed and identified in the present study, they align with the
experience reported in other literature [5,11,25,14,10,9,26].

• Challenge I (uncertainty): The agents’ actions have uncertain execution time, which means agents can choose actions to
perform but cannot control how much time the actions will take. The uncertainty of execution time makes static plans
inefficient, since they assign starting time to the actions without knowing their actual ending time [5,11].

• Challenge II (variety of task constraints): Some tasks have additional constraints, e.g., task A should always be completed
before task B starts. Some tasks must be executed whenever certain events occur [14,25].

• Challenge III (complexity): As an NP-hard problem [11], when synthesizing and verifying plans for MAS, the state space
of the model grows exponentially when the number of agents increases linearly as shown in the literature [9,10,25].

• Challenge IV (large plans): As the state space of the problem grows exponentially, the resulting plan can grow expo-
nentially too. However, some of the information in the plans may never be used. It is time-consuming to look for the
right actions in a large plan. In some applications, it is simply impossible to store plans that take too much memory
space, such as Airborne Collision Avoidance System X (ACAS X) [26].

3.2.1. An example of planning for illustrating the challenges
To give a concrete example of large plans, in Fig. 3, we show a path-finding problem in a 2D space, where a robot tries to

catch a cat. Note that our mission-planning problem combines path finding and task scheduling, which makes the model’s
state space to be high dimensional rather than a 2D space.

Limits of search-based methods. Algorithmic planning methods, such as Dijkstra’s algorithm for path finding [27], and the
symbolic on-the-fly algorithm for solving timed games [18], usually explore the model’s state space in a certain order (e.g.,
depth-first exploration), store the preceding states of each state, and back propagate to the initial state when finding the
goal state. The resulting plan is concise as it only contains the state-action pairs that are correct, that is, they satisfy the
requirements and reach the goal state. Additionally, the correctness of the plan is guaranteed as the algorithms explore the
state space exhaustively [18]. However, the algorithmic methods are not scalable because they fail to solve the problem in
a reasonable time when the model’s state space becomes large [13].

Limits of reinforcement-learning-based methods. A path-finding algorithm that uses reinforcement learning can alleviate
this problem by replacing the exhaustive state-space exploration with random simulation [13], while in turn suffering
from disadvantages that we emphasize in the following. As depicted in Fig. 3(a), a path plan synthesized by reinforcement
learning contains multiple routes from the robot to the cat, which results in a score table shown in Fig. 3(b). A robot
under the control of a plan always chooses the actions with the highest score at each of its states. For example, if a robot is
controlled by the plan in Fig. 3(b), it non-deterministically chooses among actions m11 and m12 at its initial position, because
they have the highest score at state Init. However, one cannot neglect other actions at state Init before the learning
finishes because score tables are populated gradually during the course of learning while the scores converge to the optimal
values at the limit (see Fig. 2(b)). This causes the final score table to contain many useless data that are not optimal or even
6

R. Gu, P.G. Jensen, C. Seceleanu et al. Science of Computer Programming 224 (2022) 102894
Fig. 4. An autonomous quarry.

violate the requirements. Another example of useless data is the pair (C, m23). It is sampled during the random simulation,
but not used in the final plan, which initially chooses to do actions m11 and m12, and thus never gets to state C.

Besides, there is no guarantee on the correctness of the learning results, that is, even the actions with the highest score
are not guaranteed to lead the agents towards the goal state and satisfy all requirements. This drawback of Q-learning [24]
stems from three facts: i) although the scores of state-action pairs converge to the optimal values at the limit, it is unknown
when they converge. Therefore, it is hard to know if the learning is sufficient enough for synthesizing a comprehensive
score table that covers all the possible states; ii) the learning algorithm uses data sampled from random simulation, thus
even if the scores converge, the resulting plan is not guaranteed to provide a safe policy as rare events might not be
encountered during the simulation, even with very high sampling budget [28]; iii) when constructing the reward function for
Q-learning, that is, the function for calculating immediate rewards, one often needs to make a trade-off between safety and
performance. This would inadvertently cause the resulting score tables to accept risks of failure, as long as the performance
improvement compensates the cost of failure. Hence, a post-verification on the plans synthesized by reinforcement learning
is important for ensuring the correctness of the results.
Overall challenge. In a nutshell, the overall challenge of MAS planning is to design a method for plan synthesis that can
cope with the uncertain execution time of actions, variety of task constraints, and large state spaces of the MAS models in
real cases, and for compressing large plans that could contain useless data. The compressed plans must have a correctness
guarantee.

3.3. A motivating example

In this section, we introduce the autonomous quarry that serves as the industrial case-study provided by Volvo Construc-
tion Equipment (CE) in Sweden. As depicted in Fig. 4, the quarry contains various autonomous agents, e.g., trucks and wheel
loaders. The goal of the agents is to transport stones from stone piles to crushers. Specifically, wheel loaders first dig stones
at the stones piles and load them into trucks. Trucks can choose to get loaded from the wheel loaders or primary crushers.
After being loaded, the trucks carry the stones to a secondary crusher, which is the destination of the stones. During the
transportation, the agents move, collaborate or work independently, and charge timely in order to achieve their goal, while
satisfying requirements such as quarrying 2000 m3 of stones per day. The challenges of the use case are as follows, which
fall into the general challenges in planning problems of MAS (see Section 3.2):

• Task durations are uncertain because of the uncertainties in the environment. For instance, when trucks are unloading
stones into a primary crusher, the speed of the conveyor belt on the primary crusher varies, which results in different
execution times of unloading. Other trucks may need to wait until the previous one finishes its work at the primary
crusher, which can even influence the entire plan (Challenge I).

• Some tasks are executed independently by agents, such as unloading to secondary crushers. Some tasks require collab-
oration between agents, such as wheel loaders loading stones into trucks. Some tasks must be prioritized when certain
events occur, such as the charging task that must be prioritized when the agent’s battery/fuel level is low (Challenge
II).

• According to the experience of Volvo CE, the number of agents can vary from 2 to 8. However, our previous study has
demonstrated that synthesizing correctness-guaranteed plans by using model checking is limited to MAS with less than
5 agents4 [9]. Handling larger numbers of agents is challenging (Challenge III and Challenge IV).

To overcome these challenges of MAS planning, we design an approach called MoCReL, which is an improved version of MCRL
that we have proposed previously [12]. MCRL combines model checking with reinforcement learning, so it can deal with
more agents than the algorithmic methods do, however, its task types do not support collaborations and events in MCRL,
and large plans cannot be compressed either. Next, we introduce MoCReL in detail.

4 Note that the mission plan is for all the agents that collaborate to accomplish a common goal. Hence, the synthesis must be done over the composed
model of all agents, which dramatically increases the complexity.
7

R. Gu, P.G. Jensen, C. Seceleanu et al. Science of Computer Programming 224 (2022) 102894
Fig. 5. Workflow of MoCReL.

4. Strategy synthesis, verification and compression

In this section, we introduce the workflow of MoCReL and describe the TG of MAS together with the important techniques
that are used in MoCReL for strategy synthesis, verification, and compression.

4.1. Overall workflow of MoCReL

The workflow of MoCReL is shown in Fig. 5.
Step 1: A probabilistic quantification is conducted on the TG to facilitate sampling over the system, effectively turning the TG
into an STG (Stochastic Timed Game).
Step 2: Strategy synthesis takes place, which employs the Monte-Carlo simulation in Uppaal Stratego [15] to simulate the
models and sample runs that satisfy certain properties. Next, the sampled runs are passed to the reinforcement learning
module to generate strategies. Iterations between the simulation and learning continue until reaching the limit of iteration
or sampling a user-defined number of runs. In this paper, we extend Uppaal Stratego such that it supports using external
libraries to change the learning module [29], and implement MoCReL as an external library.5

Step 3: When the synthesis finishes, a stochastic strategy is obtained, which is then abstracted as a non-deterministic strategy
and verified.
Step 4: During the verification, the model checker inquires the synthesized strategy, which is stored in the external library
of MoCReL, about the preferred actions at a given state. The preferred state-action pairs are labeled as “visited”.
Step 5: If the verification fails, we go back to Step 2 with an increased number of iteration limit so that the new round of
synthesis can have more samples for learning. If the verification passes, the strategy is cleaned by removing the unlabeled
pairs, which completes the phase of strategy compression.

Note that increasing iteration limit is considered a valid approach only when the current learning rounds are insufficient,
that is, when the counterexample returned from the model checker shows that the synthesized strategy has not covered all
the states that the agent model may encounter on its way towards the goal. Besides increasing the iteration limit, one can
also use the counterexamples to guide the following rounds of learning. The authors are working on this method and leave
it as a future work to report. If the counterexample shows that the violation of a requirement is caused by a controllable
action suggested by the synthesized strategy, one should stop increasing the iteration limit and examine the model or
reward function.

Models and strategies throughout the workflow are interpreted semantically as shown later in Section 4.4. Uppaal Strat-

ego supports both the algorithmic synthesis in Uppaal TiGa [30] and the learning-based synthesis that uses reinforcement
learning [20]. Results of the algorithmic synthesis are correct-by-construction, but the method does not scale as it needs to
explore the state spaces of the models exhaustively. In MoCReL, we propose a post-verification of the strategies that are syn-
thesized by learning. The verification is exhaustive so the results are guaranteed to be correct. Moreover, as the verification
is conducted on the agent model controlled by a strategy, the state space can be much reduced. Therefore, problems that
are too complex to be handled by Uppaal TiGa can be solved by MoCReL.

5 The introduction and an example of the library are in Appendix A.4.
8

R. Gu, P.G. Jensen, C. Seceleanu et al. Science of Computer Programming 224 (2022) 102894
Fig. 6. Examples of trajectories.

Fig. 7. The TG template of agent movement.

4.2. Modeling of MAS

MoCReL models the agent behaviors into timed games (TG), including: (i) movement TG that model the connection and
traveling time between every pair of legal positions in the environment. Legal positions are the ones that are accessible by
the agents; (ii) task execution TG that model the switch between tasks and the idle state, and the task execution time; (iii)
monitor TG that monitor events. When an event occurs, a monitor TG informs task execution TG to execute the corresponding
task.

As a major difference between MoCReL and our previous approach MCRL [12], the models in MoCReL are much easier to
adapt to different scenarios of the planning problem, as they are instantiated from model templates. One does not need to
change the templates but only instantiate the templates with different values of parameters in order to fit in one’s own
application. We describe this feature throughout the following introduction of the TG templates.
(i) Movement TG: The TG template of movement models an agent traveling from one point to another. The points can be
anywhere except the obstacles within the map. Since the purpose of the model is to synthesize plans, the movement TG do
not need to model the concrete trajectories, but the traveling targets and the time duration. For example, the trajectories
depicted by Fig. 6 can be modeled by the movement TG, regardless of how the agents move, such as continuously in Fig. 6(a)
or discretely in Fig. 6(b) and Fig. 6(c).

Fig. 7 shows the template of movement TG, in which locations P1 and P2 represent any legal positions in the map. The
parameters p1 and p2 are the concrete positions that locations P1 and P2 represent, respectively. The location F1T2 models
the duration of traveling from P1 to P2. Although the edge from F1T2 to P2 is uncontrollable by agents, the invariant (xm
≤ up) and guard (xm ≥ down) regulate that the traveling time must be within the interval between down and up. The
time interval is also parameterized by the parameters down and up of this template.

Now let us argue why the new movement TG template is easier to adapt than the movement template of MCRL [13].
In MCRL’s movement template, all the positions that need to be visited by the agents are modeled as locations in one
movement template, which means that whenever the topology of the environment changes, such as more positions are
available, the movement template needs to be changed accordingly. The modification is error-prone and time consuming,
especially when the number of positions is large. When using the new movement TG template, one only needs to pass
different values of the parameters when the topology changes, or instantiate more models when more positions are available
for the agents. For example, when the modeling granularity of movement changes from Fig. 6(b) to Fig. 6(c), one only needs
to instantiate three TG models instead of two, whereas in the movement template of MCRL, one needs to add more locations
and edges into the template, which is error-prone and hard to automate.

Note that the agent’s current position and current status of task execution are stored in arrays gp and gt , respectively,
which are shared with all the TG of movement, task execution, and monitor. The arrays gp and gt are used in the guard
function isReady and update functions move and reach. The update functions are straightforward, which change the
value of gp[agent I D] according to the values of the parameters p1 and p2. The guard function isReady is more complex,
and is depicted in Algorithm 1.

Line 2 means that if the simulation time is consumed (timeUp is true), or the mission goal is achieved (isGameWon()
returns true), or the monitor has stopped (reaching the location Stop in Fig. 9), the agent is not allowed to move, and thus
9

R. Gu, P.G. Jensen, C. Seceleanu et al. Science of Computer Programming 224 (2022) 102894
Algorithm 1: isReady in the movement TG template.

1 isReady(int position)
2 if timeUp || isGameW on() || isMoniter Stop(agent I D) then
3 return false

4 if gp[agent I D] == position && gt[agent I D] == T A S K _I DLE then
5 if gs[taskOnP 1] == F I N I S H E D || gs[taskOnP 2] == U N ST ART E D then
6 return true

7 return false;

Fig. 8. TG template of task execution. The guards and functions are not shown.

the isReady function returns false. Line 4 means that if the agent’s current position is at p1 and the agent is not running
any task, it can be allowed to move. Line 5 means that only when the agent’s task at p1 is finished and the task at p2
is not started, the movement from p1 to p2 is permitted. This condition is for eliminating meaningless movements among
positions where tasks have been finished already.

Combining with Fig. 7, we know that the argument of position at line 4 is always p1, because one instance of the
movement TG template only models one direction of the movement, that is, from p1 to p2. For example, when modeling a
car moving from the green point to the red point in Fig. 6(a), one needs to instantiate two models, i.e.,

green2red = Movement(C AR, G R E E N, R E D, 60, 65, J O B_A, J O B_B) (3)

red2green = Movement(C AR, R E D, G R E E N, 60, 65, J O B_B, J O B_A) (4)

where C AR , G R E E N , R E D , J O B_A, and J O B_B are constant integers representing the corresponding elements in the
environment, respectively. When the agent leaves the green point, model green2red leaves location P1, and then finally
reaches location P2 meaning that the agent has arrived at the red point. Similarly, when the agent goes back to the green
point, model red2green leaves location P1 while model green2red goes back to its location P1 synchronously via the
channel go[agentID], because green2red needs to be ready for the future movement from the green point to the red
point.
(ii) Task execution TG: Similar to the movement TG, the task execution TG do not model the concrete steps of executing a
task, but only the switch between task execution and idle, and the execution time of the task. There are several different
templates designed for different types of tasks, such as tasks without precondition, tasks with events, and tasks that need
agents to collaborate. One can instantiate the templates according to one’s own application by assigning values to the
parameters of the templates, such as BCET and WCET (best-case and worst-case execution time, respectively), preconditions,
and the event that activates the task, respectively. However, the structure of the templates is the same (Fig. 8).6

When the agent is allowed to execute a task, the guard on the edge from location Idle to Executing is true. The
guard is in the conjunctive normal form (CNF). Table 1 shows examples of such guards. C1 checks if the device that the
task requires is busy or not; C2 checks if the agent is allowed to start a task, which is similar to the condition of line 2 in
Algorithm 1; C3 checks if the task’s precondition is true, such as the preceding tasks are finished; C4 checks if the target
task that is about to be executed finishes or not; C5 checks if a monitor is alerting or not. The guard varies as the type of
task changes, e.g., when a task needs a collaboration among agents, the collaborating agents must be ready and located at
the same position.

When the task is ready but the device that is required by this task is taken by another agent, the agent can choose
to wait, i.e., transfer to location Waiting, and change to location Executing when the device is free. Note that we
explicitly model the waiting action in this template rather than using the delay at location Idle because on the edge from

6 The full templates can be found: https://github .com /rgu01 /MoCReL-Experiments .git.
10

https://github.com/rgu01/MoCReL-Experiments.git

R. Gu, P.G. Jensen, C. Seceleanu et al. Science of Computer Programming 224 (2022) 102894
Table 1
An example of the guard on the edge from locations
Idle to Executing in Fig. 8. The guard is a CNF
formula: C1 && C2 && C3 && C4 && C5.

C1 !isBusy(agentID, task)
C2 isExecutable(agentID, task)
C3 precondition[agentID][task] = FINISHED
C4 task_status[task] = FINISHED
C5 !isMonitorAlert(agentID)

Fig. 9. TG template of monitors.

locations Idle to Waiting, the agent’s status is changed from TASK_IDLE to WAITING. The agent’s status is also used in
the movement template for preventing the agent from moving when its status is not TASK_IDLE (line 4 in Algorithm 1).
When the task is being executed, the TG can leave location Executing after the timer exceeds the BCET, and must leave
the location when it reaches the WCET, meaning that the execution time of the task is between BCET and WCET.
(iii) Monitor TG: A monitor monitors a signal, e.g., the fuel level of an agent, and triggers an event when the signal exceeds
a threshold. For simplicity, we assume the signals to be changing monotonically with time. Since the tool that MoCReL relies
on, i.e., Uppaal Stratego, allows defining ordinary differential equations (ODE) of continuous variables, one can eliminate
this assumption by assigning ODE to locations. However, we leave this for the future work.

Based on the assumption, a monitor TG watches the elapse of time instead of the signal, and triggers an event when
time elapses a certain period, meaning that the signal exceeds a threshold. In Fig. 9, when the timer exceeds a particular
constant integer (i.e., warning), the monitor TG transfers to location Alert while updating a variable representing the
event (i.e., agents[agentID].a_monitors[event]=ACTIVATED). The corresponding task execution TG (Fig. 8) is
then activated in the sense that its edge for starting the task is enabled. If the agent can finish the task before the timer
reaches the limit (i.e., shutdown), the monitor TG moves back to the initial location to restart the monitoring; otherwise,
the monitor goes to location Stop, when all controllable actions of the agent are not allowed to be taken any more,
meaning that the agent stops operating. Parameters, such as event for event ID, warning for the threshold of time before
transferring to location Alert, and shutdown for the threshold of time before shutting down the entire system, are
configurable so that the monitor TG can be applied to monitor various signals in different applications.

We call the network of movement TG, task execution TG, and monitor TG a MAS TG. Properties of a MAS TG can be
expressed by a subset of (Timed) Computation Tree Logic ((T)CTL) [16] that is supported by Uppaal Stratego. Since the
formal models of MAS have been defined, we can now define the planning problem formally before introducing the approach
in detail.

Definition 3 (Planning). Given a MAS TG G and a liveness property Q in the form of A<> p, the planning problem M =<

G, Q > reduces to generate a strategy σ over G such that G can satisfy Q when it is controlled by σ , i.e., G | σ |=Q. �
The liveness property A<> p means that G | σ will always eventually satisfy p. Note that one can also use A<>≤t p

to express p will always be eventually satisfied within t time units. For simplicity, we use A<> p to define the planning
problem in this paper. As the main goal of mission planning is to find the strategy that controls the agents to finish all
their tasks eventually no matter how the environment reacts, the liveness property is used in the synthesis. The correctness
guarantee of other requirements, such as safety, can be achieved by the verification after a plan is synthesized. We will give
more details on these properties in Section 4.4.

4.3. Partial state-space observation

During the learning iteration, numerical rewards of taking an action at a state are used by reinforcement learning (e.g.,
the Bellman equation in Q learning [24]) to populate a score table of state-action pairs. When the learning finishes, the
11

R. Gu, P.G. Jensen, C. Seceleanu et al. Science of Computer Programming 224 (2022) 102894
final values of the pairs are stored in the score table, which serves as a strategy. Before introducing such strategies, in this
section, we introduce another important concept in MoCReL: partial observation of the state space.

The learning algorithms need to identify the states of MAS to build up the score tables. As a formal model, MAS TG
provides a clear definition of states, consisting of locations, clock values, and other data variables (Section 2). However,
the strategies of MAS TG do not necessarily need to know all the components of states. For example, if discrete variables
are enough to identify the MAS’s states, strategies can ignore all the clocks in the model, which simplifies the problem by
eliminating unnecessary details. Hence, we use a partial observation of the state space of a MAS TG, which is supported
by Uppaal Stratego. One only needs to provide the interesting variables of the MAS TG to the learning algorithm so that
the synthesized strategies do not contain unnecessary information. Details of specifying partial observability are given in
Query (5) in Section 4.4.

4.4. Key techniques of MoCReL

In this section, we will give a detailed introduction of the key techniques used in MoCReL after the definition of strategies
that we synthesize in this paper.

4.4.1. Strategy definition
What MoCReL aims to synthesize is a subset of memoryless and non-lazy strategies that do not contain clocks. This

restriction enables us to develop an algorithm to exhaustively verify TG under the control of strategies in Uppaal Stratego,
which are synthesized via learning. Tomita et al. [31] divide specifications into must specifications that must not be violated
and desirable specifications that may be inevitably violated. Despite the restriction, the properties of our strategies fall into
the must specifications, such as never collide with static obstacles in the environment. Therefore, it is important to support
exhaustive verification on our synthesized strategies. Note that though our strategies do not contain clocks, one can still
verify the strategies against timing properties, such as always finishing all the tasks within two hours. To satisfy such
timing properties, one needs to wisely design the reward function so that a strategy without clocks can take time limit into
consideration. The introduction of reward functions is in Section 4.4.3.

Now, we formally define the strategies that MoCReL synthesizes as follows:

Definition 4 ((Stochastic) Strategy with a Score Table). Given M =< G, Q > as a planning problem of MAS, a (stochastic)
strategy of G with a score table T of state-action pairs is a function σ : q → A ⊆ Aq

G , where q is a state consisting of
discrete variables, and Aq

G ⊆ 2�c×{λ} is a set of controllable actions that are allowed by G at state q. Let ‖A‖ be the
cardinality of A, max(Aq

G , T) be a function that searches T and returns a set of actions with the highest score among
actions in Aq

G , σ must hold the following conditions:

1. if ‖max(Aq
G , T)‖ = 0 (i.e., T does not contain q), then A = Aq

G ;

2. if ‖max(Aq
G , T)‖ ≥ 1, then A = max(Aq

G , T).

When ‖Aq
G‖ �= 1, ties among actions happen. Non-deterministic (respectively, stochastic) strategies break the ties by non-

deterministic (respectively, uniformly-distributed) choices over A. �
Unlike the strategies synthesized by search-based methods (e.g., Uppaal TiGa), the ones defined in Definition 4 do not

guarantee to solve the MAS planning problem. Possible errors can exist in the design of the reward functions of the rein-
forcement learning algorithm, which do not reflect the desired properties in the planning problem, or the learning phase
is not sufficient to populate a score table that covers enough states. We will give some examples of the design errors in
Section 4.4.3 after the query for synthesis is introduced.

In the next section, we show how MoCReL synthesizes, verifies, and compresses strategies defined in Definition 4.

4.4.2. Probabilistic quantification and abstraction
Due to the inherent difference between the phases of synthesis and verification, models are interpreted semantically

differently in MoCReL when being simulated from when they are being verified. This is automatically done by probabilistic
quantification and abstraction of the models and strategies in MoCReL.

Fig. 10 shows the transformation of the model’s semantics in the workflow of MoCReL. As the transformation is on
the semantic level, the model’s templates do not need to be changed. We elaborate on this in the following paragraphs.
Initially, the MAS TG is interpreted as an STG during strategy synthesis because random simulation is needed in this step. An
operation called probabilistic quantification changes the non-deterministic choices of actions to stochastic ones with concrete
probability distributions. Specifically, time-bounded delays and discrete actions are transformed into stochastic ones with
uniform distributions of probabilities. For example, in Fig. 8, the execution time of tasks is bounded, so the non-deterministic
choice of when to leave location Executing is transformed to a uniformly-distributed one.

If the execution time of a task is unbounded (Fig. 11), an exponential probability distribution must be assigned to the
unbounded delay on location Executing, where an exponential rate is used, e.g., 0.2. However, models like the one in
12

R. Gu, P.G. Jensen, C. Seceleanu et al. Science of Computer Programming 224 (2022) 102894
Fig. 10. Model relations in the process of MoCReL.

Fig. 11. A task execution STG of a task with an unbounded execution time. This model does not exist in our MAS STG.

Fig. 11 do not exist in our MAS STG, because tasks in our problem have BCET and WCET. If a location has no invariant,
which means unbounded delay is allowed there, but only outgoing controllable actions are connected to that location,
such as Idle in Fig. 8, we still adopt uniform distribution at that location because strategies are non-lazy, meaning that
agents urgently decide on a controllable action when it is available, or delay until the environment reacts. In this case, the
controllable actions and delay are equally likely to be chosen, so the model templates do not need to be changed either.
Hence, the model templates of movement and task execution do not need to be changed, as the probabilistic quantification
is done on the semantic level automatically by Uppaal Stratego.

Next, synthesis based on the MAS STG generates stochastic strategies. Specifically, the simulation samples runs of the
model and sends them to the learning algorithm to accumulate the scores of state-action pairs of the runs. During the
learning phase, the probabilities of actions are not always the same. Actions with higher scores become more likely to be
chosen than the ones with lower scores. Unexplored state-action pairs are equally likely to be chosen as the ones with the
highest scores. This arrangement is referred to as “exploration” in reinforcement learning literature. After a user-defined
number of runs is consumed by the learning algorithm, a stochastic strategy is considered to be generated.

After the synthesis, strategies are to be verified and compressed. To achieve verification, stochastic strategies must be
transformed into non-deterministic strategies so that they can be exhaustively model checked. This step is called abstraction
(see Fig. 10), which is also automatically carried out by Uppaal Stratego on the semantic level. Abstraction eliminates the
probabilistic information from a stochastic strategy by replacing the stochastic choices of actions with non-deterministic
ones, and produces a strategy. Specifically, as defined in Definition 4, in the phase of verification, both non-deterministic
strategies and stochastic ones always choose the actions with the highest scores. This is the so-called “exploitation” in
reinforcement learning literature. When ties among actions appear, stochastic strategies equally likely choose one of these
actions, whereas strategies make the decision non-deterministically. Therefore, a strategy may exhibit more behaviors than
the stochastic strategy that the former is abstracted from. We prove this formally as follows:

Theorem 1. Given a TG G , an STG P obtained from G by the probabilistic quantification, a stochastic strategy σ ◦ (Definition 4) solving
P , and a strategy σ abstracting σ ◦ , the following inclusion holds: O ut(P | σ ◦) ⊆ O ut(G | σ).

Proof. First, since P is obtained from G by the probabilistic quantification, an uncontrollable action that is chosen non-
deterministically by G is chosen with equal probability by P . If π ∈ O ut(P | σ ◦) and q = last(π), there must be a π ′ ∈
O ut(P | σ ◦) such that π = last(π ′) e−→ q, where e meets one of the three conditions in Definition 2. Assuming π ′ ∈ O ut(G |
σ), then

1. if e ∈ �u , then last(π ′) e−→ q ∈ O ut(G | σ) because σ has no control on e, and G non-deterministically chooses e ∈ �u .
Hence, π ∈ O ut(G | σ);

2. if e ∈ �c ∩ σ(q) or e = λ, then according to Definition 4, e has the highest score in Aq
G . Then e can be chosen by σ

deterministically when ‖A‖ = 1 or non-deterministically when ‖A‖ �= 1. Hence, π ∈ O ut(G | σ).

Hence, π = last(π ′) e−→ q ∈ O ut(G | σ). Likewise, we can inductively prove the assumption: π ′ ∈ O ut(G | σ). Hence, if π ∈
O ut(P | σ ◦), π ∈ O ut(G | σ), that is, O ut(P | σ ◦) ⊆ O ut(G | σ). �
13

R. Gu, P.G. Jensen, C. Seceleanu et al. Science of Computer Programming 224 (2022) 102894
Theorem 1 shows that σ , as the abstraction of σ ◦ , may broaden the outcome of σ ◦ , since the former may exhibit
behaviors that are highly unlikely or even do not exist in the latter. Therefore, the exhaustive post-verification on σ is
necessary for ensuring that the resulting strategy meets the requirements. In the next section, we enumerate other reasons
for conducting the post-verification.

4.4.3. Strategy synthesis
Synthesis in Uppaal Stratego is done via the following queries:

strategy policy = minE(x)[<=T]{dv}-->{cv}:<> P (5)

strategy policy = maxE(x)[<=T]{dv}-->{cv}:<> P (6)

The keyword minE(x) (respectively, maxE(x)) means simulating the model while running the learning algorithm with
the purpose of minimizing (respectively, maximizing) “x”, which can be a variable or an expression. This is the so-called
“reward function” in reinforcement learning literature. In addition, T is the maximum time for one round simulation, dv
is a set of expressions regarded as discrete values, and cv is a set of expressions regarded as continuous values. These
constitute the so-called “features” in reinforcement learning literature [23].

The state space of the MAS TG is partially shown to the learning algorithm by the values of the expressions in dv and cv.
In particular, MoCReL only allows discrete variables, hence the synthesized strategies do not contain clocks. This limitation
facilitates the verification of the learned strategy since the preference of choice of controllable action cannot change within
zones that represent the basic construction enabling symbolic verification of timed automata [16].

The formula “<> P” is a TCTL property, and only the runs that satisfy this property are sampled in the simulation. These
runs are used as input of the learning algorithm to calculate the scores of state-action pairs. In particular, MoCReL uses “<>
time ≥ C”, where time is a global clock in the model that is never reset and C ∈ [0, T] is a constant integer within
the simulation time T. This formula allows all runs that simulate the model over C time units to be passed to the learning
algorithm no matter whether the agents reach their goals or not. Hence, both good and bad state-action pairs are passed to
the learning algorithm, which accumulates their scores by using their immediate rewards or penalties, respectively.

When running Query (5) in Uppaal Stratego, our new version of the tool calls an external library, which implements
the learning algorithm of MoCReL to synthesize strategies, and stores the score table of the strategy. With the help of the
external library, one can plug in one’s own learning algorithm or add new functions into the existing algorithm. We show
this in Section 4.4.5.

Example. Now, we revisit the path-finding problem of Section 3.2, Fig. 3, to show on the example concretely the necessity of
verifying the resulting strategies, which in fact follows from the one way inclusion of Theorem 1. Assume that the cat stays
at its current position for N minutes, and that the robot wants to catch it as quickly as possible, then the reward function
can be specified as:

x= time− caught× REWARD (7)

The variable time is the aforementioned global clock, caught is a binary integer (i.e., 1/0) indicating whether or not the
cat is caught by the robot, and REWARD is a non-negative integer that the robot gets when it catches the cat. It is trivial to
see that the smaller the value of x is, the better the strategy is.

Mistake 1: misuse of synthesis queries. If one adopts the reward function of equation (7) but mistakenly uses Query (6) for
synthesis, which attempts to find the state-action pairs maximizing x, the result can still be obtained, as the synthesis is
only about accumulating scores of the pairs and populating a score table. However, the actions that consume the most time
(i.e., time being maximum) but never catch the cat (i.e., caught being 0) are taken as the best actions in this result.

Mistake 2: inappropriate reward functions. Even if one uses the query correctly, the resulting mission plan may not be able
to let the robot catch the cat before the latter escapes, that is, within N minutes. This is because the reward function (7)
does not consider the time limit. One can improve the reward function to be equation (8).

x= time− caught × (time<=N) × REWARD (8)

Now, only when the robot catches the cat within N minutes, it is given the reward. These examples show a misuse of
synthesis queries and an inappropriate design of reward functions. Even if one avoids such two types of mistakes, the
resulting mission plan may still be wrong, because the samples for learning may be too few to populate a score table that
covers enough states, or the MAS model is wrongly designed and violates other requirements of the agents that are not
reflected in the queries for synthesis. In a nutshell, the learning-based synthesis does not have a correctness-guarantee on
its results.

4.4.4. Strategy verification
Different from MCRL [12], the verification in MoCReL is directly conducted on the MAS model under the control of a

strategy, because Uppaal Stratego supports the following verification queries [15]:
14

R. Gu, P.G. Jensen, C. Seceleanu et al. Science of Computer Programming 224 (2022) 102894
Algorithm 2: Algorithm of liveness verification (adapted from Fig. 3 in the literature [32]): model checking G | σ
against Query (9).

1 Function Liveness(G , σ , φ):
2 ST := ∅ S D := ∅ Passed := ∅
3 Delay(G.S0, ¬φ)
4 for Sd ∈ SD do
5 Search(Sd, ¬φ)

6 return (true)

7 Function Delay(S, ϕ):

8 for S ′ : S
d=⇒ S ′ do

9 if Allow(σ , d=⇒) then
10 if (S ′ /∈ S D) ∧ (S ′ |= I(S.l) ∧ ϕ) then
11 push(S D, S ′)

12 Function Search(S, ϕ):
13 S := S ∧ ϕ
14 if S �= empty then
15 if loop(S,ST) then
16 exit(f alse) // Loop found
17 if unbounded(S) ∨ deadlocked(S) then
18 exit(f alse) // Maximal run found
19 push(ST , S)

20 if ∀S ′ ∈ Passed : S � S ′ then

21 for Sa : S
a=⇒ Sa do

// If action a is uncontrollable or allowed, it can be chosen.
22 if ¬isControllable(

a=⇒)∨ Allow(σ , a=⇒) then
23 Delay(Sa, ϕ)
24 for Sd ∈ S D do
25 Search(Sd, ϕ) // Recursive all

26 Passed := Passed ∩ {pop(ST)} // Move from stack to Passed
27 Function Allow(S, action):
28 if NumControllable(S) == 1 then
29 return (true)

30 if action ∈ best(σ , S) then
31 label(σ , S, action) // Label (S, action) in σ
32 return (true)

33 else
34 return (false)

A<> φ under σ (9)

Pr[<=T] φ under σ (10)

The keyword under puts the state space exploration of the MAS TG under the control of the strategy that is synthesized and
stored by the external library of MoCReL. Query (9) returns an absolute answer of true or false to the question of whether φ
is always eventually satisfied, whereas Query (10) returns the probability of satisfying φ.

In this paper, we extend Uppaal Stratego to support Query (9) on strategies that are synthesized by learning. The
pseudo-code of executing Query (9) is in Algorithm 2. In Appendix A.2, we illustrate the execution of the algorithm with
an example. For the sake of readability, we overview the algorithm briefly here. To verify a liveness property like Query (9),
one needs to explore the model’s state space until either getting a counter-example violating the property, or until reaching
all the states. Specifically, a counter-example of a liveness property like Query (9) must be either a loop, or a maximum run
ending at an unbounded state where time increases indefinitely, or a deadlock, in which none of the states satisfy φ. Hence,
once such a run is found, the verification terminates with a negative result (line 15 and line 17 in Algorithm 2).

Algorithm 2 is based on the algorithm for checking liveness properties in the literature [32]. The main difference between
these two algorithms is that the state space exploration in Algorithm 2 is guided by a strategy. Specifically, when the model
checker faces controllable actions (i.e., isControllable(

a=⇒) in line 22), or a delay (line 9), it calls function Allow to lookup
the score table of a strategy and chooses the actions with the highest score. In this way, the liveness verification is guided
by a strategy. In addition, the correctness and termination of Algorithm 2 are guaranteed by the algorithm for checking
liveness properties in the literature [32].
15

R. Gu, P.G. Jensen, C. Seceleanu et al. Science of Computer Programming 224 (2022) 102894
Algorithm 3: MoCReL algorithm.

1 Function Main(G , Q, iterationNum, totalNum, goodNum, formula):
2 Strategy σ := ∅, σc := ∅
3 Stochastic Strategy σ ◦ := ∅
4 STG P := Probabilistic Q uanti f ication(G)

5 while ¬Liveness(G, σ, Q) do
6 σ ◦ := Learn(P, iterationNum, totalNum, goodNum, f ormula)

7 σ := Abstraction(σ ◦)
8 Update(iterationNum, totalNum, goodNum)

9 σc := Clean(σ)

10 return (σc)

Example. We show several queries that can be used in the verification of the synthesized strategy in the path-finding
problem of Section 3.2, Fig. 3.

strategy policy = minE(time-caught×REWARD)[<=100]{robot.location}-->{}:<> time>=90 (11)

A<> caught under policy (12)

A[] !collide() under policy (13)

Query (11) synthesizes a strategy named policy, which allows the robot to catch the cat within 100 time units
([<=100]). The condition at the end of the query, i.e., time >= 90, specifies when to sample runs. In this example,
time is a global clock that is never reset, and we want to sample runs that execute at least 90 time units because this
is the estimated least time for the robot to catch the cat. The concrete value 90 can be replaced by any positive integer
depending on the designer’s experience. Normally, it is less than or equal to the total simulation time, i.e., 100 in this ex-
ample, because no clock in the model can exceed the total simulation time. Query (12) verifies the robot model under the
control of policy to see if it can always eventually catch the cat. Query (13) involves a function collide() implemented
in the model, which detects the distances from the robot to obstacles in the environment and returns true if any one of
the distances is less than a certain value, or false otherwise. This query verifies whether collisions between the robot and
obstacles never happen.

Besides the possible errors in the resulting strategies, as presented in the path-finding example, strategies can be memory
consuming for containing too much useless data. With the help of the external library where MoCReL is implemented, we
can leverage queries in the form of Query (9) to not only verify the strategy but also compress the strategy.

4.4.5. Strategy compression
Once an external library is linked to Uppaal Stratego, the model checker can inquire the external library when facing

multiple controllable actions. For example, when more than one agent is ready to execute a task, the model checker without
an external library simply traverses all options non-deterministically, whereas the model checker with an external library
passes the current state and the available actions of the state to the external library one by one, and obtains the preference
of each state-action pair. The ones with the highest score are always preferred. In MoCReL, besides returning the preference
of actions, we also label the state-action pairs that have the highest score as “selected” because they are selected and
verified by the model checker.

When verifying a liveness property (e.g., Query (9)), the model checker must explore all the branches of the state space to
ensure that the proposition of the property (e.g., φ in Query (9)) is always eventually true. Therefore, if the liveness property
is satisfied, the exhaustive model checking guarantees the labeled state-action pairs to eventually reach the states where
the property is true regardless of which and when the uncontrollable actions are taken by the environment. The unlabeled
pairs are considered “useless” data because without them, the property can still be satisfied. Therefore, the strategy can be
compressed by removing the unlabeled pairs (cleaning in Fig. 5). By verifying the compressed strategy again, we can see if
the new strategy preserves the liveness property that is met by the original strategy.

4.4.6. Soundness of MoCReL
Algorithm 3 is the pseudo-code of MoCReL. Line 4 and line 7 are the probabilistic quantification and abstraction, respec-

tively. Line 6 runs an algorithm that iteratively simulates and learns until a user-defined number of samples are obtained, or
the iteration reaches its maximum rounds (see Algorithm 4 in Appendix A.1). The function Liveness(G, σ , Q) at line 5
runs Algorithm 2, which verifies if G | σ |= Q as defined in Definition 3, and labels the state-action pairs that are selected
by the model checker. Line 8 updates the parameters for learning, e.g., increasing the number of samples (i.e., totalNum)
to have a larger score table that covers more states than that of the last strategy, as score tables are empty initially and
populated on the fly with the visited state-action pairs. Line 9 cleans strategy σ by removing the unlabeled data, thereby
compressing the strategy.

Soundness of the Approach. When MoCReL terminates with a synthesized strategy, the result is verified, which guarantees
that the planning problem (Definition 3) is answered correctly. Formally, MoCReL is sound, proven by Theorem 2 below:
16

R. Gu, P.G. Jensen, C. Seceleanu et al. Science of Computer Programming 224 (2022) 102894
Theorem 2 (Soundness). Given a planning problem Q =< G, Q >, where Q = A <> φ , if Algorithm 3 terminates and returns a
strategy σc , then G | σc |=Q.

Proof. Obviously, Algorithm 3 terminates with two cases:

1. Liveness(G, σ , Q) returns true (line 5 in Algorithm 3), when Algorithm 3 will eventually return σc (line 10 in
Algorithm 3);

2. Liveness(G, σ , Q) has a negative result (exit at line 16 and line 18 in Algorithm 2), and causes Algorithm 3 to
terminate with no strategy returned (line 10 in Algorithm 3 never being reached).

In Case 2, no strategy is generated, hence, we only need to prove when Case 1 happens, G | σc |= A <> φ. Assuming
Liveness returns true, but G | σc � A <> φ, then G | σc |= E[]¬φ, which holds if and only if the following two conditions
hold (the code lines in the rest of the proof all refer to Algorithm 2):

(i) The labeling is complete, that is, all the controllable state-action pairs that are selected by the model checker are
labeled, but G | σc |= E[]¬φ, which reads that there exists a run in G | σc , in which all of the states satisfy ¬φ or none
of the states satisfy φ;

(ii) The labeling is incomplete, that is, some pairs that are selected by the model checker are not labeled, which makes
the model checker use the wrong actions at certain states when verifying G | σc |= A <> φ and get a negative result.

In Case (i), such a run is either a loop or a run ending in a deadlock or an unbounded state where time can increase
indefinitely, in which all the states do not satisfy φ. Then the Search function must exit with a verification result of false
(line 16 and line 18), which contradicts that Liveness returns true assumption.

In Case (ii), wherever the model checker faces a controllable action (line 22) or a delay (lines 7 and 9), it invokes the
function Allow, which returns true when the state has only one controllable action (line 28), or the action is labeled
(line 31). Hence, when facing multiple controllable actions, the model checker can never select an unlabeled action. There-
fore, Case (ii) cannot happen.

In a nutshell, Case (i) and Case (ii) cannot happen, and thus G | σc |= E[]¬φ does not hold, that is, G | σc |= A <> φ must
hold when the function Liveness returns true, that is, when Algorithm 3 terminates and returns σc . �
5. Experimental evaluation

In this section, we evaluate MoCReL in several experiments to see its performance in the use case of an autonomous
quarry with different numbers of agents, tasks, and task execution time. The reinforcement learning algorithm used in the
experiments is Q-learning [24]. The experiments are conducted on an Intel Xeon E5-2678 with 256 GB of RAM running
Ubuntu 20.04 LTS. All the models, tool, and the full experiment results can be found at: https://github .com /rgu01 /MoCReL-
Experiments .git.

5.1. Use case description

Fig. 12 depicts an autonomous quarry that is abstracted from a real scenario, where there are two kinds of autonomous
agents: wheel loaders and trucks. Wheel loaders dig stones and load them into trucks. The latter load stones either from
the wheel loaders or from a primary crusher, before transporting the stones to their destination: a secondary crusher. The
goal of the agents is to transport a certain amount of stones. Agents need to go to a charging station for refueling when the
energy level is low.

In the experiments, we aim to synthesize mission plans that indicate the agents which milestones to go or which tasks
to execute. Therefore, we choose a coarse granularity of agent movement, that is, between every pair of milestones. The
traveling times among milestones are calculated by using the A* algorithm [3]. Now the state space of the model is mostly
influenced by the number of agents, as the number of states in the composed model of all agents grows exponentially with
the linear increase of the number of agents [9]. Task execution TG models four types of tasks: (i) individual tasks with no
precondition, e.g., wheel loaders digging stones; (ii) individual tasks with preconditions, e.g., trucks unloading stones into
the secondary crushers with a precondition: the unloading task can be carried out only after the trucks have been loaded
by wheel loaders or at primary crushers; (iii) collaborating tasks, e.g., wheel loaders loading stones into trucks; (iv) tasks
that are activated by events, e.g., refueling when an agent’s energy level is low. In addition, we design a special TG named
Referee (Fig. A.16 in Appendix A.3), which judges whether the goal is reached (i.e., enough stones are transported) or the
maximum simulation time has been reached. In either case, the agents must stop, i.e., no controllable actions can be taken.
The learning algorithm partially observes the state space of the models by detecting discrete variables such as the locations
of the TG.7

7 Discrete variables are in the queries of models at https://github .com /rgu01 /MoCReL-Experiments .git.
17

https://github.com/rgu01/MoCReL-Experiments.git
https://github.com/rgu01/MoCReL-Experiments.git
https://github.com/rgu01/MoCReL-Experiments.git

R. Gu, P.G. Jensen, C. Seceleanu et al. Science of Computer Programming 224 (2022) 102894
Fig. 12. An autonomous quarry.

Table 2
Problems that TAMAA, MCRL, and MoCReL can solve, respectively.

Methods Agent amount Task amount Existence of events Task types

TAMAA [9] 2 - 4 3 Yes 2
MCRL [13] 2 - 6 3 No 2
MoCReL 2 - 6 3 - 6 Yes 4

According to our previous study, the method that purely uses search-based algorithms (namely TAMAA) can only solve
a simplified version of this problem, where task execution time is fixed and the number of agents is less than 5 [9,13]. A
learning-based method (namely MCRL) can deal with more agents and flexible task execution time, but collaborations and
events are not supported [12]. The experiments in this section include collaborations among agents and a battery-low event.
Note that collaborations mean agents carry out a common task at the same milestone simultaneously, such as a wheel loader
unloading stones into a truck. Maps in the experiments are also complex, i.e., some models contain 2-4 primary crushers
and 1-2 secondary crushers. Table 2 shows the ranges of parameters scoping the problems that TAMAA, MCRL, and MoCReL
can solve, respectively. A detailed comparison between the search-based method and learning-based method is reported in
the literature [13].

5.2. Experiment design

We conduct two series of experiments: 1) one where we study the synthesis time and compression efficiency, and 2)
one where we study the influence of the number of sampled runs on the learning efficiency. Models that are used in both
series of experiments are generated automatically by randomly assigning values to the parameters of the environment, e.g.,
the number of agents. The parameters are reported in Table 3 that we introduce in the next section.

The first series of experiments is conducted on the full set of models while the second is restricted to a subset. The set
of models is grouped intro three categories:

• Category I: No charging, no choice in crusher, large numbers of agents up to 6, a small number of crushers (2), and a
fixed medium value of the trucks’ capabilities (20).

• Category II: No charging, choice in crusher, medium numbers of agents (2 - 5), large numbers of crushers (3 - 6), and a
range of the trucks’ capabilities (10 - 30).

• Category III: Charging, no choice in crusher, small numbers of agents (2 - 3) and crushers (2), and a fixed large value of
the trucks’ capabilities (50).

The second series of experiments is conducted on a model game6-B in Table 3 and its two variants that change the
capability of trucks (CAP), that is, the amount of stones trucks can carry at one time. For these three models, we modify the
“RUNS” from 100 to 500, and for each number of “RUNS”, we synthesize a strategy and statistically verify its probability of
reaching the goal by using queries in the form of Query (10). We repeat this experiment 10 times and use the mean values
of the probabilities to be the result of verification to account for the random nature of statistical model checking. In both
series of experiments, the target amount of stones to be transported is the same in all models.

5.3. Experiment results

In Table 3, Column “VER” shows the results of verifying the compressed strategies against queries in the form of Query
(9). Column “RUNS” includes the numbers of runs that needs to be sampled for synthesizing a valid strategy, which are
picked empirically.

Synthesis time. In category I, the time of synthesizing strategies is relatively short. Most of the cases spend several
seconds and the most difficult one (game1-A) costs more than 1 hour with the largest strategy (27M) produced in this
category. In category II, synthesis time remains at the level of minutes for most of the cases. One interesting comparison is
between game3-B and game5-E in this category. Considering the numbers of agents and milestones (e.g., crushers), the
latter is more complex than the former. However, game3-B needs 100,000 runs and more than 4 hours to synthesize a
18

R. Gu, P.G. Jensen, C. Seceleanu et al. Science of Computer Programming 224 (2022) 102894
Table 3
Results of strategy synthesis, verification, and compression. Abbreviations: category (CAT), the number of wheel loaders
(WL), the number of trucks (TK), the number of primary crushers (PC), the number of secondary crushers (SC), the
number of chargers (CH), the capability of trucks (CAP), if the task execution time is time intervals or not (INT), the
number of runs (RUNS), the computation time of synthesis in seconds (STIME), the size of the original strategy in MB
(ORI), the size of the compressed strategy in MB (COM), the result of verification against the compressed strategy (VER).

CAT model WL TK PC SC CH CAP INT RUNS STIME ORI COM VER

I

game1-A 2 4 1 1 0 20 YES 2000 3,902 27 0.13 TRUE
game3-A 1 2 1 1 0 20 YES 200 16 0.08 0.02 TRUE
game4-A 2 4 1 1 0 20 YES 5,000 772 5.6 0.03 TRUE
game6-A 2 1 1 1 0 20 YES 200 175 0.09 0.02 TRUE
game7-A 1 4 1 1 0 20 YES 5,000 575 4.7 0.03 TRUE
game8-A 1 2 1 1 0 20 YES 200 14 0.08 0.02 TRUE
game9-A 1 4 1 1 0 20 YES 5,000 640 4.4 0.05 TRUE

II

game0-B 1 2 3 1 0 10 YES 500 92 0.9 0.2 TRUE
game1-B 1 1 4 1 0 10 YES 500 71 0.02 0.1 TRUE
game3-B 1 2 1 2 0 10 YES 100,000 17,297 1.4 0.6 TRUE
game1-E 1 3 1 2 0 30 NO 500 88 5.9 0.03 TRUE
game5-E 1 3 4 2 0 30 NO 5000 1,705 103 0.05 TRUE
game2-B 1 4 1 2 0 10 YES 100,000 800 112 - FALSE
game6-B 1 3 3 2 0 10 YES 100,000 893 121 - FALSE

III

game4-C 1 2 1 1 2 50 YES 2,000 270 9.4 0.03 TRUE
game5-C 1 2 1 1 1 50 YES 5000 410 2.8 0.03 TRUE
game3-D 1 2 1 1 1 50 NO 500 68 1.4 0.03 TRUE
game6-D 1 2 1 1 2 50 NO 500 80 2.6 0.03 TRUE
game9-D 1 2 1 1 2 50 NO 500 84 7.0 0.03 TRUE
game6-C 1 1 1 1 2 50 YES 100,000 8,629 0.7 - FALSE
game8-C 1 2 1 1 2 50 YES 100,000 12,457 49 - FALSE

successful strategy that passes the verification, whereas game5-E only needs 5000 runs and half an hour. The reason is
because the task execution times are fixed in game5-E whereas the ones in game3-B are time intervals. The time intervals
cause many interleaving actions which increase the state space of the model dramatically. When maps have chargers in
category III, the synthesis times for successful strategies are at most several minutes. However, some models in categories II
and III can be very complex so that learning with 100, 000 runs cannot generate successful strategies. We will discuss this
in the presentation of learning efficiency.

Verification results. Overall, most of the cases (41
50) in the experiments pass the verification.8 In some cases (e.g. game2-

B in category II), we find counter-examples in the strategies that violate the liveness property, so they do not pass the
verification. Increasing their simulation time and rounds to gather more runs for learning can be helpful in these cases.
However, the fact that the models in these cases have large state spaces makes reaching the goal state a rare event that
is hard to catch by random simulation (see the results of learning efficiency). This phenomenon stems from the nature of
reinforcement learning algorithms that rely on random simulation.

Learning efficiency. Fig. 13 shows the mean probabilities of agents reaching their goal (i.e., satisfying Query (10)). The
original model is game6B, in which the capability of trucks is 10, and the modified models are game6B-7 and game6B-8,
which decrease the capability to 7 and 8, respectively. The results of model game6B are not shown in the figure because all
the experiments with 100 to 500 runs generate the same result: above 97%. The probabilities of game6B-7 and game6B-8
increase with the increasing numbers of runs. The probabilities of model game6B-7 are lower than those of the other two
models and the IQR (interquartile ranges9) are the largest. This indicates that when reaching the goal becomes hard, learning
efficiency becomes unstable in the sense that the probabilities of satisfaction under the learned strategy vary dramatically.

One interesting observation is that, although the original model of game6B cannot generate a successful strategy not
even when the number of runs is 100,000, its mean probabilities of satisfaction for the strategies synthesized by a few runs
(i.e., 100 - 500) are quite high (i.e., above 97%) with a standard deviation of 0. This phenomenon shows that when reaching
the goal becomes a rare event, the benefit of increasing the number of runs becomes very low.

Strategy compression. The size reductions of compressed strategies are up to 99.95% of the original sizes in our experi-
ments (e.g., game5-E in category II). Strategies that do not pass the verification are not compressed and thus are shown as
“-” in the column “COM” of Table 3. The compressed strategies not only save memory space but also improve the explain-
ability of the strategies. For example, the score table of the complete strategy in game4-A has almost 78,000 rows of data,
which is reduced to less than 50 rows in the compressed strategy.10 The latter is much more readable and explainable by
humans.

Conclusion of the Experiments. The experiments show that MoCReL can solve the MAS planning problem in complex
maps with multiple crushers and chargers. Successful strategies are verified and compressed and the size reductions are

8 Full results of all models can be seen: shorturl.at/dkqyE.
9 IQR is the difference between the 75th and 25th percentiles of the data.

10 See the strategies of game4-A at https://github .com /rgu01 /MoCReL-Experiments .git.
19

https://github.com/rgu01/MoCReL-Experiments.git

R. Gu, P.G. Jensen, C. Seceleanu et al. Science of Computer Programming 224 (2022) 102894
Fig. 13. Distribution of mean probabilities of satisfaction over 10 experiments.

significant. Counter-examples of the liveness property can be found in unsuccessful strategies, which indicate where the
agents fail. Compared to MCRL, although the environment is more complex, the task types are richer, and the numbers of
milestones and tasks are larger, MoCReL can still solve most of the cases in a reasonable time. The learning efficiency of
reinforcement learning drops dramatically when reaching the goal state becomes a rare event in the model.

6. Discussion

Although the experiments demonstrate MoCReL’s good performance of strategy synthesis and compression, the approach
has a few assumptions and limitations that are discussed in the following.

Continuous variables are not included in strategies. MoCReL observes a partial state space of an agent model, which
only covers discrete variables. It is not trivial to include continuous variables, e.g., time, in strategies while preserving the
exhaustive model checking, because the score tables will be infinitely long due to the infinite values of the continuous
variables. One may adopt techniques of representing sets of states symbolically, as zones [16], and transform the infinite
state space into a finite state space. We leave this as future work.

Low learning efficiency in some cases. As shown in the experiments, when reaching the goal becomes a rare event
for the agents, the learning efficiency of reinforcement learning drops dramatically. Rare events simulation is a longstand-
ing problem with simulation technology [33,34]. Techniques such as importance sampling [35] have been investigated for
solving this problem [36]. We believe that, by exploiting counterexamples, one can also increase the learning efficiency of
reinforcement learning algorithms.

7. Related work

Synthesis of strategies for MAS has been an increasingly researched area in recent years. Formal methods have been
adopted to complement planning algorithms with correctness guarantees. Alur et al. [37] use game theory for compositional
synthesis of reactive controllers from LTL specifications for multi-agent systems, in which agents can be controllable or
uncontrollable. Their method assumes the LTL specifications can be separated into several sub-specifications that concern
subsets of agents, respectively. In our problem, agents are designed to accomplish a common goal and the requirements
concern all of them. Křetínskỳ [38] investigated the combination of LTL, Steady-State Policy Synthesis (SSPS), and long-
run average reward (LRA) on synthesizing policies that resolve Markov decision processes (MDP). However, our planning
problem concerns properties expressed by (T)CTL, and our method includes strategy synthesis and compression. Gleirscher
et al. [39] introduce an approach for synthesis and verification of safety controllers for human-robot collaboration. Their
synthesis means selecting a safe controller over several models that are created by control engineers according to different
applications. Our synthesis does not need engineers to manually design controllers as it is over agents’ motions, such as
movement and task execution, whose model templates are defined already.

In the field of strategy synthesis and verification, Uppaal and its branches have been employed in many studies. Ander-
sen et al. [40] present a Uppaal-based method for motion planning of multi-robot systems. Their method uses reachability
queries to generate motion plans, which is not sufficient for synthesizing comprehensive strategies that consider time in-
tervals as the execution time of motions. Basile et al. [41] use Uppaal Stratego to solve the strategy synthesis problem for
autonomous driving in a moving block railway system. The authors demonstrate the applicability of Uppaal Stratego in
a concrete case study. They model the railway system as a stochastic priced timed game and thus apply statistical model
checking on their resulting (safe) strategy. Our verification is exhaustive, which aims to see if the agents can achieve their
goal safely and timely, regardless of how the environment acts non-deterministically. Bersani et al. [14] present PuRSUE
(Planner for RobotS in Uncontrollable Environments), which supports users to configure their robotic applications and auto-
matically generate their controllers by using Uppaal TiGa. The main difference between our work and this is that the authors
base their synthesis on an exhaustive search of the model’s state space, which provides a correct-by-construction solution,
but the scalability of their method is inherently limited.

In the field of combining formal methods with reinforcement learning (RL), Behjati et al. [42] attempt to solve the state-
space-explosion problem of model checking LTL properties by using RL. Bouton et al. [43] propose a method that enforces
20

R. Gu, P.G. Jensen, C. Seceleanu et al. Science of Computer Programming 224 (2022) 102894
probabilistic guarantees on agents during the course of RL. Jothimurugan et al. [44] propose DIRL, a synthesis approach
that interleaves Djikstra’s algorithm with RL to train agents. In comparison to the mentioned related work, the correctness
guarantee provided by MoCReL is not on the course of learning or on formal specification of the reward functions and
agents’ tasks. Instead, MoCReL provides an exhaustive post-verification of the synthesis results, which is more scalable than
verifying the original agent models. Additionally, counterexamples returned from model checking show the agents’ behaviors
that violate the requirement, which constitutes valuable feedback.

In the area of strategy compression, Julian et al. explore several ways of compressing strategies by using origami com-
pression [45] or deep neural networks [26][46]. Ashok et al. propose a decision-tree-based method for concisely representing
strategies [47][48]. Their tool dtControl is able to compress strategies produced by Uppaal TiGa. Piterman et al. use a method
that minimizes strategies by removing redundant states [49]. Compared with these methods, the strategy compression in
MoCReL focuses on removing the unused data in the strategies rather than representing them in different forms. Since it re-
lies on exhaustive model checking, compression in MoCReL inherently provides a safety guarantee of strategies, which needs
extra effort to achieve in other methods [46].

8. Conclusions and future work

We present a new method, namely MoCReL, for synthesis, verification, and compression of strategies of multi-agent au-
tonomous systems (MAS). MoCReL uses reinforcement learning for synthesizing strategies and model checking for verifying
and compressing the strategies. MoCReL is integrated into Uppaal Stratego, which facilitates the use of this method. Exper-
iments carried out on a real-word autonomous quarry case study show that MoCReL is able to solve the planning problem
of MAS in complex maps with large numbers of agents doing various types of tasks. The compressed strategies save up to
99.95% of the memory space taken by the original strategies. When reaching the goal state becomes a rare event that is
hard to be captured by random simulation, the learning efficiency of reinforcement learning drops dramatically.

An interesting direction of the future work is to investigate the use of the counter-examples to repair the unsuccessful
strategies, which would increase the learning efficiency profoundly. Introducing clocks into the strategies can be another
challenging direction of research.

CRediT authorship contribution statement

Rong Gu: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Validation, Visualiza-
tion, Writing – original draft. Peter G. Jensen: Resources, Software, Writing – review & editing. Cristina Seceleanu: Resources,
Supervision, Writing – review & editing. Eduard Enoiu: Supervision, Writing – review & editing. Kristina Lundqvist: Funding
acquisition, Supervision.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential com-
peting interests:

Rong Gu reports financial support was provided by Mälardalen University. Peter Jensen reports financial support was
provided by Aalborg University. Cristina Seceleanu reports financial support was provided by Mälardalen University. Ed-
uard Enoiu reports financial support was provided by Mälardalen University. Kristina Lundqvist reports financial support
was provided by Mälardalen University. Rong Gu reports a relationship with Mälardalen University that includes: employ-
ment. Peter Jensen reports a relationship with Aalborg University that includes: employment. Cristina Seceleanu reports a
relationship with Mälardalen University that includes: employment. Eduard Enoiu reports a relationship with Mälardalen
University that includes: employment. Kristina Lundqvist reports a relationship with Mälardalen University that includes:
employment. Cristina Seceleanu reports a relationship with Swedish Knowledge Foundation that includes: funding grants.
Kristina Lundqvist reports a relationship with Swedish Knowledge Foundation that includes: funding grants.

Acknowledgements

We acknowledge the support of the Swedish Knowledge Foundation via the profile DPAC - Dependable Platform for
Autonomous Systems and Control, grant nr: 20150022, and via the synergy ACICS – Assured Cloud Platforms for Industrial
Cyber-Physical Systems, grant nr. 20190038.

Appendix A

A.1. Algorithm of synthesis

Algorithm 4 is the simplified pseudo-code of running Query (5) in Uppaal Stratego. Details of this algorithm are in the
literature [13].
21

R. Gu, P.G. Jensen, C. Seceleanu et al. Science of Computer Programming 224 (2022) 102894
Algorithm 4: Simplified algorithm behind the minE-query (adapted from Algorithm 1 in the literature [13]).

1 minE(tg, iterationNum, totalNum, goodNum, formula)
2 int iterations = 0
3 int bestFitness = ∞
4 Strategy best = empty
5 Strategy aStrategy = empty
6 for iterations < iterationNum do
7 int totalRuns = 0
8 int goodRuns = 0
9 for totalRuns < totalNum do

10 Run aRun = simulate(tg, aStrategy)

11 if aRun satisfies formula then
12 aStrategy = learn(aRun)

13 goodRuns + +
14 if goodRuns ≥ goodNum then
15 break

16 totalRuns + +;

17 if goodRuns ≥ goodNum then
18 fitness = evaluate(aStrategy)

19 if fitness < bestFitness then
20 bestFitness = fitness
21 best = aStrategy

22 iterations + +
23 return best;

Fig. A.14. An example of a TG and its semantic model.

A.2. Algorithm of verification and labeling

In this section, we illustrate the execution of Algorithm 2 by an example in Fig. A.14. In Algorithm 2, line 3 passes the
initial state S0 of the TG G and the negation of the state formula of Query (9), i.e., ¬φ, to the function Delay, which
adds the symbolic succeeding states of S0 via restricted delay transitions. The definition of restricted delay transitions is
presented in the literature [32]. In this paper, we adapt this function on symbolic states (i.e., zones) by using difference
bounded matrices (DBM) in Uppaal. Fig. A.14 shows an example of a UTA modeling a traffic light and its symbolic semantic
model - a Zone Graph. The action transitions and delay transitions are arrows labeled with a and d, respectively. An example
of symbolic states that are used in the Delay function is <Red, c=0> in Fig. A.14(b). The function Allow(σ , d=⇒) checks
if the delay transition is allowed by the strategy σ by calling back the external library (see Appendix A.4). Briefly, if the
action is the only controllable action at state S , the function Allow returns true directly, which is the case at the initial
state in Fig. A.14(b); otherwise, it looks up the strategy and finds the set of the best actions that have the highest score
at the current state (i.e., best(σ , S)). If the current action belongs to the set, it is allowed and we call the label function to
label the state-action pair as visited (line 31).

When the delay transition is allowed in the function Delay, we continue to check if the succeeding state S ′ is not on
the stack S D and satisfies the invariant at the location of the current state (I(S.l)) and the restriction (ϕ) (line 10). The
restriction ϕ is actually ¬φ, which means the state space exploration only visits the states where the state formula φ of
Query (9) is false, because the verification of a liveness property aims to find a run where φ is false at all states as the
counter-example. If S ′ satisfies the condition (line 10), it is pushed onto the stack S D for further exploration. In Fig. A.14(b),
after delaying at the initial location, two symbolic states can be reached, which are passed to function Search as the value
of parameter S . The restriction ¬φ is also passed to function Search as the value of parameter ϕ .
22

R. Gu, P.G. Jensen, C. Seceleanu et al. Science of Computer Programming 224 (2022) 102894
Fig. A.15. A TG template of agent task execution.

Fig. A.16. The Referee TG.

In function Search, we first check if the current state S satisfies ϕ (line 13, which returns an empty state when ϕ is
false at S , and S itself when ϕ is true). At line 15, the function checks if there is a loop in the state space by checking if the
current state S is on the stack ST . If a loop exists, an unsatisfactory run (the runs where no state satisfies φ) is found and
thus the algorithm exists with a negative result of verification; otherwise, we check if the maximum run is found (line 17).
According to the definition in the literature [32], a run is maximal if either it ends in a state with no outgoing transitions,
ends in a state from which an unbounded delay is possible, or is infinite. When such runs are found, no further symbolic
state exists and thus the algorithm exists with a negative result of verification; otherwise, the algorithm pushes S onto ST
and continues to explore the unvisited states (line 20). For example, in Fig. A.14(b), both succeeding states of the initial state
are pushed onto S D and explored by function Search. The state <Green, c≥15> ends at a deadlock, whereas the state
<Green, c≥10 ∧ c≤15> has two actions, that is, a controllable action and an uncontrollable one. Both actions end to
the same state <Reg, c=0>.

Similar to the function Delay, line 22 explores the succeeding states via controllable actions that are allowed by the
strategy σ , or uncontrollable actions. If a controllable action is allowed, its succeeding states are recursively explored at
line 25. For example, at the state <Green, c≥10 ∧ c≤15> in Fig. A.14(b), we can either choose the uncontrollable
action without asking the strategy, or choose the controllable action after asking the strategy, and then continue to explore
the state space in the same manner.

Assume we instantiate a model of the TG in Fig. A.14(a), namely trafficLight, and we want to verify a liveness
property: A<> trafficLight.Red. By following Algorithm 2, we will get a negative result of verification with a counter-
example returned, that is, a trace from the initial state «Green, c=0» to the state <Green, c≥15>.

A.3. The TG templates

Fig. A.15 depicts the TG of task execution. Fig. A.16 depicts the TG of Referee that is used in the experiments (See
Section 5).
23

R. Gu, P.G. Jensen, C. Seceleanu et al. Science of Computer Programming 224 (2022) 102894

1

2

3

4

5

6

7

8

9

10

11

12

13

14
A.4. Overview of the external library of MoCReL

The new extension of Uppaal Stratego supports calling external libraries that are implemented by C/C++. An example of
the implementation is in: https://github .com /DEIS -Tools /stratego _external _learning. The library must contain the following
functions so that Uppaal Stratego can invoke it correctly:

// Allocates an instance of a learner
void* uppaal_external_learner_alloc(bool minimization, size_t d_size, size_t c_size, size_t

a_size);
// Deallocation code for object
void uppaal_external_learner_dealloc(void* object);
// print out strategies
char* uppaal_external_learner_print(void* object);
// Deep-copy function of an instance of a leaner
void* uppaal_external_learner_clone(void* object);
// Called for each sample in a trace
void uppaal_external_learner_sample_handler(void* object, size_t action, double* from_d_vars,

double* from_c_vars, double* t_d_vars, double* t_c_vars, double value);
// Return the values of state-action pairs in the strategy
double uppaal_external_learner_predict(void* object, bool is_search, size_t action, double*

d_vars, double* c_vars);
// Batch-completion call-back
void uppaal_external_learner_flush(void* object);

When running MoCReL in Uppaal Stratego, the function alloc is firstly called, which instantiates the learner. Next, when
Query (5) is executed, Uppaal Stratego simulates the model to sample runs, which are passed to the learner by calling the
function sample_handler. During the simulation and verification, wherever the model has more than one controllable
action, function predict is called for looking up the strategy and returning the value of the action at the current state.
This value can be used as the probability or the weight of choosing that action, which is introduced in Section 4.4. Addi-
tionally, when under verification (Query (9) is being executed), MoCReL marks the chosen state-action pairs in the function
predict so that the strategies can be compressed after the verification passes. One can print the strategy by using a query
saveStrategy(path) in Uppaal Stratego. It will call the function print to print the strategy to the specific file in a
standard format.

References

[1] E. Oliveira, K. Fischer, O. Stepankova, Multi-agent systems: which research for which applications, Robot. Auton. Syst. 27 (1–2) (1999) 91–106.
[2] P. Chandler, M. Pachter, Research issues in autonomous control of tactical UAVs, in: Proceedings of the 1998 American Control Conference. ACC (IEEE

Cat. No. 98CH36207), IEEE, 1998.
[3] S. Rabin, A* aesthetic optimizations, in: Game Programming Gems, Charles River Media, 2000.
[4] S.M. LaValle, Rapidly-exploring random trees: a new tool for path planning, Tech. rep., 1998.
[5] J.-F. Kempf, M. Bozga, O. Maler, As soon as probable: optimal scheduling under stochastic uncertainty, in: International Conference on Tools and

Algorithms for the Construction and Analysis of Systems, Springer, 2013, pp. 385–400.
[6] K.G. Larsen, A. Le Coënt, M. Mikučionis, J.H. Taankvist, Guaranteed control synthesis for continuous systems in UPPAAL Tiga, in: Cyber Physical Systems.

Model-Based Design, Springer, 2018, pp. 113–133.
[7] W. Zhang, T.G. Dietterich, High-performance job-shop scheduling with a timedelay TD(λ) network, Adv. Neural Inf. Process. Syst. 8 (1996) 1024–1030.
[8] C. Shyalika, T. Silva, A. Karunananda, Reinforcement learning in dynamic task scheduling: a review, SN Comput. Sci. 1 (6) (2020) 1–17.
[9] R. Gu, E.P. Enoiu, C. Seceleanu, TAMAA: UPPAAL-based mission planning for autonomous agents, in: 35th ACM/SIGAPP Symposium on Applied Com-

puting SAC2020, ACM, 2019.
[10] M. Bouton, A. Cosgun, M.J. Kochenderfer, Belief state planning for autonomously navigating urban intersections, in: Intelligent Vehicles Symposium,

IEEE, 2017.
[11] Y. Abdeddaı, E. Asarin, O. Maler, Scheduling with timed automata, Theor. Comput. Sci. 354 (2) (2006) 272–300.
[12] R. Gu, E.P. Enoiu, C. Seceleanu, K. Lundqvist, Verifiable and scalable mission-plan synthesis for multiple autonomous agents, in: 25th International

Conference on Formal Methods for Industrial Critical Systems, Springer, 2020, pp. 73–92.
[13] R. Gu, P. Jensen, D. Poulsen, C. Seceleanu, E. Enoiu, K. Lundqvist, Verifiable strategy synthesis for multiple autonomous agents: a scalable approach, Int.

J. Softw. Tools Technol. Transf. 24 (3) (2022).
[14] M.M. Bersani, M. Soldo, C. Menghi, P. Pelliccione, M. Rossi, PuRSUE-from specification of robotic environments to synthesis of controllers, Form. Asp.

Comput. (2020).
[15] A. David, P.G. Jensen, K.G. Larsen, M. Mikučionis, J.H. Taankvist, UPPAAL stratego, in: TACAS 2015: International Conference on Tools and Algorithms

for the Construction and Analysis of Systems, Springer, 2015.
[16] J. Bengtsson, W. Yi, Timed automata: semantics, algorithms and tools, in: Lectures on Concurrency and Petri Nets: Advances in Petri Nets, 2004,

pp. 87–124.
[17] A. David, D. Du, K.G. Larsen, A. Legay, M. Mikučionis, D.B. Poulsen, S. Sedwards, Statistical model checking for stochastic hybrid systems, arXiv preprint,

arXiv:1208 .3856, 2012.
[18] F. Cassez, A. David, E. Fleury, K.G. Larsen, D. Lime, Efficient on-the-fly algorithms for the analysis of timed games, in: CONCUR 2005: International

Conference on Concurrency Theory, Springer, 2005, pp. 66–80.
[19] R. Alur, D.L. Dill, A theory of timed automata, Theor. Comput. Sci. 126 (1994) 183–235.
[20] A. David, P.G. Jensen, K.G. Larsen, A. Legay, D. Lime, M.G. Sørensen, J.H. Taankvist, On time with minimal expected cost!, in: International Symposium

on Automated Technology for Verification and Analysis, Springer, 2014, pp. 129–145.
24

https://github.com/DEIS-Tools/stratego_external_learning
http://refhub.elsevier.com/S0167-6423(22)00127-7/bibCE98D94A56E1C00D269CD9753D0D456As1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib4000FC3975DC961D07E94EC71AD6C970s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib4000FC3975DC961D07E94EC71AD6C970s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bibC8E8C8E2EEF473D09A4A975E5C70A4A1s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bibE962FF7509BA2D90F00525968413AE6Ds1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib54BFE8556D3377EEBA06065120E1C380s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib54BFE8556D3377EEBA06065120E1C380s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib245D6C80885B4F47A0C790090F3CB0D7s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib245D6C80885B4F47A0C790090F3CB0D7s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib4D57014231A3B9D708D42D245E952505s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bibBCD339391A3BF1B63790536E17F77E13s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib3C69BF1190648515328FB28CDA1F16A8s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib3C69BF1190648515328FB28CDA1F16A8s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bibEC7E136F4F0550E2073FBF0CF0917A95s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bibEC7E136F4F0550E2073FBF0CF0917A95s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib56A9C9309B950DEFFDDAD1D4E3FB0B0Fs1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib9D15AFE5281F374F2193AA4BA281274Bs1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib9D15AFE5281F374F2193AA4BA281274Bs1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bibD9F4A1BF8ED0668C947F9CD46FB914A1s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bibD9F4A1BF8ED0668C947F9CD46FB914A1s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bibB45254427F29DE6D8AB70D13F3DD8D39s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bibB45254427F29DE6D8AB70D13F3DD8D39s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bibDDC97BF64539AAE2B9690C81DB21D694s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bibDDC97BF64539AAE2B9690C81DB21D694s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib328FD885BEF5B2E7E929F12E6443A312s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib328FD885BEF5B2E7E929F12E6443A312s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bibC83375A6941932AE32367569927C81B6s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bibC83375A6941932AE32367569927C81B6s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib97A56AF87CB75D38A627C4E6D8B286DCs1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib97A56AF87CB75D38A627C4E6D8B286DCs1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib0FCFBC49538A67228714331233F25F02s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib83052EA994853EB79948F3361BBA9BF0s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib83052EA994853EB79948F3361BBA9BF0s1

R. Gu, P.G. Jensen, C. Seceleanu et al. Science of Computer Programming 224 (2022) 102894
[21] C. Baier, J.-P. Katoen, Principles of Model Checking, MIT Press, 2008.
[22] K.G. Larsen, P. Pettersson, W. Yi, UPPAAL in a nutshell, Int. J. Softw. Tools Technol. Transf. 1 (1–2) (1997) 134–152.
[23] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, MIT Press, 2018.
[24] C.J.C.H. Watkins, Learning from Delayed Rewards, King’s College, Cambridge, United Kingdom, 1989.
[25] A. Atyabi, S. MahmoudZadeh, S. Nefti-Meziani, Current advancements on autonomous mission planning and management systems: an AUV and UAV

perspective, Annu. Rev. Control 46 (2018) 196–215.
[26] K.D. Julian, M.J. Kochenderfer, M.P. Owen, Deep neural network compression for aircraft collision avoidance systems, J. Guid. Control Dyn. 42 (3) (2019)

598–608.
[27] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, MIT Press, 2009.
[28] C. Jegourel, K.G. Larsen, A. Legay, M. Mikučionis, D.B. Poulsen, S. Sedwards, Importance sampling for stochastic timed automata, in: International

Symposium on Dependable Software Engineering: Theories, Tools, and Applications, Springer, 2016, pp. 163–178.
[29] M. Jaeger, P.G. Jensen, K.G. Larsen, A. Legay, S. Sedwards, J.H. Taankvist, Teaching stratego to play ball: optimal synthesis for continuous space MDPs,

in: International Symposium on Automated Technology for Verification and Analysis, Springer, 2019, pp. 81–97.
[30] G. Behrmann, A. David, E. Fleury, K. Larsen, D. Lime, E. Nantes, UPPAAL-Tiga: time for playing games! (tool paper), in: Proceedings of the 2007

Computer Aided Verification, Springer, Berlin, Heidelberg, 2007, pp. 121–125.
[31] T. Tomita, A. Ueno, M. Shimakawa, S. Hagihara, N. Yonezaki, Safraless LTL synthesis considering maximal realizability, Acta Inform. 54 (7) (2017)

655–692.
[32] G. Behrmann, K.G. Larsen, J.I. Rasmussen, Beyond liveness: efficient parameter synthesis for time bounded liveness, in: International Conference on

Formal Modeling and Analysis of Timed Systems, Springer, 2005, pp. 81–94.
[33] J. Morio, M. Balesdent, D. Jacquemart, C. Vergé, A survey of rare event simulation methods for static input–output models, Simul. Model. Pract. Theory

49 (2014) 287–304.
[34] J. Frank, S. Mannor, D. Precup, Reinforcement learning in the presence of rare events, in: Proceedings of the 25th International Conference on Machine

Learning, 2008, pp. 336–343.
[35] P.W. Glynn, D.L. Iglehart, Importance sampling for stochastic simulations, Manag. Sci. 35 (11) (1989) 1367–1392.
[36] J.P. Hanna, S. Niekum, P. Stone, Importance sampling in reinforcement learning with an estimated behavior policy, Mach. Learn. 110 (6) (2021)

1267–1317.
[37] R. Alur, S. Moarref, U. Topcu, Compositional synthesis of reactive controllers for multi-agent systems, in: International Conference on Computer Aided

Verification, Springer, 2016, pp. 251–269.
[38] J. Křetínskỳ, LTL-constrained steady-state policy synthesis, arXiv preprint, arXiv:2105 .14894, 2021.
[39] M. Gleirscher, R. Calinescu, J. Douthwaite, B. Lesage, C. Paterson, J. Aitken, R. Alexander, J. Law, Verified synthesis of optimal safety controllers for

human-robot collaboration, Sci. Comput. Program. 218 (2022) 102809.
[40] M.S. Andersen, R.S. Jensen, T. Bak, M.M. Quottrup, Motion planning in multi-robot systems using timed automata, IFAC Proc. Vol. 37 (8) (2004) 597–602.
[41] D. Basile, M.H. ter Beek, A. Legay, Strategy synthesis for autonomous driving in a moving block railway system with uppaal stratego, in: International

Conference on Formal Techniques for Distributed Objects, Components, and Systems, Springer, 2020.
[42] R. Behjati, M. Sirjani, M.N. Ahmadabadi, Bounded rational search for on-the-fly model checking of LTL properties, in: FSE, Springer, 2009, pp. 292–307.
[43] M. Bouton, J. Karlsson, A. Nakhaei, K. Fujimura, M.J. Kochenderfer, J. Tumova, Reinforcement learning with probabilistic guarantees for autonomous

driving, arXiv preprint, arXiv:1904 .07189, 2019.
[44] K. Jothimurugan, S. Bansal, O. Bastani, R. Alur, Compositional reinforcement learning from logical specifications, Adv. Neural Inf. Process. Syst. 34 (2021).
[45] K.D. Julian, J. Lopez, J.S. Brush, M.P. Owen, M.J. Kochenderfer, Policy compression for aircraft collision avoidance systems, in: 2016 IEEE/AIAA 35th

Digital Avionics Systems Conference (DASC), IEEE, 2016, pp. 1–10.
[46] K.D. Julian, M.J. Kochenderfer, Guaranteeing safety for neural network-based aircraft collision avoidance systems, in: 2019 IEEE/AIAA 38th Digital

Avionics Systems Conference (DASC), IEEE, 2019, pp. 1–10.
[47] P. Ashok, M. Jackermeier, P. Jagtap, J. Křetínskỳ, M. Weininger, M. Zamani, dtControl: decision tree learning algorithms for controller representation, in:

Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control, 2020, pp. 1–7.
[48] P. Ashok, M. Jackermeier, J. Křetínskỳ, C. Weinhuber, M. Weininger, M. Yadav, dtControl 2.0: explainable strategy representation via decision tree learn-

ing steered by experts, in: International Conference on Tools and Algorithms for the Construction and Analysis of Systems, Springer, 2021, pp. 326–345.
[49] N. Piterman, A. Pnueli, Y. Sa’ar, Synthesis of reactive (1) designs, in: International Workshop on Verification, Model Checking, and Abstract Interpreta-

tion, Springer, 2006, pp. 364–380.
25

http://refhub.elsevier.com/S0167-6423(22)00127-7/bib1AC6638832A92F5A025C38208DDCB2CBs1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib4B8756156CFF4CB0B8E9DFFFF1CF053Es1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib62EA68C58CD19B9F34F70E09CA364ABBs1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib813C364B402BC49C1D8AF7F0E043BED4s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bibAFD8CA9A2C396A04532E2E0B6E2E82D6s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bibAFD8CA9A2C396A04532E2E0B6E2E82D6s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib21980681F439CA4AE41B6F8F9801BFA6s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib21980681F439CA4AE41B6F8F9801BFA6s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib616478280E1344FA4EC96CE975610701s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib1881FBD64C423B720574A1D6AC379F6As1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib1881FBD64C423B720574A1D6AC379F6As1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib46F0A258389881A99C34DD704E87F83Ds1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib46F0A258389881A99C34DD704E87F83Ds1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bibD78950B8FE0AE1541EC87FEC8B9AB1F3s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bibD78950B8FE0AE1541EC87FEC8B9AB1F3s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib17FDC571E05602748AB63A07B7A259CFs1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib17FDC571E05602748AB63A07B7A259CFs1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib44AD563D06A0832F544270D8AF3EC699s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib44AD563D06A0832F544270D8AF3EC699s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bibF4613DD5965DDF34C98629AD37FA134Ds1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bibF4613DD5965DDF34C98629AD37FA134Ds1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bibE258B55D1379B5E7F19549A27F9FE82Fs1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bibE258B55D1379B5E7F19549A27F9FE82Fs1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib24D92BA268FF49B9D9848D107926DD74s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bibE10860D0C4D7A4C8D299D51F2374A5EBs1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bibE10860D0C4D7A4C8D299D51F2374A5EBs1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bibACE19461600FC6EC55FC77E0A9D1D4C0s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bibACE19461600FC6EC55FC77E0A9D1D4C0s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib5A750B20DE344AAECB2CCE19F81A64E3s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib463130BCF4C44A42AD6AC88F7361EB63s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib463130BCF4C44A42AD6AC88F7361EB63s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bibA30A8F5C95CA755C2863BDB233AEDA6Cs1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bibA865B779B79210F2C5616AFC2D06957Fs1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bibA865B779B79210F2C5616AFC2D06957Fs1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib0CFFC0A8A756B8524E84FBB6D5B67305s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib72203189A0E82A204FADD0353160C5CCs1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib72203189A0E82A204FADD0353160C5CCs1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib8FE0DD222647F19A80FEC4D24CB28D0Fs1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bibB7DFFB16814F80277B84BA38BCE7A451s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bibB7DFFB16814F80277B84BA38BCE7A451s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib5EDB650BE22D0C1ADC667CFE09DDD581s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bib5EDB650BE22D0C1ADC667CFE09DDD581s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bibC8F289349A1E939960E2C2CA654D998As1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bibC8F289349A1E939960E2C2CA654D998As1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bibE951272285F1CDACD409C5BE0F72AFA3s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bibE951272285F1CDACD409C5BE0F72AFA3s1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bibF5AC930BC9AC9CCF9B8D04A4E8CF219Bs1
http://refhub.elsevier.com/S0167-6423(22)00127-7/bibF5AC930BC9AC9CCF9B8D04A4E8CF219Bs1

	Correctness-guaranteed strategy synthesis and compression for multi-agent autonomous systems
	1 Introduction
	2 Preliminaries
	2.1 UPPAAL timed automata
	2.2 Timed games
	2.3 Model checking and temporal properties
	2.4 Reinforcement learning

	3 Problem description
	3.1 Overall description
	3.2 Challenges of solving the planning problem
	3.2.1 An example of planning for illustrating the challenges

	3.3 A motivating example

	4 Strategy synthesis, verification and compression
	4.1 Overall workflow of MoCReL
	4.2 Modeling of MAS
	4.3 Partial state-space observation
	4.4 Key techniques of MoCReL
	4.4.1 Strategy definition
	4.4.2 Probabilistic quantification and abstraction
	4.4.3 Strategy synthesis
	4.4.4 Strategy verification
	4.4.5 Strategy compression
	4.4.6 Soundness of MoCReL

	5 Experimental evaluation
	5.1 Use case description
	5.2 Experiment design
	5.3 Experiment results

	6 Discussion
	7 Related work
	8 Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References

