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Abstract
Keyword spotting (KWS) is, in many instances, intended to run
on smart electronic devices characterized by limited computa-
tional resources. To meet computational constraints, a series
of techniques —ranging from feature and acoustic model pa-
rameter quantization to the reduction of the number of model
parameters and required multiplications— has been explored
in the literature. With this same aim, in this paper, we study
a straightforward alternative consisting of the reduction of
the spectro/cepstro-temporal resolution of log-Mel and Mel-
frequency cepstral coefficient feature matrices commonly em-
ployed in KWS. We show that the feature matrix size has a
strong impact on the number of multiplications/energy con-
sumption of a state-of-the-art KWS acoustic model based on
convolutional neural network. Experimental results demon-
strate that the number of elements in commonly used speech
feature matrices can be reduced by a factor of 8 while es-
sentially maintaining KWS performance. Even more interest-
ingly, this size reduction leads to a 9.6× number of multiplica-
tions/energy consumption, 4.0× training time and 3.7× infer-
ence time reduction.
Index Terms: Keyword spotting, speech features, small foot-
print, energy consumption, deep learning.

1. Introduction
Keyword spotting (KWS) is a highly useful technology, which
enables voice interaction with a plethora of smart electronic de-
vices such as smartphones, tablets, smartwatches and the like.
Since these devices are characterized by notable computational
and energy constraints, embedding on them typical always-on
KWS technology can pose a challenge.

The cornerstone of state-of-the-art KWS is the acoustic
model producing word or subword posteriors from speech fea-
tures, which is implemented by a neural network and can be
computationally demanding [1]. To fit into computational and
memory constraints as well as to limit the impact on battery
lifetime, a series of methods has been explored in the litera-
ture. In the field of KWS, we can distinguish between two main
categories of methods, which can be applied to essentially any
neural network structure:

1. Quantization: This category refers to those techniques
pursuing the reduction of the precision of the parame-
ters of the acoustic model [2,3] and/or that of the speech
features [4].

2. Reduction of the number of parameters and/or multi-
plications: This class of methods seeks decreasing the
number of parameters and/or multiplications of the neu-
ral network acoustic model [1].

Henceforth, we focus on the second category above, which
comprises a variety of approaches like weight pruning [5,6] and
the use of depthwise separable convolutions [7] to decrease the
memory footprint and number of multiplications of the model
while essentially maintaining performance.

In this paper, we conduct an experimental study on speech
feature matrix size reduction, which has an impact on the num-
ber of multiplications required by the acoustic model. Our
results show that this impact is particularly remarkable when
employing state-of-the-art acoustic modeling, which relies on
convolutional neural networks (CNNs) with residual connec-
tions [1]. In particular, using a deep residual learning model [8],
we show that the spectro/cepstro-temporal resolution of the log-
Mel and Mel-frequency cepstral coefficient (MFCC) [9] feature
matrices typically employed in KWS can be reduced by a fac-
tor of 8 without really hurting performance. More interestingly,
this feature matrix size reduction yields 9.6× number of mul-
tiplications/energy consumption [10], 4.0× training time and
3.7× inference time reduction.

The remainder of this manuscript is structured as follows.
In Section 2, we discuss related work motivating this study and
outline the experimental methodology. Section 3 is devoted to
present the experimental framework. Results are shown in Sec-
tion 4. Finally, Section 5 wraps up this work.

2. Related Work and Methodology
In a previous work [11] in which we explored filterbank learn-
ing for KWS, we observed no statistically significant KWS ac-
curacy differences between the use of learned filterbanks and
handcrafted (log-Mel) speech features. After a number of ex-
periments, we drew the conclusion that there is much redun-
dant information contained in the speech features that are fed
into modern neural network-based KWS acoustic models. In-
terestingly, the authors of [4], who showed that 8-bit log-Mel
spectra can lead to the same KWS performance as full-precision
MFCCs, independently reached to the same conclusion.

Motivated by the above, here we explore the impact of fea-
ture matrix size reduction on KWS performance. In this work,
we focus on both log-Mel spectra and MFCCs [9], since these
are the most commonly used speech features in KWS, e.g.,
see [8, 12–18]. A widespread feature extraction setting consists
of the computation of 40 features per time frame while using
a 30 ms analysis window with a hop size of 10 ms (e.g., again
see [8, 12–18]). Therefore, with this setting, a one-second long
audio segment is represented by a feature matrix of dimension
40 features×101 time frames1.

Departing from the above standard feature extraction set-

1Notice that, due to the application of temporal zero-padding, the
number of time frames is 101 and not 99.
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Figure 1: Log-Mel spectra computed from the same one-second long utterance, comprising the word “down”, by considering different
spectro-temporal resolutions. In all cases, the spanned frequency range is [20, 8,000] Hz. See Section 2 for further details.

ting, in Section 4, we explore the use of a smaller number of
filterbank channels/cepstral coefficients (i.e., features) and also
perform time resolution reduction by increasing the hop size of
the analysis window. As an example, Figure 1 shows log-Mel
spectra computed from the same one-second long utterance,
comprising the word “down”, by considering different spectro-
temporal resolutions. While the spectrum of Figure 1a follows
the standard feature extraction setting, the other two (see Fig-
ures 1b and 1c) consider 10 filterbank channels spanning the
same frequency range of [20, 8,000] Hz. Moreover, the spec-
trum of Figure 1c, differently from the other two, is computed
from a hop size of 20 ms instead of 10 ms. In Section 4, we
will show that these three feature extraction settings essentially
yield equivalent KWS performance while leading to quite dis-
tinct computational load.

3. Experimental Framework
This section is devoted to present the experimental framework.
First, Subsection 3.1 outlines the speech dataset employed in
this work. Second, Subsections 3.2 and 3.3 describe the deep
residual learning acoustic model and the way it is trained, re-
spectively.

3.1. The Google Speech Commands Dataset

For experimental purposes, we utilize the most popular publicly
available benchmark for KWS research: the Google Speech
Commands Dataset (GSCD) v2 [19]. The GSCD is composed
of a little more than 100k one-second long speech utterances
comprising one word each from a set of 35 different words. At
a 16 kHz sampling rate, these utterances were recorded from
2,618 different speakers by phone and laptop microphones.
Recordings contain some background noise and, within them,
words can be located anywhere.

As is standard [1, 19], we consider the 10 keywords “yes”,
“no”, “up”, “down”, “left”, “right”, “on”, “off”, “stop” and
“go”. The remaining 25 words are employed to shape the non-
keyword/filler class. In addition, the GSCD is split into train-
ing, validation and test sets according to the ratio 80:10:10, and
speakers do not overlap across sets. Word classes are also quite
balanced across sets.

3.2. Deep Residual Acoustic Modeling

From a recent overview paper on KWS [1], it is clear that state-
of-the-art KWS acoustic modeling relies on CNNs integrating
a mechanism to exploit long time-frequency dependencies and

residual connections [20]. Accordingly, we make use of the
deep residual learning model depicted in Figure 2, which also
has dilated convolutions increasing the network’s receptive field
[8].

This model makes independent keyword predictions from
one-second long input speech segments. Input speech features2

are processed by six residual blocks each comprising two con-
volutional and two batch normalization layers in addition to
one skip connection. Skip connections make the number of
multiplications of the model heavily depend on the feature ma-
trix size, since the successive feature maps have to preserve it
for addition throughout the residual blocks. Thus, this CNN
has around 238k parameters and requires around 895M mul-
tiplications per second of input speech when considering the
standard feature extraction setting described in Section 2. To
carry out classification, the final fully-connected layer has 11
nodes corresponding to the 10 different keywords plus the non-
keyword/filler class. The reader is referred to [8] for further
details on this deep residual learning model.

3.3. Model Training

The acoustic model of Figure 2 is trained by using cross-entropy
as the loss function. Unlike [8] (where stochastic gradient de-
scent is considered), Adam [22] with default parameters (learn-
ing rate of 0.001, β1 = 0.9 and β2 = 0.999) is the optimizer
employed in this paper. The size of the mini-batch is 64 training
samples. For regularization purposes, early-stopping [23] mon-
itoring the validation loss with a patience of four epochs is used.
Notice that, differently from [8], training data augmentation is
not considered in this work. The implementation was done by
means of Keras [24] performing on top of TensorFlow [25].

4. Results
To assess both KWS and computational performance when re-
ducing the spectro/cepstro-temporal resolution of the speech
feature matrices, the following metrics are used:

1. Accuracy: This is simply the ratio of the number of cor-
rect predictions over the total number of them [26]. No-
tice that accuracy is a very popular primary KWS per-
formance metric when employing the GSCD [1, 8, 18,
27, 28], where word classes are quite balanced.

2For speech feature extraction, we use Librosa [21]. Furthermore,
prior to be fed to the acoustic model, features are normalized in such a
manner that they have zero mean and unit standard deviation.
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Figure 2: Deep residual neural network employed for keyword spotting acoustic modeling in this study.

Table 1: Keyword spotting accuracy results (%), per-epoch training times (s) and inference times (µs), from using log-Mel and MFCC
features, as a function of the number of features. Accuracy values and times are shown along with 95% confidence intervals. The
number of multiplications of the acoustic model, which directly depends on the number of features, is also shown. The hop size/number
of time frames is 10 ms/101.

No. of Features No. of Mult. Log-Mel MFCC
Accuracy (%) Training Time Inference Time Accuracy (%) Training Time Inference Time

per Epoch (s) (µs) per Epoch (s) (µs)

40 895M 95.33 ± 0.28 98.7 ± 0.4 980 ± 7 95.24 ± 0.96 96.5 ± 0.4 980 ± 12
20 424M 95.70 ± 0.58 58.3 ± 0.7 590 ± 11 95.55 ± 0.65 55.2 ± 0.4 595 ± 7
10 188M 95.34 ± 0.76 36.2 ± 0.3 390 ± 21 95.24 ± 0.64 36.3 ± 0.3 385 ± 12
5 71M 93.00 ± 0.36 27.3 ± 0.5 292 ± 16 92.60 ± 0.87 26.3 ± 0.5 289 ± 10
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Figure 3: Keyword spotting accuracy (%) with 95% confidence
intervals, from using log-Mel and MFCC features, as a func-
tion of the number of multiplications of the acoustic model. The
corresponding number of features is indicated above the confi-
dence area. The hop size/number of time frames is 10 ms/101.

2. Number of multiplications: The authors of [10] found
a strong positive linear relationship (R2 = 0.9641,
p = 0.0001) between the number of multiplications of
the KWS acoustic model and its energy consumption.
Therefore, reducing the number of multiplications can
be expected to reduce energy consumption by the same
amount.

3. Training time per epoch: Per-epoch training time of the
KWS acoustic model is measured when model training
is run on a GPU NVIDIA GeForce GTX 1080 Ti.

4. Inference time: Again using a GPU NVIDIA GeForce
GTX 1080 Ti, inference time is defined in this work as
the time it takes a forward pass of a one-second long
input speech segment.

Except for the number of multiplications, we report results
along with 95% confidence intervals calculated from the Stu-
dent’s t-distribution [29]. For accuracy, they are calculated
from 5 different CNN models trained with different random
weight initialization. For per-epoch training times and inference
times, confidence intervals are obtained from the total of train-
ing epochs and one-second long test segments, respectively.

4.1. Reducing the Number of Features

Table 1 shows KWS accuracy results, number of model mul-
tiplications, per-epoch training times and inference times as a
function of the number of features when the hop size/number
of time frames3 is fixed to 10 ms/101. These results were ob-
tained by means of a Mel filterbank spanning the frequency
range [20, 8,000] Hz. Preliminary experiments (not reported
here) revealed no statistically significant differences between
the results in Table 1 and those from employing a Mel filter-
bank constrained to be in the frequency range [20, 4,000] Hz.
Hence, all the experiments reported in this paper consider a Mel
filterbank spanning 20-8,000 Hz.

From Table 1, we can see a strong positive linear relation-
ship between the number of multiplications of the model, the
training and inference times, and the number of features. Fur-
thermore, similar performance is provided by using either log-
Mel or MFCC features. Interestingly, reducing the number of
features from 40 to only 10 produces no statistically significant
KWS accuracy differences while a 4.8× number of multipli-
cations/energy consumption, 2.7× training time and 2.5× in-
ference time reduction is achieved. To better assess the extent
of the improvement yielded by feature size reduction, Figure 3
depicts KWS accuracy as a function of the number of multipli-
cations of the acoustic models in Table 1.

3Recall that the acoustic model is designed to process one-second
long speech segments (see Subsection 3.2).
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Table 2: Keyword spotting accuracy results (%), per-epoch training times (s) and inference times (µs), from using log-Mel and MFCC
features, as a function of the hop size (ms)/number of time frames. Accuracy values and times are shown along with 95% confidence
intervals. The number of multiplications of the acoustic model, which directly depends on the hop size/number of time frames, is also
shown. The number of features is 10.

Hop Size (ms) / No. of Mult. Log-Mel MFCC
No. of Frames Accuracy (%) Training Time Inference Time Accuracy (%) Training Time Inference Time

per Epoch (s) (µs) per Epoch (s) (µs)

10 / 101 188M 95.34 ± 0.76 36.2 ± 0.3 390 ± 21 95.24 ± 0.64 36.3 ± 0.3 385 ± 12
20 / 51 93M 94.63 ± 0.65 24.2 ± 0.5 265 ± 11 94.61 ± 0.89 24.1 ± 0.3 265 ± 9
30 / 34 61M 94.53 ± 0.47 19.2 ± 0.4 216 ± 10 93.50 ± 0.83 19.0 ± 0.4 216 ± 14
40 / 26 46M 93.24 ± 0.50 15.3 ± 0.4 197 ± 9 92.36 ± 0.55 15.2 ± 0.3 201 ± 8
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Figure 4: Keyword spotting accuracy (%) with 95% confidence
intervals, from using log-Mel and MFCC features, as a function
of the number of multiplications of the acoustic model. The cor-
responding number of time frames is indicated above the confi-
dence area. The number of features is 10.

4.2. Increasing the Hop Size

Departing from fixing the number of features to be 10, in this
subsection, we study the impact of decreasing the time resolu-
tion of the feature matrix by increasing the hop size of the anal-
ysis window. Table 2 reports KWS accuracy results, number of
model multiplications, per-epoch training times and inference
times as a function of the hop size/number of time frames. In
addition, to visually inspect the impact of time resolution reduc-
tion on KWS and computational performance, Figure 4 plots
KWS accuracy as a function of the number of multiplications
of the acoustic models in Table 2.

Similarly to Subsection 4.1, from Table 2, we can observe a
strong positive linear relationship between the number of model
multiplications, the training and inference times, and the num-
ber of time frames. Despite using a hop size equal to or larger
than 30 ms significantly deteriorates spotting performance, uti-
lizing a 10×51 feature matrix (hop size of 20 ms) does not sta-
tistically significantly worsen the KWS accuracy given by any
of the evaluated feature matrices with a higher spectro/cepstro-
temporal resolution (mind overlapping confidence intervals in
Tables 1 and 2). In other words, we can reduce the standard
size of both log-Mel and MFCC matrices employed in KWS
by a factor of 8 while essentially maintaining spotting perfor-
mance. In turn, this leads to a notable 9.6× number of mul-
tiplications/energy consumption, 4.0× training time and 3.7×
inference time reduction.

5. Conclusions
In this paper, we have experimentally studied an indirect way
of decreasing the computational complexity of a state-of-the-art
CNN acoustic model for KWS (which typically comprise resid-
ual connections): the reduction of the spectro/cepstro-temporal
resolution of the speech feature matrix. Our experimental re-
sults have shown that we can notably reduce the size of standard
feature matrices without really hurting KWS performance while
achieving a remarkable computational load reduction. We be-
lieve that these results very much endorse our previous hypothe-
sis that modern neural network-based KWS acoustic models are
fed with much redundant information. And, more importantly,
this is an interesting finding to bear in mind when designing
light and compact KWS systems that are intended to be embed-
ded on low-resource devices.
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[1] I. López-Espejo, Z.-H. Tan, J. H. L. Hansen, and J. Jensen, “Deep

spoken keyword spotting: An overview,” IEEE Access, vol. 10,
pp. 4169–4199, 2021.

[2] Y. Mishchenko, Y. Goren, M. Sun, C. Beauchene, S. Matsoukas,
O. Rybakov, and S. N. P. Vitaladevuni, “Low-bit quantization
and quantization-aware training for small-footprint keyword spot-
ting,” in Proceedings of ICMLA 2019 – 18th IEEE International
Conference on Machine Learning and Applications, December
16-19, Boca Raton, USA, 2019, pp. 706–711.

[3] D. Peter, W. Roth, and F. Pernkopf, “Resource-efficient DNNs for
keyword spotting using neural architecture search and quantiza-
tion,” in Proceedings of ICPR 2020 – 25th International Confer-
ence on Pattern Recognition, January 10-15, Milano, Italy, 2020.

[4] A. Riviello and J.-P. David, “Binary speech features for keyword
spotting tasks,” in Proceedings of INTERSPEECH 2019 – 20th

Annual Conference of the International Speech Communication
Association, September 15-19, Graz, Austria, 2019, pp. 3460–
3464.

[5] J. Kim, S. Chang, and N. Kwak, “PQK: Model compression
via pruning, quantization, and knowledge distillation,” in Pro-
ceedings of INTERSPEECH 2021 – 22nd Annual Conference of
the International Speech Communication Association, August 30-
September 3, Brno, Czechia, 2021, pp. 4568–4572.

[6] M. Ø. Nielsen, J. Østergaard, J. Jensen, and Z.-H. Tan, “Compres-
sion of DNNs using magnitude pruning and nonlinear information
bottleneck training,” in Proceedings of MLSP 2021 – 31st IEEE
International Workshop on Machine Learning for Signal Process-
ing, October 25-28, Gold Coast, Australia, 2021, pp. 1–6.

134



[7] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient
convolutional neural networks for mobile vision applications,”
arXiv:1704.04861v1, 2017.

[8] R. Tang and J. Lin, “Deep residual learning for small-footprint
keyword spotting,” in Proceedings of ICASSP 2018 – 43rd IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing, April 15-20, Calgary, Canada, 2018, pp. 5484–5488.

[9] S. Davis and P. Mermelstein, “Comparison of parametric repre-
sentations for monosyllabic word recognition in continuously spo-
ken sentences,” IEEE Transactions on Acoustics, Speech, and Sig-
nal Processing, vol. 28, pp. 357–366, 1980.

[10] R. Tang, W. Wang, Z. Tu, and J. Lin, “An experimental analysis
of the power consumption of convolutional neural networks for
keyword spotting,” in Proceedings of ICASSP 2018 – 43rd IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing, April 15-20, Calgary, Canada, 2018, pp. 5479–5483.
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