

Aalborg Universitet

Eclipse ESCET

The Eclipse Supervisory Control Engineering Toolkit

Fokkink, Wan; Goorden, Martijn; Hendriks, Dennis; van Beek, Bert; Hofkamp, Albert; Reijnen,
Ferdie; Etman, Pascal; Moormann, Lars; van de Mortel-Fronczak, Joanna; Reniers, M.A.;
Rooda, Jacobus; van der Sanden, Bram; Schiffelers, Ramon; Thuijsman, Sander; Verbakel,
Jeroen; Vogel, Han
Published in:
Tools and Algorithms for the Construction and Analysis of Systems

DOI (link to publication from Publisher):
10.1007/978-3-031-30820-8_6

Publication date:
2023

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Fokkink, W., Goorden, M., Hendriks, D., van Beek, B., Hofkamp, A., Reijnen, F., Etman, P., Moormann, L., van
de Mortel-Fronczak, J., Reniers, M. A., Rooda, J., van der Sanden, B., Schiffelers, R., Thuijsman, S., Verbakel,
J., & Vogel, H. (2023). Eclipse ESCET: The Eclipse Supervisory Control Engineering Toolkit. In S.
Sankaranarayanan, & N. Sharygina (Eds.), Tools and Algorithms for the Construction and Analysis of Systems:
29th International Conference, TACAS 2023, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2023, Paris, France, April 22–27, 2023, Proceedings, Part II (pp. 44-52). Springer.
https://doi.org/10.1007/978-3-031-30820-8_6

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -

https://doi.org/10.1007/978-3-031-30820-8_6
https://vbn.aau.dk/en/publications/e49a6baa-6468-4a2e-b60c-ae470590d7a1
https://doi.org/10.1007/978-3-031-30820-8_6

Eclipse ESCET™: The Eclipse Supervisory
Control Engineering Toolkit

W.J. Fokkink1,2(�), M.A. Goorden3,4, D. Hendriks5,6, D.A. van Beek1,
A.T. Hofkamp1, F.F.H. Reijnen7, L.F.P. Etman1, L. Moormann1,

J.M. van de Mortel-Fronczak1, M.A. Reniers1, J.E. Rooda1, L.J. van der
Sanden5, R.R.H. Schiffelers1,8, S.B. Thuijsman1, J.J. Verbakel1, J.A. Vogel4

1 Eindhoven University of Technology, Eindhoven, The Netherlands
2 Vrije Universiteit Amsterdam, The Netherlands (� w.j.fokkink@vu.nl)

3 Aalborg University, Aalborg, Denmark
4 Rijkswaterstaat, Utrecht, The Netherlands

5 TNO-ESI, Eindhoven, The Netherlands
6 Radboud University, Nijmegen, The Netherlands
7 Vanderlande Industries, Veghel, The Netherlands

8 ASML, Veldhoven, The Netherlands

Abstract. The Eclipse Supervisory Control Engineering Toolkit (ES-
CET™) is an open-source project to provide a model-based approach and
toolkit for developing supervisory controllers, targeting their entire engi-
neering process. It supports synthesis-based engineering of supervisory
controllers for discrete-event systems, combining model-based engineer-
ing with computer-aided design to automatically generate correct-by-
construction controllers. At its heart is supervisory controller synthesis, a
formal technique for the automatic derivation of supervisory controllers
from the unrestricted system behavior and system requirements. Vital
for the future development of these techniques and tools is the ESCET
project’s open environment, allowing industry and academia to collabo-
rate on creating an industrial-strength toolkit. We report on some crucial
developments of the toolkit in the context of research projects with Rijks-
waterstaat and ASML that have considerably improved its capability to
deal with the complexity of real-life systems as well as its usability.

1 Introduction

A supervisory controller, supervisor for short, coordinates the behavior of a cyber-
physical system according to discrete-event observations of its system behavior.
Based on such observations, the supervisor decides which events the system can
safely perform and which events must be disabled, because they would lead to
violations of requirements or to a blocking state. Engineering of supervisors is a
challenging task, due to the high complexity of real-life discrete-event systems.

Supervisory control theory [21] underpins a model-based technique for auto-
matically deriving a model of a supervisor from models of the uncontrolled system
behavior and the system’s requirements, such as functional or safety-related re-
quirements that intend to rule out all undesired behavior. This is achieved by

2 W.J. Fokkink, M.A. Goorden, D. Hendriks, et al.

disabling controllable (output) events, such as starting a motor. Supervisors exert
no control over uncontrollable (input) events, such as sensor reports.

The Eclipse Supervisory Control Engineering Toolkit (ESCET™, pronounced
èsèt) project,12 provides a model-based approach and toolkit for the development
of supervisors. It targets the entire engineering process for the development
of supervisors, including modeling, synthesis, simulation-based validation and
visualization, formal verification, real-time testing, and code generation. This
entire process is supported by CIF [1],3 featuring an automata-based modeling
language for convenient specification of large-scale systems, and tools that support
synthesis-based engineering (SBE). SBE is an engineering approach to design and
implement supervisors that combines model-based engineering with computer-
aided design to produce correct-by-construction controllers, by automating the
engineering process as much as possible. While not detailed further in this paper,
the ESCET project also comprises Chi [28], a hybrid language and toolset for
modeling and simulation, developed by the same research group that developed
CIF, and the ToolDef scripting language for the definition and execution of
model-based toolchains, useful for combining different ESCET tools.4

The ESCET project, an Eclipse Foundation open-source project since 2020,
builds upon decades of research and tool development at Eindhoven University
of Technology. Vital for the evolvement from an academic into an industrially
applicable toolkit are the years-long ongoing research collaborations with industry,
including Rijkswaterstaat [7], ASML [27], and Vanderlande [29]. Rijkswaterstaat,
part of the Dutch Ministry of Infrastructure and Water Management, is responsi-
ble for infrastructure in the Netherlands, including roads, bridges, tunnels, and
waterway locks. ASML is an innovation leader in the semiconductor industry, pro-
viding chipmakers with all they need to mass produce patterns on silicon through
lithography. Vanderlande is a market leader in logistic process automation for
the warehousing, airport and parcel sectors. The quality of supervisory control
software for such systems impacts their availability and reliability. Synthesis-
based engineering allows for automation, modularization, and standardization,
increasing quality and evolvability and decreasing life-cycle costs.

With the move to the Eclipse Foundation, and supported by the Eclipse Foun-
dation’s principles of transparency, openness, meritocracy and vendor-neutrality,
the ESCET project aims to be an open environment and a growing community.
It allows interested parties, such as academic and applied research institutes,
industrial partners and tool vendors, to collaborate on and profit from further
tool development for the model-based construction of supervisors. Furthermore,
the project’s open nature allows any vendor to develop commercial tool support.

We report on some crucial developments of the toolkit that have considerably
improved its capability to deal with the complexity of real-life systems as well as
its usability, as shown by the case studies reported in Section 5.

1 See https://eclipse.org/escet.
2 ‘Eclipse’, ‘Eclipse ESCET’ and ‘ESCET’ are trademarks of Eclipse Foundation, Inc.
3 See https://eclipse.org/escet/cif.
4 See https://eclipse.org/escet/chi and https://eclipse.org/escet/tooldef.

https://eclipse.org/escet
https://eclipse.org/escet/cif
https://eclipse.org/escet/chi
https://eclipse.org/escet/tooldef

Eclipse ESCET™: The Eclipse Supervisory Control Engineering Toolkit 3

2 Supervisory Controller Synthesis

Human operator / Larger system

(Graphical user) interface

Supervisory controller(s)

Resource controller(s)

Actuators Sensors

Mechanical components

Fig. 1. Structure of supervisory control.

Figure 1 depicts the general system struc-
ture for supervisory control. A cyber-
physical system consists of mechanical
components to be controlled. Actuators
drive their operation, while sensors indi-
cate their status. Resource control pro-
vides low-level control, often offering
more abstract actuator and sensor signals
for higher levels of control to use. Super-
visors ensure actuator signals at lower
layers (the plant) that would violate re-
quirements are disabled. Large systems
may be divided into (layers of) subsys-
tems, and supervisors can be present at
each level, coordinating lower-level sub-
systems (only a single layer is depicted).
A (sub)system is often controlled by a
human operator through a graphical user
interface, or part of a larger system to
which it is connected by an interface.

Supervisory controller synthesis [21, 33] automatically generates a correct-by-
construction supervisor model for a discrete-event system, given precise descrip-
tions of the behavior of the plant components as well as the (safety) requirements
for the overall plant behavior. These can be specified conveniently as extended fi-
nite automata (EFAs), i.e., automata with variables, guards and updates, possibly
carrying invariants that restrict the state space [13].

Synthesis considers the synchronous product of the plant automata together
with the requirement automata. That is, these automata synchronize on shared
events, meaning these events must be executed simultaneously. If an event is
missing in the local state of any plant automaton, or is restricted by a plant
invariant, it is absent from the overall system state, and it is considered physically
impossible. If, on the other hand, an event is missing only in the states of
requirement automata, or is restricted by a requirement invariant, it is physically
possible but must be disabled by the synthesized supervisor to ensure safety.

Controllable events (such as output signals to actuators) can be prevented
by a supervisor, but uncontrollable events (such as input signals from sensors)
cannot. To ensure controllability, if an uncontrollable event must be prevented,
the supervisor makes the system state where it occurs unreachable by disabling
all controllable events leading to it. Moreover, if an uncontrollable event leads to
such a state, the origin state of this event must be made unreachable too.

If safety of, for instance, a drawbridge is ensured by forcing it to remain raised
forever, it is useless for road traffic. Therefore states of the plant and requirement
EFAs can be marked, for instance states where the bridge deck is lowered, the
barriers are open, and the signals are green. A marked state in the synchronous

4 W.J. Fokkink, M.A. Goorden, D. Hendriks, et al.

product means all individual plant components are in a marked local state, in this
case allowing traffic to proceed over the bridge. The supervisor must guarantee
that the plant can always reach a marked state, by disabling (events leading to)
states that violate this property. Such a supervisor is said to be nonblocking.

Supervisory controller synthesis ensures safety, controllability and nonblock-
ingness of a system with respect to its requirements, accounting for all possible
behavior, also disabling events that lead to problems such as blocking behavior
or requirement violations much later in the system’s execution. It does so by
restricting as little behavior as possible, thus ensuring maximal permissiveness.

Next to ESCET toolkit, other supervisory controller synthesis tools include
DESTool [16], DESUMA [25], Supremica [12], and TCT [6]. For a comparison
between these tools see [24]. The ESCET toolkit can be used to specify various
different models during the entire development process, including simulation
models, as it has a rich set of concepts. This prevents having to use multiple
languages. It has a strong focus on industrial application, with, e.g., modeling
convenience, efficient algorithms, and checking for common mistakes.

3 Synthesis-based Engineering Process
Figure 2 shows ESCET’s synthesis-based engineering process. It starts with a
model-based specification, consisting of plant and requirement models, modeled
as EFAs and/or invariants. To these models, supervisory controller synthesis is
applied, resulting in a model of the supervisor. The ESCET toolkit supports
synthesis both with its own synthesis tools, and by a transformation to Supremica.

Synthesis ensures that all specified requirements are satisfied by the syn-
thesized supervisor. Verification, such as model checking, supported through
transformations to UPPAAL [2] and mCRL2 [3], can be used to check other
requirements not yet supported by synthesis, including liveness guarantees or
timing requirements. Validation, supported by ESCET’s automated or inter-
active simulation and visualization, helps to determine whether the specified
requirements, and thus the supervisor, achieve the desired system behavior.

An implementation of the controller can be obtained automatically from a
model of the supervisor, by generating code for its control software. The ESCET
toolkit supports code generation for multiple languages and platforms, including
Java, C, Simulink, and PLC code (IEC standard 61131-3) for multiple vendors.

Plant model(s)

Requirement
model(s)

Supervisory
controller

model

Controller
implementation

(control software)

Specification

Supervisory
controller
synthesis

Code
generation

Validation and
verification

Fig. 2. Simplified representation of ESCET’s synthesis-based engineering process.

Eclipse ESCET™: The Eclipse Supervisory Control Engineering Toolkit 5

4 Technical Improvements

We describe recent improvements and novel techniques that have been vital
in making supervisory controller synthesis applicable to industrial-size cyber-
physical systems. Some have already been integrated into the ESCET toolkit,
while others are being integrated or are planned to be integrated.

Symbolic synthesis The ESCET toolkit is based on the symbolic supervisory
controller synthesis algorithm from Ouedraogo et al. [19]. It iteratively strengthens
guard predicates on transitions so that forbidden states become unreachable
in the controlled plant. This represents a major step forward for the industrial
applicability of supervisory controller synthesis, by allowing for synthesis of plants
and requirements intuitively modeled as EFAs.

The use of EFAs also opens up the possibility to extract and represent the
synthesized supervisor more compactly and intuitively [15]. The ESCET toolkit
represents the supervisor model as the collection of the provided plant and
requirement models together with the addition of a single EFA containing a
strengthened guard for each controllable event.

BDD Data Structure The Binary Decision Diagram (BDD) data structure allows
to efficiently and symbolically represent and manipulate predicates representing
(parts of) state spaces [14]. Its use in ESCET’s symbolic supervisory controller
synthesis algorithm leads to major reductions of state space representations and
computation times, which is essential for scalability.

Vital to the memory and running time characteristics of Reduced Ordered
BDD representations and manipulations, as used by the ESCET toolkit, is the
ordering of the Boolean variables [30]. Heuristic variable ordering algorithms
that exploit the inherent structure of the system modeled as EFAs are able to
significantly reduce the synthesis effort [11], especially for larger inputs, making
synthesis applicable to more complex systems.

Multilevel Synthesis Contrary to monolithic synthesis, where only a single su-
pervisor is synthesized, with multilevel synthesis [10] the plant components and
requirements are grouped together into a hierarchical structure, and a separate
supervisor is synthesized for each group. This allows to distribute the control
problem over multiple cooperating supervisors, which together are significantly
smaller than one monolithic supervisor. By encoding relations between plant
components and requirements in a design structure matrix [5], and algorithmically
reordering its rows and columns to place tightly coupled plant components side by
side [32], a suitable multilevel structure can be obtained. Compared to monolithic
synthesis, this can for certain systems substantially reduce synthesis effort [8],
enabling synthesis for much larger variants of such systems.

Avoiding Nonblockingness Checks Although the local supervisors in multilevel
synthesis are nonblocking, the overall supervisor may not be. A global nonblock-
ingness check can be used to guarantee that all local supervisors can reach a
marked state at the same moment in time, but is often expensive, nullifying
much of the gains obtained through applying multilevel synthesis. However, in a

6 W.J. Fokkink, M.A. Goorden, D. Hendriks, et al.

dependency graph that encodes which plant components by means of require-
ments depend on state of other plant components to perform certain events, plant
components do not give rise to blocking behavior if they are not part of an infi-
nite path [9]. For certain systems, using such graphs, the global nonblockingness
checks may be skipped entirely, or may be reduced to consider less subsystems.
Symmetry Reduction Real-life systems tend to contain a significant number of
similar components, that for instance only differ by the instantiation of some of the
parameters or their physical locations within the overall system. Such symmetries
can be exploited to reduce the number of plant and requirement automata needed
in the synthesis process, further reducing the synthesis effort [18].

5 Case Studies and Applications
Rijkswaterstaat Initially the collaboration with Rijkswaterstaat focused on gener-
ating control software with supervisory controller synthesis for bridges, waterway
locks, and storm surge barriers. Notable case studies are the Algera complex,
comprising a bascule bridge, a waterway lock and two storm surge barriers in
the river Hollandse IJssel [22], and the Oisterwijksebaanbrug, a rotating bridge
in Tilburg [23]. For the latter, a fault-tolerant controller was synthesized, from
which PLC code was generated, which passed the regular site acceptance test.

Recent case studies target road tunnels, notably the Eerste Heinenoord
tunnel [18] and the Swalmen tunnel [17], and roadside systems [31]. For the
Swalmen tunnel, a digital twin, a 3D digital copy of a physical system, was
conveniently constructed from the plant and requirement models. Combined with
visualization, this allows simulation of the system in a setting close to real life.
ASML A prominent result of the collaboration with ASML is the use of the
ESCET toolkit in a toolkit from another Eclipse Foundation open-source project,
the Eclipse Logistic Specification and Analysis Toolkit (LSAT™) [26]. The LSAT
toolkit is used at ASML to create fully calibrated models of subsystems of a
wafer scanner, responsible for transporting wafers in and out of the scanner and
performing preprocessing steps before the wafer is being exposed on the wafer
stage subsystem. The LSAT toolkit exploits ESCET’s supervisory controller
synthesis to compute valid orderings of logistics activities, while maintaining the
maximum freedom to subsequently perform scheduling on the synthesis result to
compute a supervisor that optimizes productivity [20].

6 Conclusions
The ESCET project and toolkit support synthesis-based engineering to efficiently
generate high-quality correct-by-construction supervisors. The toolkit is being
applied to complex industrial systems in different domains. The project’s open
environment enables effective collaboration between industry, researchers and tool
vendors. Owing to positive experiences with the ESCET toolkit, Rijkswaterstaat
is seriously considering whether its document-based development process for
control software could be adapted to one based on SBE with the ESCET toolkit.

Eclipse ESCET™: The Eclipse Supervisory Control Engineering Toolkit 7

7 Data-Availability Statement

The artifact that supports this paper is available at Zenodo under identifier
doi:10.5281/zenodo.7296616 [4]. It contains Eclipse ESCET v0.7 for Linux. How-
ever, the authors prefer that the Eclipse ESCET toolkit is downloaded directly
from the Eclipse Foundation, where the latest version of the toolkit is available
for multiple platforms.5

References

1. van Beek, D.A., Fokkink, W.J., Hendriks, D., Hofkamp, A.T., Markovski, J.,
van de Mortel-Fronczak, J.M., Reniers, M.A.: CIF 3: Model-based engineering of
supervisory controllers. In: Proc. 20th Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). LNCS, vol. 8413, pp. 575–580.
Springer (2014). https://doi.org/10.1007/978-3-642-54862-8_48

2. Behrmann, G., David, A., Larsen, K.G., Håkansson, J., Pettersson, P., Yi, W.,
Hendriks, M.: UPPAAL 4.0. In: Proc. 3rd Conference on the Quantitative Evaluation
of Systems (QEST). pp. 125–126. IEEE (2006). https://doi.org/10.1109/QEST.
2006.59

3. Bunte, O., Groote, J.F., Keiren, J.J.A., Laveaux, M., Neele, T., de Vink, E.P.,
Wesselink, W., Wijs, A., Willemse, T.A.C.: The mCRL2 toolset for analysing
concurrent systems - Improvements in expressivity and usability. In: Proc. 25th
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). LNCS, vol. 11428, pp. 21–39. Springer (2019). https://doi.org/10.1007/
978-3-030-17465-1_2

4. Eclipse Foundation: Eclipse ESCET v0.7 for Linux (2022). https://doi.org/10.5281/
zenodo.7296616

5. Eppinger, S.D., Browning, T.R.: Design Structure Matrix Methods and Applications.
MIT Press (2012)

6. Feng, L., Wonham, W.M.: TCT: A computation tool for supervisory control syn-
thesis. In: Proc. 8th Workshop on Discrete Event Systems (WODES). pp. 388–389.
IEEE (2006). https://doi.org/10.1109/WODES.2006.382399

7. Fokkink, W.J., Goorden, M.A., van de Mortel-Fronczak, J.M., Reijnen, F.F.H.,
Rooda, J.E.: Supervisor synthesis: Bridging theory and practice. Computer 55(10),
48–54 (2022). https://doi.org/10.1109/MC.2021.3134934

8. Goorden, M.A., van de Mortel-Fronczak, J.M., Reniers, M.A., Fokkink, W.J.,
Rooda, J.E.: Structuring multilevel discrete-event systems with dependence struc-
ture matrices. IEEE Transactions on Automatic Control 65(4), 1625–1639 (2020).
https://doi.org/10.1109/TAC.2019.2928119

9. Goorden, M.A., van de Mortel-Fronczak, J.M., Reniers, M.A., Fabian, M., Fokkink,
W.J., Rooda, J.E.: Model properties for efficient synthesis of nonblocking modular
supervisors. Control Engineering Practice 112, 104830 (2021). https://doi.org/10.
1016/j.conengprac.2021.104830

10. Komenda, J., Masopust, T., van Schuppen, J.H.: Control of an engineering-
structured multilevel discrete-event system. In: Proc. 13th Workshop on Discrete
Event Systems (WODES). pp. 103–108. IEEE (2016). https://doi.org/10.1109/
WODES.2016.7497833

5 See https://eclipse.org/escet/download.html.

https://doi.org/10.1007/978-3-642-54862-8_48
https://doi.org/10.1007/978-3-642-54862-8_48
https://doi.org/10.1109/QEST.2006.59
https://doi.org/10.1109/QEST.2006.59
https://doi.org/10.1109/QEST.2006.59
https://doi.org/10.1109/QEST.2006.59
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.5281/zenodo.7296616
https://doi.org/10.5281/zenodo.7296616
https://doi.org/10.5281/zenodo.7296616
https://doi.org/10.5281/zenodo.7296616
https://doi.org/10.1109/WODES.2006.382399
https://doi.org/10.1109/WODES.2006.382399
https://doi.org/10.1109/MC.2021.3134934
https://doi.org/10.1109/MC.2021.3134934
https://doi.org/10.1109/TAC.2019.2928119
https://doi.org/10.1109/TAC.2019.2928119
https://doi.org/10.1016/j.conengprac.2021.104830
https://doi.org/10.1016/j.conengprac.2021.104830
https://doi.org/10.1016/j.conengprac.2021.104830
https://doi.org/10.1016/j.conengprac.2021.104830
https://doi.org/10.1109/WODES.2016.7497833
https://doi.org/10.1109/WODES.2016.7497833
https://doi.org/10.1109/WODES.2016.7497833
https://doi.org/10.1109/WODES.2016.7497833
https://eclipse.org/escet/download.html

8 W.J. Fokkink, M.A. Goorden, D. Hendriks, et al.

11. Lousberg, S., Thuijsman, S.B., Reniers, M.A.: DSM-based variable ordering heuris-
tic for reduced computational effort of symbolic supervisor synthesis. IFAC-
PapersOnLine 53(4), 429–436 (2020). https://doi.org/10.1016/j.ifacol.2021.04.058

12. Malik, R., Åkesson, K., Flordal, H., Fabian, M.: Supremica–An efficient tool for
large-scale discrete event systems. IFAC-PapersOnLine 50(1), 5794–5799 (2017).
https://doi.org/10.1016/j.ifacol.2017.08.427

13. Markovski, J., van Beek, D., Theunissen, R., Jacobs, K., Rooda, J.: A state-
based framework for supervisory control synthesis and verification. In: Proc. 49th
IEEE Conference on Decision and Control (CDC). pp. 3481–3486 (2010). https:
//doi.org/10.1109/CDC.2010.5717095

14. McMillan, K.L.: Symbolic Model Checking. Springer (1993). https://doi.org/10.
1007/978-1-4615-3190-6

15. Miremadi, S., Åkesson, K., Lennartson, B.: Extraction and representation of a
supervisor using guards in extended finite automata. In: Proc. 9th Workshop on
Discrete Event Systems (WODES). pp. 193–199. IEEE (2008). https://doi.org/10.
1109/WODES.2008.4605944

16. Moor, T., Schmidt, K., Perk, S.: libFAUDES — An open source C++ library for dis-
crete event systems. In: Proc. 9th Workshop on Discrete Event Systems (WODES).
pp. 125–130. IEEE (2008). https://doi.org/10.1109/WODES.2008.4605933

17. Moormann, L., van Hegelsom, J., Maessen, P., van de Mortel-Fronczak, J.M.,
Fokkink, W.J., Rooda, J.E.: Advantages of using digital twins in the validation of
road tunnel supervisory controllers. In: Proc. ITA/AITES World Tunnel Congress
(WTC). pp. 573–578 (2022)

18. Moormann, L., van de Mortel-Fronczak, J.M., Fokkink, W.J., Maessen, P., Rooda,
J.E.: Supervisory control synthesis for large-scale systems with isomorphisms. Con-
trol Engineering Practice 115, 104902 (2021). https://doi.org/10.1016/j.conengprac.
2021.104902

19. Ouedraogo, L., Kumar, R., Malik, R., Åkesson, K.: Nonblocking and safe control of
discrete-event systems modeled as extended finite automata. IEEE Transactions
on Automation Science and Engineering 8(3), 560–569 (2011). https://doi.org/10.
1109/TASE.2011.2124457

20. van Putten, B.J.C., van der Sanden, L.J., Reniers, M.A., Voeten, J.P.M., Schiffelers,
R.R.H.: Supervisor synthesis and throughput optimization of partially-controllable
manufacturing systems. Discrete Event Dynamic Systems 31, 103–135 (2021).
https://doi.org/10.1007/s10626-020-00325-x

21. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event
processes. SIAM Journal on Control and Optimization 25(1), 206–230 (1987).
https://doi.org/10.1137/0325013

22. Reijnen, F.F.H., Goorden, M.A., van de Mortel-Fronczak, J.M., Rooda, J.E.: Mod-
eling for supervisor synthesis - a lock-bridge combination case study. Discret. Event
Dyn. Syst. 30(3), 499–532 (2020). https://doi.org/10.1007/s10626-020-00314-0

23. Reijnen, F.F.H., Leliveld, E.B., van de Mortel-Fronczak, J.M., van Dinther, J.,
Rooda, J.E., Fokkink, W.J.: Synthesized fault-tolerant supervisory controllers, with
an application to a rotating bridge. Computers in Industry 130, 103473 (2021).
https://doi.org/10.1016/j.compind.2021.103473

24. Reniers, M.A., van de Mortel-Fronczak, J.M.: An engineering perspective on model-
based design of supervisors. IFAC-PapersOnLine 51(7), 257–264 (2018). https:
//doi.org/10.1016/j.ifacol.2018.06.310

25. Ricker, L., Lafortune, S., Genc, S.: DESUMA: A tool integrating GIDDES and
UMDES. In: Proc. 8th Workshop on Discrete Event Systems (WODES). pp. 392–393.
IEEE (2006). https://doi.org/10.1109/WODES.2006.382402

https://doi.org/10.1016/j.ifacol.2021.04.058
https://doi.org/10.1016/j.ifacol.2021.04.058
https://doi.org/10.1016/j.ifacol.2017.08.427
https://doi.org/10.1016/j.ifacol.2017.08.427
https://doi.org/10.1109/CDC.2010.5717095
https://doi.org/10.1109/CDC.2010.5717095
https://doi.org/10.1109/CDC.2010.5717095
https://doi.org/10.1109/CDC.2010.5717095
https://doi.org/10.1007/978-1-4615-3190-6
https://doi.org/10.1007/978-1-4615-3190-6
https://doi.org/10.1007/978-1-4615-3190-6
https://doi.org/10.1007/978-1-4615-3190-6
https://doi.org/10.1109/WODES.2008.4605944
https://doi.org/10.1109/WODES.2008.4605944
https://doi.org/10.1109/WODES.2008.4605944
https://doi.org/10.1109/WODES.2008.4605944
https://doi.org/10.1109/WODES.2008.4605933
https://doi.org/10.1109/WODES.2008.4605933
https://doi.org/10.1016/j.conengprac.2021.104902
https://doi.org/10.1016/j.conengprac.2021.104902
https://doi.org/10.1016/j.conengprac.2021.104902
https://doi.org/10.1016/j.conengprac.2021.104902
https://doi.org/10.1109/TASE.2011.2124457
https://doi.org/10.1109/TASE.2011.2124457
https://doi.org/10.1109/TASE.2011.2124457
https://doi.org/10.1109/TASE.2011.2124457
https://doi.org/10.1007/s10626-020-00325-x
https://doi.org/10.1007/s10626-020-00325-x
https://doi.org/10.1137/0325013
https://doi.org/10.1137/0325013
https://doi.org/10.1007/s10626-020-00314-0
https://doi.org/10.1007/s10626-020-00314-0
https://doi.org/10.1016/j.compind.2021.103473
https://doi.org/10.1016/j.compind.2021.103473
https://doi.org/10.1016/j.ifacol.2018.06.310
https://doi.org/10.1016/j.ifacol.2018.06.310
https://doi.org/10.1016/j.ifacol.2018.06.310
https://doi.org/10.1016/j.ifacol.2018.06.310
https://doi.org/10.1109/WODES.2006.382402
https://doi.org/10.1109/WODES.2006.382402

Eclipse ESCET™: The Eclipse Supervisory Control Engineering Toolkit 9

26. van der Sanden, L.J., Blankenstein, Y., Schiffelers, R.R.H., Voeten, J.P.M.: LSAT:
Specification and analysis of product logistics in flexible manufacturing systems. In:
Proc. 17th Conference on Automation Science and Engineering (CASE). pp. 1–8.
IEEE (2021). https://doi.org/10.1109/CASE49439.2021.9551412

27. van der Sanden, L.J., Reniers, M.A., Geilen, M.C.W., Basten, T., Jacobs, J.,
Voeten, J.P.M., Schiffelers, R.R.H.: Modular model-based supervisory controller
design for wafer logistics in lithography machines. In: Proc. 18th Conference on
Model Driven Engineering Languages and Systems (MODELS). pp. 416–425. IEEE
(2015). https://doi.org/10.1109/MODELS.2015.7338273

28. Schiffelers, R.R.H., van Beek, D.A., Man, K.L., Reniers, M.A., Rooda, J.E.: A hybrid
language for modeling, simulation and verification. IFAC Proceedings Volumes
36(6), 199–204 (2003). https://doi.org/10.1016/S1474-6670(17)36431-5

29. Swartjes, L., van Beek, D.A., Fokkink, W.J., van Eekelen, J.A.W.M.: Model-based
design of supervisory controllers for baggage handling systems. Simul. Model. Pract.
Theory 78, 28–50 (2017). https://doi.org/10.1016/j.simpat.2017.08.005

30. Thuijsman, S.B., Hendriks, D., Theunissen, R., Reniers, M.A., Schiffelers, R.R.H.:
Computational effort of bdd-based supervisor synthesis of extended finite automata.
In: Proc. 15th International Conference on Automation Science and Engineering
(CASE). pp. 486–493 (2019). https://doi.org/10.1109/COASE.2019.8843327

31. Verbakel, J.J., Vos de Wael, M.E.W., van de Mortel-Fronczak, J.M., Fokkink, W.J.,
Rooda, J.E.: A configurator for supervisory controllers of roadside systems. In: Proc.
17th Conference on Automation Science and Engineering (CASE). pp. 784–791.
IEEE (2021). https://doi.org/10.1109/CASE49439.2021.9551485

32. Wilschut, T., Etman, L.F.P., Rooda, J.E., Adan, I.J.B.F.: Multilevel flow-based
Markov clustering for design structure matrices. Journal of Mechanical Design
139(12) (2017). https://doi.org/10.1115/1.4037626

33. Wonham, W.M., Cai, K., Rudie, K.: Supervisory control of discrete-event systems:
A brief history. Annual Reviews in Control 45, 250–256 (2018). https://doi.org/10.
1016/j.arcontrol.2018.03.002

https://doi.org/10.1109/CASE49439.2021.9551412
https://doi.org/10.1109/CASE49439.2021.9551412
https://doi.org/10.1109/MODELS.2015.7338273
https://doi.org/10.1109/MODELS.2015.7338273
https://doi.org/10.1016/S1474-6670(17)36431-5
https://doi.org/10.1016/S1474-6670(17)36431-5
https://doi.org/10.1016/j.simpat.2017.08.005
https://doi.org/10.1016/j.simpat.2017.08.005
https://doi.org/10.1109/COASE.2019.8843327
https://doi.org/10.1109/COASE.2019.8843327
https://doi.org/10.1109/CASE49439.2021.9551485
https://doi.org/10.1109/CASE49439.2021.9551485
https://doi.org/10.1115/1.4037626
https://doi.org/10.1115/1.4037626
https://doi.org/10.1016/j.arcontrol.2018.03.002
https://doi.org/10.1016/j.arcontrol.2018.03.002
https://doi.org/10.1016/j.arcontrol.2018.03.002
https://doi.org/10.1016/j.arcontrol.2018.03.002

	Eclipse ESCET™: The Eclipse Supervisory Control Engineering Toolkit

