

Aalborg Universitet

Honeysweeper

Towards stealthy Honeytoken fingerprinting techniques

Msaad, Mohamed; Srinivasa, Shreyas; Møller Andersen, Mikkel; Audran, David; Orji, Charity
U.; Vasilomanolakis, Emmanouil
Published in:
Secure IT Systems

DOI (link to publication from Publisher):
10.1007/978-3-031-22295-5_6

Publication date:
2023

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Msaad, M., Srinivasa, S., Møller Andersen, M., Audran, D., Orji, C. U., & Vasilomanolakis, E. (2023).
Honeysweeper: Towards stealthy Honeytoken fingerprinting techniques. In H. P. Reiser, & M. Kyas (Eds.),
Secure IT Systems: 27th Nordic Conference, NordSec 2022, Reykjavic, Iceland, November 30–December 2,
2022, Proceedings (pp. 101-119). Springer. https://doi.org/10.1007/978-3-031-22295-5_6

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 25, 2024

https://doi.org/10.1007/978-3-031-22295-5_6
https://vbn.aau.dk/en/publications/56bd5d0c-0123-4f5b-818c-7267893dcf69
https://doi.org/10.1007/978-3-031-22295-5_6

Honeysweeper : Towards Stealthy
Honeytoken Fingerprinting Techniques

Mohamed Msaad1 , Shreyas Srinivasa1(B) , Mikkel M. Andersen1 ,
David H. Audran1 , Charity U. Orji1 , and Emmanouil Vasilomanolakis2

1 Aalborg University, Copenhagen, Denmark
{mmsaad18,mman21,daudra21,corji21}@student.aau.dk, shsr@es.aau.dk

2 Technical University of Denmark, Kgs. Lyngby, Denmark
emmva@dtu.dk

Abstract. The increased number of data breaches and sophisticated
attacks have created a need for early detection mechanisms. Reports
indicate that it may take up to 200 days to identify a data breach and
entail average costs of up to $4.85 million. To cope with cyber-deception
approaches like honeypots have been used for proactive attack detection
and as a source of data for threat analysis. Honeytokens are a subset of
honeypots that aim at creating deceptive layers for digital entities in the
form of files and folders. Honeytokens are an important tool in the proac-
tive identification of data breaches and intrusion detection as they raise
an alert the moment a deceptive entity is accessed. In such deception-
based defensive tools, it is key that the adversary does not detect the
presence of deception. However, recent research shows that honeypots
and honeytokens may be fingerprinted by adversaries. Honeytoken fin-
gerprinting is the process of detecting the presence of honeytokens in a
system without triggering an alert. In this work, we explore potential fin-
gerprinting attacks against the most common open-source honeytokens.
Our findings suggest that an advanced attacker can identify the major-
ity of honeytokens without triggering an alert. Furthermore, we propose
methods that help in improving the deception layer, the information
received from the alerts, and the design of honeytokens.

Keywords: Honeytokens · Fingerprinting · Counter-deception

1 Introduction

Cyber attacks have reached a record level in 2021, making it the highest in 17
years with a 10% increase from the previous year [14]. A $1.07 million cost
increase is related to the spike in remote work due to the COVID-19 pan-
demic [15] in addition to the continuous growth of IoT devices [8,23]. Further,
the time needed to identify and contain a security breach may take up to 287
days [13]. To combat this, the cyber-defense community is moving toward more
active lines of defense that leverage deception-based techniques. Deception tech-
niques confuse and divert attackers from real assets by placing fake data and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. P. Reiser and M. Kyas (Eds.): NordSec 2022, LNCS 13700, pp. 101–119, 2022.
https://doi.org/10.1007/978-3-031-22295-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22295-5_6&domain=pdf
http://orcid.org/0000-0002-4989-8523
http://orcid.org/0000-0002-5720-5504
http://orcid.org/0000-0001-5966-9823
http://orcid.org/0000-0003-3344-7258
http://orcid.org/0000-0003-3336-9253
http://orcid.org/0000-0001-5068-9158
https://doi.org/10.1007/978-3-031-22295-5_6

102 M. Msaad et al.

vulnerable systems across an organization’s network. Any interaction with a
deceptive entity may be considered an attack. In practice, there are two leading
deception technologies: honeypots and honeytokens.

Honeypots are deceptive systems that emulate a vulnerable program [16,17,
20,24], for instance, a vulnerable version of the Linux operating system (OS),
an HTTP server, or an IoT device. They lure attackers and deflect them from
real assets while gathering information about the techniques and tools used dur-
ing the interaction. Honeypots differ by their low, medium or high-interaction
level [9,25,26]. As the name implies, interaction refers to how much capabilities
are offered to the adversary. The process of discovering the existence of a hon-
eypot in a system is known as honeypot fingerprinting [22,26]. The drawback
of many honeypots is that their emulation of systems/protocols exposes some
artifacts that attackers can detect.

Honeytokens are digital entities that contain synthetic/fabricated data. They
are usually stored in a system under attractive names as a trap for intruders,
and any interaction with them is considered an attack. Honeytokens can be files
such as PDFs, SQL database entries, URLs, or DNS records that embed a token.
Once accessed they trigger and alert the system about the breach [3]. Addition-
ally, honeytokens are less complex and easier to maintain when compared to
honeypots.

The honeytokens’ efficiency resides in their indistinguishability; hence, iden-
tifying that an entity is a honeytoken (known as fingerprinting), diminishes its
value. In this paper, we explore and extend the research on honeytoken finger-
printing techniques and demonstrate a fingerprinting tool that can successfully
fingerprint 14 out of 20 honeytokens offered by the most popular open-source
honeytoken service. Our contributions in this work are as follows:

– We analyze the design of open-source honeytokens to identify potential gaps
for fingerprinting purposes.

– We introduce additional techniques to detect open-source honeytokens with-
out triggering alerts.

– We propose techniques to improve the deceptive capabilities of honeytokens
and introduce features that can enhance the use of information received from
alerts triggered by intrusions.

The rest of this paper is structured as follows. In Sect. 2, we discuss the
background of the working mechanism and the fingerprinting mechanism of hon-
eytokens. Section 3 summarizes the related work of honeytoken fingerprinting.
Section 4 presents our proposed stealthy techniques for honeytoken fingerprint-
ing. Moreover, in Sect. 5 we present a proof of concept for honeytoken fingerprint-
ing. In Sect. 6, we discuss countermeasures against honeytoken fingerprinting. We
conclude our work in Sect. 7.

2 Background

Cyber-deception is an emerging proactive cyber defense methodology. When
well crafted, deception-based tools can be leveraged as source of threat intelli-

Honeysweeper : Towards Stealthy Honeytoken Fingerprinting Techniques 103

gence data. Deception techniques have two correlated defense strategies: first, to
diverge the attacker from tangible assets by simulating vulnerable systems to lure
attackers and attract attention, protecting tangible assets from being attacked.
Second, to notify about ongoing suspicious activities, which can minimize the
impact of an attack.

Honeytokens are deceptive entities that work by essentially triggering a notifi-
cation when the user initiates an action on them. The actions can vary depending
on the honeytoken type, such as read, write, query and others. The concept is to
embed a token in the deceptive entity and rely on the deceptive layer to consume
the token and trigger the alert. Figure 1 shows the conceptual flow of a honeyto-
ken. The honeytoken is deployed on a user’s system at either OS, application, or
network levels. On any attempt of access, the honeytoken triggers an alert to the
user through the notification mechanism. The recipient’s information is obtained
by placing a request to the honeytoken service. The honeytoken service acts as
an endpoint and provides a back-end for managing the honeytokens and the
metadata of the deployed honeytokens. Upon obtaining recipient information, a
notification is sent either as an email or a text message.

Action Token

Honeytoken OS/Application/Network

Load Honeytoken

Consume token

Request

Honeytoken
service

ForwardNotify

User

Adversary

Fig. 1. Honeytoken concept and alert mechanism

To explain the honeytoken mechanism in detail, we use the Canarytokens
(honeytokens service) as a case study to provide concrete examples. Canaryto-
kens is an open-source honeytoken provider that offers 20 different honeytoken
types. All the honeytokens provided share the same deployment life-cycle as
illustrated in Fig. 2.

To explain the deceptive layer and trigger mechanism, we use the PDF hon-
eytoken from the Canarytoken service. The Adobe Acrobat Reader (AAR) offers
a range of functionality for the PDF format to increase the document’s interac-
tion. One of these functionalities is the URI function, which allows linking a local
URI to the world wide web via the AAR plugin Weblink [1]. The weblink plugin
exposes its functionalities to other applications through the Host-Function-Table
API. Once the honeytoken is accessed with AAR, the URL is loaded by the

104 M. Msaad et al.

Fig. 2. Canarytokens life-cycle

weblink plugin, which on its turn will start a DNS request to resolve the domain
name. This DNS request will alert the owner of the PDF honeytoken.

Unlike honeypots, honeytokens are accessible only if the attacker is within
the system where the honeytokens reside. The attacker can gain access through
an attack or be an insider. In both cases, honeytokens are very useful as an early
alarm against successful data exfiltration if triggered.

3 Related Work

Since the invention of deception techniques, much research has been proposed for
fingerprinting the deceptive entities [2,4,7,26]. These fingerprinting techniques
fall into two categories: passive and active fingerprinting. Passive techniques do
not require interaction with the deceptive entity and focus on monitoring. How-
ever, active fingerprinting can be either stealthy or noisy. We define stealthy
fingerprinting as the process of revealing a deceptive mechanism without trig-
gering any alarm.

3.1 Honeypot Fingerprinting

Holz et al. list some artifacts produced by the honeypot simulation to detect a
honeypot [12]. For instance, by verifying the User-Mode-Linux (UML). UML is a
way of having a Linux kernel running on another Linux. The initial Linux kernel
is the host OS, and the other is the guest OS. By default, the UML executes in
Tracing Thread mode (TT) and is not designed to be hidden and can be used to
check for all the processes started by the host OS main thread. By executing the
command: “ps a”, one can retrieve a list of processes and identify UML usage’s
existence. Another sign of UML is the usage of the TUN/TAP back-end for the
network, which is not common on a real system and can identify UML usage.
Another place to look for artifacts is at the file proc/self/maps that contains

Honeysweeper : Towards Stealthy Honeytoken Fingerprinting Techniques 105

the current mapped memory regions on a Linux system. On a real OS, the end
of the stack is usually 0xc0000000, which is not the case on a guest OS. These
artifacts can be used against honeypots, rendering them visible to the attacker.

Other fingerprinting techniques, such as the network latency comparison,
focus on the network layer. For instance, by calculating the differences between
an HTTP server and a honeypot HTTP server. Mukkamala et al. utilized timing
analysis to reveal if a program is a honeypot. Comparing the timing analysis
of ICMP echo requests, they showcased that an HTTP-server honeypot will
respond slower than a real HTTP-server [18]. In another work by Srinivasa et
al., a framework for fingerprinting different honeypots is proposed. The utilized
techniques include so-called probe-based fingerprinting (such as port-scans or
banner-checks), and metascan-based fingerprinting (e.g., using data from the
Shodan API) [22].

3.2 Honeytoken Fingerprinting

Honeytokens can take the form of different data types, such as files, database
entries, and URL/DNS records. The first step of fingerprinting is to classify hon-
eytokens to build a standard fingerprint method for each type. Fraunholz et al.
have classified honeytokens based on the entity type it emulates [6]. For instance,
so-called honeypatches are classified as server-based honeytokens as they emu-
late a vulnerable decoy. The decoy may host monitoring software that collects
important attack information and deceptive files that misinform the attackers.
The attacker is redirected to a decoy once the system detects an exploit. Sim-
ilarly, the database, authentication, and file honeytokens emulate data records
and authentication credentials, such as passwords and documents. Similarly, Han
et al. proposed a multi-dimensional classification of deception techniques based
on the goal, unit, layer, and deployment of the deception [11]. The majority of
the surveyed honeytokens are classified based on the detection goal. However,
they differ in the four deception layers—the network, system, application, and
data layer. In another work, Zhang et al. proposed a two-dimensional taxon-
omy, which eases the systematic review of representative approaches in a threat-
oriented mode, namely from the domains of honeypots, honeytokens, and MTD
techniques. They classify deception techniques depending on which phase of the
Cyber Kill-Chain they can deceive an attacker. Honeytokens can be used in eight
out of twelve phases to deceive attackers [27].

To the best of our knowledge, the only work that examines honeytoken-
specific fingerprinting to date is by Srinivasa et al. [21]. The work showcases a
proof of concept regarding fingerprinting a public honeytoken provider as a case
study. Additionally, they suggest a honeytoken classification based on the four
levels of operation and their fingerprinting technique, respectively:

– Network level: The honeytokens operating on this level emulate a network
entity or use the network as the channel for delivering the alerts. The respec-
tive fingerprinting technique for this deceptive layer relies on sniffing the net-
work traffic to detect such calls. In their example with the PDF honeytoken,

106 M. Msaad et al.

Srinivasa et al. observed the usage of DNS queries. However, this fingerprint-
ing method remains passive and not stealthy as it leads to triggering the
alert.

– Application/File-Level: These honeytokens take the format of a specific
file, e.g., PDF or DOCX, and obfuscate an alert mechanism within the file.
The alert is triggered if specific applications like Adobe Reader or Microsoft
Word opens the honeytoken. The fingerprinting techniques relies on file
decompression and obtaining the file honeytoken metadata.

– System-Level: These honeytokens utilize operating systems’ features such
as event logs and inotify calls as alert mechanisms. For fingerprinting these,
Srinivasa et al. suggest monitoring background-running processes to check for
the inotify call and to look out for changes in the file or the directory path.

– Data-Level: These honeytokens emulate data and can be hard to distinguish
from actual data. The technique for fingerprinting honeytokens operating
on the data level could vary depending on the data emulated and its alert
mechanism. However, as mentioned by Srinivasa et al., viewing the file’s meta-
data can help an attacker determine whether the file is a possible honeytoken.
For instance, Honeyaccount [5] creates fake user-accounts for a system to
deceive attackers in using them and hence trigger the alert. On a compromised
Windows machine, adversaries can list the user accounts to verify the last
known activity. Additionally, adversaries can use Windows PowerShell scripts
to recover meta-data about the accounts in Active Directory. This can assist
in identifying fake user accounts.

Srinivasa et al. also present different fingerprinting techniques for each hon-
eytoken type. For instance, to fingerprint a PDF honeytoken and determine its
trigger channel, they monitored the network traffic when interacting with the file.
This fingerprinting technique is noisy as the honeytoken triggers after the inter-
action. However, a stealthier fingerprinting approach for the same honeytoken
was also applied. They used a PDF parser1 to extract information from the PDF
stream. The information consisted of a URL where the domain name belonged
to the honeytoken provider. All their proposed fingerprinting techniques relied
only on black box testing (i.e., triggering the honeytoken to find the deceptive
layer and the alerting mechanism). Lastly, the authors did not consider multiple
honeytokens but focused only on a few as a base for their proof of concept.

4 Methodology

To build the fingerprinting techniques, we used different methods to extract
information from the honeytoken implementation. The methods include white
box and black box testing.

1 https://github.com/DidierStevens/DidierStevensSuite/blob/master/pdf-parser.py.

https://github.com/DidierStevens/DidierStevensSuite/blob/master/pdf-parser.py

Honeysweeper : Towards Stealthy Honeytoken Fingerprinting Techniques 107

4.1 Honeytoken Analysis

To analyze the honeytokens, we started by building a classification to help us
create fingerprinting techniques for each honeytoken class. Srinivasa et al. have
established a Canarytoken honeytoken classification, and we use it as a building
block for our extended version [21].

In particular, we extend the previous classification and propose a new one
that maps all the publicly offered honeytokens from Canarytokens, as shown
in Table 1. We added the dependency layer as a category of classification. The
dependency can be at the application or the OS layer. The PDF, .docx honeyto-
kens can only trigger when used with a specific application. For instance, .docx
will only trigger with the application Microsoft Word and would not if opened
with the online version Microsoft 365, concluding that it is an application-
dependent honeytoken. In contrast, other honeytokens, such as the SQL-DUMP,
will trigger with any query from an SQL-capable application. This classification
also relates to the privileges needed to stop the triggering mechanism (e.g., the
OS-dependent honeytokens will require higher privileges to interrupt the trigger
process than the application-dependent ones).

The first analysis step is to classify the honeytokens based on their under-
lying operation. We leverage the syntax form of the token as the base for the
classification. From all the 20 available honeytokens, we find four base usages:
DNS, URL, SMTP, IP, and access keys base.

The second step is to classify the honeytokens based on the location of the
honeytoken identifier in the token. After analyzing all the URL/DNS-based hon-
eytokens, we observed that the token is a subdomain or a path identifier in the
URL. This brought us to conclude the trigger channel based on the location.
Subdomain honeytokens will use DNS as a trigger channel, while the URL hon-
eytokens will use the HTTP protocol.

With the classification as a base, we focus on developing fingerprinting tech-
niques that target the dependency layer and the trigger channel. We use white
and black box testing in our methodology to identify the gap in the implemen-
tation of the honeytokens that can be leveraged for developing fingerprinting
techniques.

White Box Testing. The Canarytokens (honeytoken provider) service is open
source, and we used white box testing to investigate the implementation to find
artifacts. In particular, we utilized manual static analysis to check the honeyto-
kens’ generation code for any predicted output or patterns that can be used as
a fingerprinting base. From our testing, we discover the following:

– ID length: We identify the usage of a fixed length in the honeytoken ID.
– Hardcoded data: We analyzed the source code to search for hardcoded data in

the honeytoken’s generation process. For instance, upon analyzing the code
for the .exe file honeytoken, we discover the usage of hardcoded data used to
generate a certificate.

108 M. Msaad et al.

Table 1. Extended Canarytokens classification

Honeytoken

base

Honeytoken

name

Trigger

channel

Alerting

entity

Dependency

layer

Acrobat Reader PDF
Adobe Acrobat Reader

& Others
Application

Custom .exe/ Binary
Windows

User Access Control
OS

MySQL Dump SQL Server None

SQL Server SQL Server None

DNS DNS Server None

Windows Folder
Windows

File Explorer
OS

DNS

Subdomain

Based

SVN Server

DNS

SVN Server None

Windows Word Document
Microsoft Word Desktop

Application
Application

Windows Excel Document
Microsoft Excel Desktop

Application
Application

QR Code

Fast Redirect

Slow Redirect

URL

Custom Image Web Bug

URL

Based

Cloned Website

HTTP
Web Browsers,

Curl & others
None

SMTP

Based
Email Address SMTP SMTP Server

Kubernetes Config File TLS
Kubernetes

Application

None

IP

Based Wireguard Config File
Wireguard

Protocol

Wireguard

Application

Access Key

Based
AWS Key CloudWatch CloudWatch

Application

– Template file usage: Canarytokens use a template file to generate the PDF,
.docx and .xlsx honeytokens. This template is not changed and leads to static
metadata that can be fingerprinted.

– File size: This is a result of the template file usage and constant file size. We
consider this an additional artifact to the template to enhance the probability
of accurate fingerprinting.

Black Box Testing. The black box testing did not focus on testing the sys-
tem’s internals. Instead, we used it to extract additional information that is only
available after the honeytoken generation and validate our findings. The black
box included creating and interacting with the honeytoken to reveal the trig-

Honeysweeper : Towards Stealthy Honeytoken Fingerprinting Techniques 109

ger channel and the entity responsible for triggering the alert. The implemented
techniques are as follows:

– Extracting metadata from the honeytokens to inspect if there are any static
metadata present.

– Monitoring the network traffic when triggering a honeytoken to discover the
trigger channel and confirm the white box testing findings.

– Monitoring what sub-processes were started by the application or the OS
that triggers the honeytoken. This gives us an idea of how to circumvent the
trigger mechanism and stop the honeytoken alert if possible.

With the knowledge gained from the black box, we classify the honeytokens
into three categories depending on the token base: URL/DNS, IP, and access
key based. The URL/DNS-based honeytokens have a URL or a DNS subdomain
directly in the data or the file’s metadata. Regardless of the honeytoken type,
they all have the same domain name, canarytokens.com, or the equivalent IP
address. The access key is a simple AWS access key with an identifier to link the
user information with the honeytoken.

4.2 Honeytoken Fingerprinting

The first step is to be able to fingerprint honeytokens generated from the offi-
cial website of Canarytokens2. We create and download all possible honeytokens
to familiarize ourselves and gain information about all the different honeyto-
kens offered by the Canarytokens service. In particular, we are interested on the
underlying trigger mechanism, the trigger channels, and the honeytoken depen-
dency.

To begin, the fingerprinting technique was a simple keyword search in the
honeytoken data. The keyword is usually related to the honeytoken provider or
publicly known information. We searched for the “canarytokens” keyword in the
data or the metadata of all the URL/DNS base honeytokens. Regarding the IP-
based honeytokens, our initial fingerprinting method was to perform a reverse
DNS lookup of the “canarytokens.com” domain name and compare it to the one
in the honeytoken. Finally, we did not discover any fingerprinting strategy for the
access key-based honeytokens since all the information related to the access key,
since the all the information is saved at the server of the access key provider,
except for a repeated pattern in the AWS key ID as displayed in Listing 1.1.
The identifier has 12 constant characters AKIAYVP4CIPP, which can be used
to fingerprint all the AWS keys originating from Canarytokens.

1 # 1st key

2 [default]

3 aws_access_key_id = [AKIAYVP4CIPP]G6FXFYHS

4 aws_secret_access_key = UDxJeQftE3ekx+

KS7skayD8MuN6CVVx0uemuxBSB

2 https://canarytokens.org/generate.

https://canarytokens.org/generate

110 M. Msaad et al.

5 output = json

6 region = us -east -2

7
8 # 2nd -key

9 [default]

10 aws_access_key_id = [AKIAYVP4CIPP]CF45DQPM

11 aws_secret_access_key = 8iTskHJBDDnYpUt1a2KY /

hTlbScFoAS51cJl4nO5

12 output = json

13 region = us -east -2

14
15 # 3rd -key

16 [default]

17 aws_access_key_id = [AKIAYVP4CIPP]A3TB575H

18 aws_secret_access_key = mb8HpotCq27p4rCsQGwYpXo0xx+

oQcIMpjdT+qOJ

19 output = json

20 region = us -east -2

Listing 1.1. Canarytokens AWS access key repeated characters

The second major milestone is fingerprinting the honeytokens regardless of
the domain name. We use the Canarytokens source code to set up the honeytoken
service on our private honeytoken server. The keyword search or the IP address
comparison approach is ineffective with this setup. However, the keyword search
is still valid for the .exe/.dll honeytoken files due to the hardcoded data found
in the certificate generation source code.

As mentioned before, the white box testing revealed that the URL/DNS-
based honeytokens follow a specific pattern. The DNS/URL contains a 25-
character alphanumeric identifier (ID) as displayed in Table 2, which is used
to link the honeytoken with the user’s contact information. The ID is the subdo-
main for the DNS-based honeytokens and is the path for the URL-based ones.
The placement of the URL/DNS value in the honeytoken is known to us. How-
ever, there are other URLs/DNS in some honeytokens. For instance, the URL
in the .docx honeytoken resides in the metadata, which already includes other
URLs to microsoft.com. In order to determine the existence of a honeytoken
URL, we loop through each URL and see if they have a 25-character alphanu-
meric string in the DNS/URL. If they do, we label it as a possible honeytoken
URL.

Table 2. URL/DNS Honeytokens followed pattern

Identifier uq3501pu9mo56obz6kn5auhpq

URL http://domain.name/url/path/
uq3501pu9mo56obz6kn5auhpq/contact.php

DNS uq3501pu9mo56obz6kn5auhpq.domain.name

http://domain.name/url/path/

Honeysweeper : Towards Stealthy Honeytoken Fingerprinting Techniques 111

Our analysis suggests that the file type honeytokens use a static template to
generate the PDF, .docx, and .xlsx files. For instance, the template.pdf file in
the source code leads to constant metadata in the PDF honeytoken. Normally,
some metadata attributes, such as the Document UUID, should be unique for
each file. A constant UUID will make it easy to identify any PDF file from
Canarytokens, even if the domain name is private. Additionally, other data can
make the attacker more confident that this is a honeytoken file (e.g., created
and modified dates). However, the file creation and modification dates are old (7
years), and any data in it might not be valid anymore from the attacker’s point
of view. See Appendix Listing 1.2 for more details.

The Canarytokens implementation uses template files to generate all the file
type honeytokens, which results in fixed file sizes. We observe that all the PDF,
.docx, and .xlsx have the same size of 5KB, 15KB, and 7.7KB respectively. This
additional artifact can be used with the template static metadata to raise the
confidence of our fingerprinting method. Additionally, this constant small file size
indicates that the file is empty and may not lure the attacker into interacting
with it.

5 Proof of Concept: Honeysweeper

This section demonstrates the applicability of our honeytokens’ fingerprinting
techniques based on the Canarytoken implementation [19]. The fingerprinting
tool’s, namely honeysweeper, source code is available at our GitHub repository3.

5.1 Overview

From all the information gained from the black/white box testing, we built
an OS-independent tool that can successfully fingerprint 14 out of the 20 hon-
eytokens offered by Canarytokens. The tool relies on a primary fingerprinting
technique matching the 25-character string identifier. However, this fingerprint
method introduces the problem of false positives. As we discussed earlier, some
honeytokens (i.e., file-type ones) contain more than one URL/DNS. If by any
chance, another link contains a 25 characters string, the tool will label it as a
possible honeytoken. Nevertheless, from an attacker’s perspective, we argue that
false negatives are more critical since they would raise an alarm.

Honeysweeper begins by revealing the honeytoken extension for the file-type
ones and then extracting the DNS/URL. URL/DNS/Email honeytokens can be
added in a text file and passed to the tool. As in the case of PDF, .docx and .xlsx
files, the tool needs to decompress the file as shown in Appendix Listings 1.3
– 1.4, and loops through each file to extracts all the tokens. Once obtained,
honeysweeper runs the find canarytoken(string) to match any pattern that
matches the 25-character string in the honeytoken content. The PDF, .docx,
and .exe/.dll honeytokens have higher confidence due to the earlier additional

3 https://github.com/aau-network-security/canarytokens finger printer.

https://github.com/aau-network-security/canarytokens_finger_printer

112 M. Msaad et al.

artifacts, i.e., the static template as shown in Appendix Listing 1.2 and the small
file size as shown in Fig. 3. The tool includes checks for the PDF template as a
proof of concept and can easily be enhanced to detect other files such as .docx
and .xlsx.

Fig. 3. Honeytokens file-type constant size artifact

5.2 Limitations

The Wireguard and Kubernetes honeytokens are not included in honeysweeper as
we found no possible way of fingerprinting them when deployed with a private
IP. All the data in the honeytokens are randomly generated, e.g., the public
and private keys. However, this technique remains effective if the honeytokens
are deployed with a known honeytoken provider IP address. The fingerprinting
techniques for SVN and SQL-server are not included in the fingerprinting tool
since both honeytokens are not directly accessible to the attacker. A possible
fingerprinting method for the SQL server can be to check the size of the table
where the honeytoken resides. If the table is empty, it may not deceive the
attacker for any further interaction. The other honeytokens e.g., PDF, .docx, and
SQL-dump are available directly on the system and the fingerprinting methods
are covered in honeysweeper.

6 Countermeasures Against Fingerprinting

The fixed ID length is the primary artifact shared among the studied honeyto-
kens. We propose that the honeytoken identifier should be randomized in length

Honeysweeper : Towards Stealthy Honeytoken Fingerprinting Techniques 113

or set in a range. For instance, the ID length could be between 25 and 32 charac-
ters, making the fingerprinting process harder and removing the 25-character ID
artifact. This mitigation is valid for all the honeytokens containing a URL/DNS
with 25 character identifiers. However, this only solves one problem.

The following recommendations are valid for all the template-dependent hon-
eytokens. The PDF honeytokens should have random metadata. In the case of
PDF, the attacker can generate a PDF Canarytokens and compare it to any PDF
exfiltrated. Even if the honeytoken administrator changes the domain name and
removes the 25-character ID artifact, the metadata alone is enough to raise
suspicion. To address this, we propose to randomize the PDF XMP metadata.
There are a few rules to keep the metadata consistent and not leave a metadata-
modification footprint [10]. We present our solution in Appendix Listing 1.5.

Moreover, the honeytoken administrator should modify the content of the
.docx, .xlsx, and PDF files before deployment to change the document size which
are .docx files are always 15 KB, the .xlsx files with 7.7 KB, and the PDF files
with 5 KB. Once modified, the honeytokens will resemble an actual file with data
and lure the attacker into opening it. Otherwise, the attacker can combine the
honeytoken file size with other artifacts to ensure the existence of a trap.

The signing process for the .exe/binary honeytokens should be with certifi-
cates unrelated to any honeytoken provider. As seen in the Canarytokens source
code, a new certificate is generated to sign the .exe/.dll files. We generate an
executable honeytoken using the source code locally to investigate the gener-
ation process. We see that a private key and a certificate is generated to sign
the honeytoken and are removed after the process is complete. Nevertheless, the
information included in the signature is hard-coded. Figure [4] shows the hard-
coded information in the certificate. This hard-coded information will be the
same for all the .exe/binary honeytokens and can be an artifact.

Fig. 4. Certificate hardcoded data

When deploying the stored procedure for a table on the SQL server, the
administrator can set explicit permissions on the stored procedure by denying the
public users from viewing the stored procedure’s definition. The same approach
applies for the SQL functions as a honeytoken. The function permission can be
fragmented. For example, allow the public to select the functions and views but
disallow viewing the definitions (syntax). Additionally, the trap table should be
populated with random fake data to lure the attacker into interacting with it.

114 M. Msaad et al.

The Wireguard and Kubernetes honeytokens should use an IP address not
linked with a honeytoken domain name. If no domain name is available and there
is no alternative but to use the Canarytokens servers due to development and
maintenance costs, an administrator can use a local server IP and redirect the
traffic to Canarytokens servers.

7 Conclusion

Deception techniques like honeytokens are an essential extra layer of defense,
and deploying them is becoming more and more common. However, for the
deception technique to achieve its goal, it should be well crafted to deceive and
should not include easy to exploit fingerprinting artifacts. This paper proposes
fingerprinting techniques against most existing Canarytokens’ honeytokens pro-
posals and implementations. We analyze all the publicly offered honeytokens
and propose countermeasures against the suggested techniques. As ethical dis-
closure, we informed Canarytokens of our findings. For future work, we plan on
exploring other fingerprinting methods. For instance, the signature verification
of the .exe/.dll files and other techniques. Additionally, we consider improving
the honeytoken ID generation process by including a non-repudiation concept.

Appendix

Static Data on PDF Canarytoken

Listing 1.2 shows the static data identified on parsing the composite XML file
of the PDF Canarytoken. We can observe static data on the modify date, create
date and metadata date.

1 <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP

Core 5.6-c015 81.157285 , 2014/12/12 -00 :43:15 ">

2 <rdf:RDF xmlns:rdf="http: //www.w3.org /1999/02/22 -rdf -

syntax -ns#">

3 <rdf:Description rdf:about=""

4 xmlns:xmp="http: //ns.adobe.com/xap /1.0/"

5 xmlns:dc="http: //purl.org/dc/elements /1.1/"

6 xmlns:xmpMM="http: //ns.adobe.com/xap /1.0/ mm/"

7 xmlns:pdf="http: //ns.adobe.com/pdf /1.3/">

8 <xmp:ModifyDate >2015 -07 -22 T16:41:31 +02 :00</

xmp:ModifyDate >

9 <xmp:CreateDate >2015 -07 -22 T16:38:51 +02 :00</

xmp:CreateDate >

10 <xmp:MetadataDate >2015 -07 -22 T16:41:31 +02 :00</

xmp:MetadataDate >

11 <xmp:CreatorTool >Acrobat Pro 15.8.20082 </

xmp:CreatorTool >

12 <dc:format >application/pdf</dc:format >

Honeysweeper : Towards Stealthy Honeytoken Fingerprinting Techniques 115

13 <xmpMM:DocumentID >uuid:a2364080 -b5a8 -1b46 -b156 -

ea05c4972d03 </xmpMM:DocumentID >=

14 <xmpMM:InstanceID >uuid:7656c56e -b1e6 -f444 -801f

-06 e28a50831f </xmpMM:InstanceID >

15 <pdf:Producer >Acrobat Pro 15.8.20082 </

pdf:Producer >

16 </rdf:Description >

17 </rdf:RDF >

18 </x:xmpmeta >

Listing 1.2. PDF honeytoken static metadata

Fingerprinting of PDF Canarytoken

Listing 1.3 shows the pseudo code for fingerprinting of PDF Canarytoken. The
method checks for URLs embedded in the PDF and against a list of known
honeytoken service URLs.

1 def find_token_in_pdf(file_location):

2 check_template(file_location) # check for template

artifact

3 # List for URLs found

4 list_of_urls = []

5 pdf = open(file_location , "rb").read()

6 stream = re.compile(b’.*? FlateDecode .*? stream (.*?)

endstream ’, re.S)

7 for s in re.findall(stream , pdf):

8 s = s.strip(b’\r\n’)

9 line = ""

10 try:

11 line = zlib.decompress(s).decode(’latin -1’)

changed this from UTF -8 to latin -1 as

it throws errors. We

12 # want the app to be silent :)

13 except Exception as e:

14 print(e)

15 token = Tokenfinder.find_tokens_in_string(line)

16 if token:

17 list_of_urls.extend(token)

18 if len(list_of_urls) == 0:

19 print("No canaries detected")

20 return None

21 else:

22 print(str(len(list_of_urls)) + " canary URLs

detected in the file")

23 for url in list_of_urls:

24 print("Canary detected !: ", url)

25 print ()

Listing 1.3. PDF fingerprinting

116 M. Msaad et al.

Fingerprinting of .docx and .xlsx Canarytokens

Listing 1.4 shows the pseudo code for fingerprinting of .docx and .xlsx Canary-
tokens. The techniques unzips the composite file formats to check for URLs
embedded in the files.

1 def check_office_files(file_location):

2 list_of_urls = [] # List to hold all urls in the

file

3 try:

4 # Unzip the office file without saving to

folder

5 unzipped_file = zipfile.ZipFile(file_location ,"

r")

6 # List of all the content of the zip

7 namelist = unzipped_file.namelist ()

8 # Reads every file in the zip file and looks if

it contains the string you wish to search

for

9 for item in namelist:

10 content = str(unzipped_file.read(item))

11 token = Tokenfinder.find_tokens_in_string(

content)

12 if token:

13 list_of_urls.extend(token)

14 except OSError as e:

15 print(f"Exception: {e}")

16 # If no results of the search

17 if len(list_of_urls) == 0:

18 return None

19 else:

20 print(str(len(list_of_urls)) +" canary URLs

detected in the file")

21 for url in list_of_urls:

22 print("Canary detected: ", url)

23 print ()

Listing 1.4. .docx and .xlsx fingerprinting

Mitigation of Metadata in Canarytoken

Listing 1.5 shows the mitigation by randomization of the file creation date
and time. The randomness avoids static creation dates that is implemented by
Canarytokens.

1 from pikepdf import Pdf

2 import uuid , random , datetime , os

3
4 # make creation date with random Time -Zone [+1 to +3]

Honeysweeper : Towards Stealthy Honeytoken Fingerprinting Techniques 117

5 def creation_date ():

6 time = datetime.datetime.now()

7 rand_region =str(random.randint(1, 3))

8 stamp = time.strftime(’2022-%m-%d’)+’T’+ time.

strftime(’%H:%M:%S’)+ ’+0’+ rand_region+ ’:00’

9 return stamp

10
11
12 def modification_date ():

13 time = datetime.datetime.now()

14 return time.strftime(’%Y-%m-%d’)+’T’+ time.strftime

(’%H:%M:%S’)

15
16 def add_metadata(source_pdf , out_dir):

17 mod_date = modification_date ()

18 with Pdf.open(source_pdf) as pdf:

19 with pdf.open_metadata(set_pikepdf_as_editor=

False) as meta:

20 meta[’xmp:CreatorTool ’] = ’Acrobat Pro

22.001.20112 ’

21 meta[’xmpMM:DocumentID ’] = str(uuid.uuid4 ()

)

22 meta[’xmpMM:InstanceID ’] = str(uuid.uuid4 ()

)

23 meta[’xmp:CreateDate ’] = creation_date ()

24 meta[’xmp:ModifyDate ’] = mod_date

25 meta[’xmp:MetadataDate ’] = mod_date

26 meta[’pdf:Producer ’] = ’Acrobat Pro

22.001.20112 ’

27 pdf.save(os.path.join(out_dir , os.path.basename(

source_pdf)))

28 print(’Done!’)

29
30 source_pdf = "/Users/mm/Downloads/pdftoken.pdf"

31 out_dir = ’/Users/mm/Desktop/’

32 add_metadata(source_pdf , out_dir)

Listing 1.5. Metadata mitigation

References

1. Acrobat: Acrobat API reference (2021). https://opensource.adobe.com/dc-
acrobat-sdk-docs/acrobatsdk/html2015/Acro12 MasterBook/API References
SectionPage/API References/Acrobat API Reference/AV Layer/Weblink.html

2. Aguirre-Anaya, E., Gallegos-Garcia, G., Luna, N.S., Vargas, L.A.V.: A new pro-
cedure to detect low interaction honeypots. Int. J. Electr. Comput. Eng. (IJECE)
4(6), 848–857 (2014)

3. Čenys, A., Rainys, D., Radvilavicius, L., Goranin, N.: Database level honeytoken
modules for active DBMS protection. In: Nilsson, A.G., Gustas, R., Wojtkowski,

https://opensource.adobe.com/dc-acrobat-sdk-docs/acrobatsdk/html2015/Acro12_MasterBook/API_References_SectionPage/API_References/Acrobat_API_Reference/AV_Layer/Weblink.html
https://opensource.adobe.com/dc-acrobat-sdk-docs/acrobatsdk/html2015/Acro12_MasterBook/API_References_SectionPage/API_References/Acrobat_API_Reference/AV_Layer/Weblink.html
https://opensource.adobe.com/dc-acrobat-sdk-docs/acrobatsdk/html2015/Acro12_MasterBook/API_References_SectionPage/API_References/Acrobat_API_Reference/AV_Layer/Weblink.html

118 M. Msaad et al.

W., Wojtkowski, W.G., Wrycza, S., Zupančič, J. (eds.) Adv. Inf. Syst. Dev., pp.
449–457. Springer, US, Boston, MA (2006)

4. Dahbul, R.N., Lim, C., Purnama, J.: Enhancing honeypot deception capability
through network service fingerprinting. J. Phys: Conf. Ser. 801, 012057 (2017).
https://doi.org/10.1088/1742-6596/801/1/012057

5. Faveri, C.D., Moreira, A.: Visual modeling of cyber deception. In: 2018 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pp.
205–209 (2018). https://doi.org/10.1109/VLHCC.2018.8506515

6. Fraunholz, D., et al.: Demystifying deception technology: a survey. CoRR
abs/1804.06196 (2018). https://arxiv.org/abs/1804.06196

7. Fu, X., Yu, W., Cheng, D., Tan, X., Streff, K., Graham, S.: On recognizing virtual
honeypots and countermeasures. In: 2006 2nd IEEE International Symposium on
Dependable, Autonomic and Secure Computing, pp. 211–218 (2006). https://doi.
org/10.1109/DASC.2006.36

8. Ghirardello, K., Maple, C., Ng, D., Kearney, P.: Cyber security of smart homes:
development of a reference architecture for attack surface analysis. In: Living in
the Internet of Things: Cybersecurity of the IoT - 2018, pp. 1–10 (2018). https://
doi.org/10.1049/cp.2018.0045

9. Guarnizo, J.D., et al.: Siphon: towards scalable high-interaction physical honey-
pots. In: Proceedings of the 3rd ACM Workshop on Cyber-Physical System Secu-
rity, pp. 57–68. CPSS 2017, Association for Computing Machinery, New York, NY,
USA (2017). https://doi.org/10.1145/3055186.3055192

10. Gungor, A.: Pdf forensic analysis and XMP metadata streams (2017). https://
www.meridiandiscovery.com/articles/pdf-forensic-analysis-xmp-metadata/

11. Han, X., Kheir, N., Balzarotti, D.: Deception techniques in computer security: a
research perspective. ACM Comput. Surv. 51(4), 1–36 (2018). https://doi.org/10.
1145/3214305

12. Holz, T., Raynal, F.: Detecting honeypots and other suspicious environments. In:
Proceedings from the Sixth Annual IEEE SMC Information Assurance Workshop,
pp. 29–36 (2005). https://doi.org/10.1109/IAW.2005.1495930

13. IBM: how much does a data breach cost? (2021). https://www.ibm.com/security/
data-breach

14. IBM: Insights into what drives data breach costs (2021). https://www.ibm.com/
account/reg/uk-en/signup?formid=urx-51643

15. IBM: key findings (2021). https://www.ibm.com/downloads/cas/OJDVQGRY
16. La, Q.D., Quek, T.Q.S., Lee, J., Jin, S., Zhu, H.: Deceptive attack and defense game

in honeypot-enabled networks for the internet of things. IEEE Internet Things J.
3(6), 1025–1035 (2016). https://doi.org/10.1109/JIOT.2016.2547994

17. Mokube, I., Adams, M.: Honeypots: Concepts, approaches, and challenges. In:
Proceedings of the 45th Annual Southeast Regional Conference. p. 321–326. ACM-
SE 45, Association for Computing Machinery, New York, NY, USA (2007). https://
doi.org/10.1145/1233341.1233399

18. Mukkamala, S., Yendrapalli, K., Basnet, R., Shankarapani, M.K., Sung, A.H.:
Detection of virtual environments and low interaction honeypots. In: 2007 IEEE
SMC Information Assurance and Security Workshop, pp. 92–98 (2007). https://
doi.org/10.1109/IAW.2007.381919

19. Research, T.A.: Canarytokens. https://github.com/thinkst/canarytokens
20. Sethia, V., Jeyasekar, A.: Malware capturing and analysis using dionaea honeypot.

In: 2019 International Carnahan Conference on Security Technology (ICCST), pp.
1–4 (2019). https://doi.org/10.1109/CCST.2019.8888409

https://doi.org/10.1088/1742-6596/801/1/012057
https://doi.org/10.1109/VLHCC.2018.8506515
https://arxiv.org/abs/1804.06196
https://doi.org/10.1109/DASC.2006.36
https://doi.org/10.1109/DASC.2006.36
https://doi.org/10.1049/cp.2018.0045
https://doi.org/10.1049/cp.2018.0045
https://doi.org/10.1145/3055186.3055192
https://www.meridiandiscovery.com/articles/pdf-forensic-analysis-xmp-metadata/
https://www.meridiandiscovery.com/articles/pdf-forensic-analysis-xmp-metadata/
https://doi.org/10.1145/3214305
https://doi.org/10.1145/3214305
https://doi.org/10.1109/IAW.2005.1495930
https://www.ibm.com/security/data-breach
https://www.ibm.com/security/data-breach
https://www.ibm.com/account/reg/uk-en/signup?formid=urx-51643
https://www.ibm.com/account/reg/uk-en/signup?formid=urx-51643
https://www.ibm.com/downloads/cas/OJDVQGRY
https://doi.org/10.1109/JIOT.2016.2547994
https://doi.org/10.1145/1233341.1233399
https://doi.org/10.1145/1233341.1233399
https://doi.org/10.1109/IAW.2007.381919
https://doi.org/10.1109/IAW.2007.381919
https://github.com/thinkst/canarytokens
https://doi.org/10.1109/CCST.2019.8888409

Honeysweeper : Towards Stealthy Honeytoken Fingerprinting Techniques 119

21. Srinivasa, S., Pedersen, J.M., Vasilomanolakis, E.: Towards systematic honeytoken
fingerprinting. In: 13th International Conference on Security of Information and
Networks. SIN 2020, Association for Computing Machinery, New York, NY, USA
(2020). https://doi.org/10.1145/3433174.3433599

22. Srinivasa, S., Pedersen, J.M., Vasilomanolakis, E.: Gotta catch’em all: a multistage
framework for honeypot fingerprinting. arXiv preprint arXiv:2109.10652 (2021)

23. Srinivasa, S., Pedersen, J.M., Vasilomanolakis, E.: Open for hire: attack trends
and misconfiguration pitfalls of iot devices. In: Proceedings of the 21st ACM
Internet Measurement Conference, pp. 195–215. IMC 2021, Association for Com-
puting Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3487552.
3487833,https://doi.org/10.1145/3487552.3487833

24. Vasilomanolakis, E., et al.: This network is infected: hostage - a low-interaction
honeypot for mobile devices. In: Proceedings of the Third ACM Workshop on
Security and Privacy in Smartphones & Mobile Devices, pp. 43–48. SPSM 2013,
Association for Computing Machinery, New York, NY, USA (2013). https://doi.
org/10.1145/2516760.2516763

25. Vasilomanolakis, E., Karuppayah, S., Mühlhäuser, M., Fischer, M.: Hostage: a
mobile honeypot for collaborative defense. In: Proceedings of the 7th International
Conference on security of information and networks. SIN 2014, vol. 2014, pp. 330–
333. ACM (2014)

26. Vetterl, A., Clayton, R.: Bitter harvest: systematically fingerprinting low- and
medium-interaction honeypots at internet scale. In: 12th USENIX Workshop on
Offensive Technologies (WOOT 18). USENIX Association, Baltimore, MD (2018).
https://www.usenix.org/conference/woot18/presentation/vetterl

27. Zhang, L., Thing, V.L.: Three decades of deception techniques in active cyber
defense-retrospect and outlook. Comput. Secur. 106, 102288 (2021). https://arxiv.
org/abs/2104.03594

https://doi.org/10.1145/3433174.3433599
http://arxiv.org/abs/2109.10652
https://doi.org/10.1145/3487552.3487833,
https://doi.org/10.1145/3487552.3487833,
https://doi.org/10.1145/3487552.3487833
https://doi.org/10.1145/2516760.2516763
https://doi.org/10.1145/2516760.2516763
https://www.usenix.org/conference/woot18/presentation/vetterl
https://arxiv.org/abs/2104.03594
https://arxiv.org/abs/2104.03594

	Honeysweeper: Towards Stealthy Honeytoken Fingerprinting Techniques
	1 Introduction
	2 Background
	3 Related Work
	3.1 Honeypot Fingerprinting
	3.2 Honeytoken Fingerprinting

	4 Methodology
	4.1 Honeytoken Analysis
	4.2 Honeytoken Fingerprinting

	5 Proof of Concept: Honeysweeper
	5.1 Overview
	5.2 Limitations

	6 Countermeasures Against Fingerprinting
	7 Conclusion
	References

