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Abstract. The integration of deep learning and control techniques has
created robotic systems capable of implementing visual servoing and nav-
igating autonomously in unknown environments. However, analyzing the
effect that timing interactions between controllers and deep neural net-
works have, has received little attention in the literature. In this paper
we describe a novel model that includes the effects that detection loss
and inference latency have on the controller of a visual servoing system.
To test our model we created a target tracking system consisting of a
video camera mounted on a moving platform that tracks objects using
deep neural networks.

Keywords: DNN, Visual-Servoing, Modeling, Control, Dynamics, Con-
trolled Network Systems

1 Introduction

In [10] visual servoing is defined as a close-loop feed-back system that controls
robot’s movements by processing visual features extracted from camera images.
Position-based servoing (PBVS) uses 2D image features together with the geom-
etry of the 3D space to control a robot. Contrary, in image-based visual servoing
(IBVS) only the 2D image features are used. A hybrid system combines the 2
approaches.

The survey on visual servoing in [12] describes a variety of approaches for
grasping and planning in robotic manipulators. A more recent survey on visual
servoing systems describe a variety of robotic systems that use classical and deep
learnig-based techniques to perform visual servoing [18].

A form of visual serving is the visual tracking of objects with a robot equipped
with a video camera. Visual tracking of objects can be done with or without a
controller. When the target object is moving, the controller moves the camera
mounted on a robot to track the object. In other tracking systems the target
object is static but the camera on the moving robot, requires a controller to
keep the object within its field of view (FOV). Lastly, in other tracking systems
a controller is not required since the camera is static at a fixed position and the
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target object is moving. In this last case, objects will be tracked only as long as
they remain within the static FOV of the camera.

State of the art computer vision systems rely on deep learning techniques
to detect objects with high accuracy. Deep learning is a supervised machine
learning technique whose goal is to minimize a loss function as expressed by the
following equation:

minimize
1

n

n∑
i=1

L(yi, f1(f2(..fm(w, t)))) (1)

where L is the loss function, yi are the testing labeled data of n images and
f1(f2(..fm(w, t)) is a hierarchical deep neural network (DNN) of m layers. The
DNN is trained on a dataset of size |t|, with the goal of optimizing the internal
weights w in the neurons and minimize the training error with the backpropaga-
tion algorithm [6,14,15]. The loss function used in a deep neural network depends
on the task at hand and has a significant effect on performance. Some of the loss
functions commonly used for regression tasks are the mean square error, cross-
entropy, and Huber loss. For classification tasks, the categorical cross entropy,
Hinge loss or Kullback Leibler Divergence are commonly used. In the case of ob-
ject detection, where bounding box regression is required, the Intersection over
Union (IoU) metric is commonly used as loss function.

The widespread use of deep learning techniques in visual servoing and target
tracking systems is due to its significantly better performance, compared to the
classical machine learning techniques. This is demonstrated by the fact that Deep
Neural Network (DNN) models have consistently won the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC), in the categories of object detection
and recognition [22] since 2012.

This paper presents the modeling and analysis of a visual servoing system
for tracking objects that includes a DNN sensor in its feedback control loop.
We call our sensor Deep Neural Network Visual Servoing (DVS) sensor. Our
experimental setup is an object tracking system that uses a servo mechanism to
move the camera and keep the object within the field of vision of the camera.
The effect of inference latency and detection loss on the system performance is
studied and a dynamic model is defined. In addition, we discuss some potential
control strategies. To our knowledge no other work has performed this type of
analysis on DNN-based visual servoing or tracking systems.

The paper is organized as follows: section 2 describes relevant related work
on the topic. Section 3 describes the two main factors that affect the timing
interaction between the DNN and the controller in our system. 4 describes the
experimental set-up used, section 5 describes the model, section 6 discusses some
potential control solutions and section 7 concludes the paper.

2 Related Work

In recent years, many visual servoing and tracking systems based on deep neural
networks and other machine learning techniques have been proposed, An exam-
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ple is [11], in which the authors use the Interacting Multiple Models (IMM) al-
gorithm to fuse several linear dynamic models of the target object. Additionally,
the gain of an Extended Kalman Filter is automatically adjusted to minimize
tracking errors.

In a similar work, in [21], a Kalman filter is also used for object tracking,
but in this case its noise covariance matrices are fine tuned through the Particle
Swarm Optimization algorithm. Lastly, a face tracking algorithm is described in
[29], combining a Kalman filter used as a visual state estimator and an echo state
network-based self-tuning algorithm to create a robust face tracking system.

In all previous visual tracking systems the camera is static. Contrarily, visual
servoing tracking systems include a controller to move the robotic platform in
which the camera is mounted, to follow or reach an object. Examples of visual
servoing tracking systems are drones equipped with DNNs that track and follow
forest trails autonomously as is described in [5].

Other examples of DNN-based visual servoing systems, are drones capable of
detecting and tracking wind turbines to navigate towards them. An example of
such a system is [20]. Another recent example is [4], where moving objects are
tracked and followed by a ground robot. In this last case, the tracking system
employs MobileNet [9], a DNN based on the Single Shot Multibox Detector
(SSD) [16] architecture that detects objects and a PI controller that controls
robot’s movements to keeping the target object within the FOV of the camera
and at a safe distance.

Lastly, using a completely different approach, in end-to-end systems the con-
troller is completely eliminated by a DNN that has learned to mapping directly,
image pixels to steering wheel commands, as is described in [2] using supervised
machine learning. A similar system, Dronet described in [17], is capable of learn-
ing the steering angle and a collision probability, by using training data collected
from driving cars and bicycles.

3 Effect of DNNs on Controllers

In all applications on visual servoing and visual tracking described in previous
section, the DNNs continuously perform inferences in real-time. However, infer-
encing is a computationally expensive task and therefore, DNNs may introduce
delays in the feedback control loop that may cause system’s instability. The delay
could be substantially reduced by optimizing DNN’s architecture or using faster
parallel processing hardware. For instance, optimized DNNs such as MobileNet
V3-Small have a latency of 43 ms with an accuracy of 16.1 mAP [8] on mobile
devices. TPUs and Jetson Nano Graphical Processing Units (GPU) boards can
provide latencies from 2.9 to 18 ms when performing inferences with MobileNet
V2 [7]. In spite of these low delays, the latency due to inferences performed in
real time may still be significant even. This is because of the limited computing
power in the host processor that additionally to the DNN, should manage the
multiple tasks in kernel’s scheduler and the communication to send and receive
commands that will be used to move and localize the robot at a certain position.



4 Petar Durdevic et al.

The effect of latencies in a DNN-based visual servoing system, is similar to the
effect that random delays have on networked control systems. In this last case,
the delays happen when the sensors send their data to the controller through
a communication network of limited bandwidth as is described in [26] and [30].
One possible solution to the time delay problem in networked control systems
is to use buffers, however when the delay is large the control system may be
responding to past events causing system’s instability [19].

Latencies are not the only problem in DNN-based visual servoing systems.
DNNs may be also unable of detecting objects, occasionally. This may happen
when there are poor lighting conditions or the robot or target object are moving
fast. In these conditions, no output detection will be produced by the DNN.
We call this effect detection loss. One way to alleviate this problem is by using
Kalman filters to estimate the most likely position of the target tracking object
when a detection lost has been detected. However, the limitation of this approach
is that if detection loss is significant, the Kalman filter may be unable of tracking
an object.

The detection loss effect in DNNs is similar to random packet loss in net-
worked control systems. In these systems, data packets sent by the sensors or
the controller may be lost in the network due to noise or traffic congestion in the
routers. The network protocols used, either TCP or UDP, have different effects
on the control system’s behavior since lost packets may or may not be sent again.

Including the effect of DNN’s latency and detection loss in the modeling of a
visual servoing system is a challenging problem since this makes the system no
longer time-invariant.

4 Experimental Setup

We created an experimental visual servoing system that includes our DVS sensor
and a control system. Its function is to detect and keep track of an object, so that
when the servo motor that has the camera mounted moves, the camera rotates
to keep track of an object. The object we have chosen for our experiments is a
human face. Figure 1 shows the main components of our experimental setup.

RPI TeensyNCS

Servo

Camera

Compass
I2CUSBUSB3.1

UART

PWM

Fig. 1: Experimental setup of the visual servoing system
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As figure shows, an Intel’s Neural Compute Stick 2 (NCS) is attached to a
Rasberry PI v3 (RPI) board through an USB 3.1 port. The Logitech 920 video
camera sends images to the RPI that are processed by the DNN running in the
NCS to detect objects. The Teensy v3.6 board is connected through I2C bus to
a servo motor (HD-1800A - analog servo v.2) with the video camera attached.
As the servo and the camera move, the NCS detects changes in the position
of the target object within the image and sends the updated position to the
controller running on the RPI. The controller in turn, sends a PWM signal to
the servo motor attached to the Teensy board that rotates the camera in the x
coordinate an angle ψ, to keep the target object within the field of vision of the
camera. The IMU BDO055 compass, measures the three axis orientation data
of the servo and camera. This data is used to compute the rotation angle of the
camera and compare it with the calculated angle using the DVS sensor’s output
data as is described in the next section.

4.1 DNN and Communication Protocol

In our experiments we used a pretrained DNN that has MobileNet V1 [9] as
backbone. MobileNet was designed to have a small size and low latency. Its
low latency is mainly achieved by using more efficient depthwise convolutions
rather than standard convolutions in the first layers of the network. Contrary
to standard convolutions, in depthwise convolutions, instead of applying the
convolution filters and then combining the inputs in a single layer, the filtering
and combination is performed in two layers. First, a single filter is used for each
input channel and then pointwise convolution is applied to combine the outputs.

MobileNet was pretrained to detect faces in images, producing as its output
the position of the bounding box around a face and a confidence value.

The image detection output of the DVS has the following data format:

DV Sout = [iid, l, c, xmin, ymin, xmax, ymax]

where iid is the image id, l is the label, c is the confidence value, xmin, ymin

are coordinates of the top left bounding box corner, and xmax, ymax are the
coordinates of the bottom right bounding box corner.

To communicate data from the MobileNet DNN, running on Intel’s NCS on
RPI board, to the Teensy board, we created a simple communication protocol
that sends data packets containing bounding box data and the detection latency
of the network trained to detect faces, that achieved a confidence value larger
than a threshold set arbitrarily to 0.7. The data packets sent have the following
data format:

[∆tdp
, DV Sout]

Where ∆tdp
is the detection data arrival time difference at the controller

node and DV Sout is the data output of the network. The data packets are sent
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to the Teensy board through the UART interface, when a face is detected on an
image.

With the DV Sout values we compute the width, height (w, h), and the center
coordinates of the bounding box [u, v]T

w = xmin − xmax

h = ymin − ymax

(2)

u = xmin +
w

2

v = ymin +
h

2

(3)

Using the center of the bounding box u value in Equation 3, the rotation
angle for the camera in the x direction is calculated in equation 4. This angle is
used to keep track of an object located within a bounding box.

ψDV S = atan

(
u− uc
f

)
(4)

where uc is the center of the image frame and f is the focal length.

To calculate the rotation angle we need camera’s intrinsec parameter focal
length. The Logitech 920 video camera used in our experiments has the intrinsec
parameters shown in Table 1.

Intrinsic parameters Value unit

Resolution [672,384] pixels
Focal Length 3.67 mm
Pixel Size 3.98 µm

Table 1: Camera’s intrinsic parameters

5 Model

A visual servo system can be represented by the block diagram in figure 2 where
the output is generated by a DVS sensor. The sensor is perturbed by noise vk
which is added to the DVS signal ỹk that is used as the feedback signal to
a controller. This signal may suffer from detection losses, an effect similar to
dropout of packages γk in networked control systems. Additionally, the signal
may arrive with a delay τk. The controller in this case can be of any type.

In the next sections we discuss how to model the detection loss and the delay.
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Controller Actuator Plant DVS
uc
k ua

k ŷk

γk = 0

γk = 1
Delay τk

ysp
k ek ỹk Output

vk
wk

−

yk

Fig. 2: Block diagram of the considered system, we can simplify this and remove
the reference for now, as this part is not considered in this paper

5.1 Definition of the System with Detection Loss

A stochastic plant can be described as a discrete time linear dynamic system by
the equation 5 [26]:

xk+1 = Axk +Buk + wk

yk = γk(Cxk + vk)
(5)

and the controller’s output in discrete time

uk = −Kxk (6)

where xk ∈ Rn is the state vector, uk ∈ Rm is the control input, wk is the
white noise process, and vk is the measurement error and K is the control gain.

γk is formally known as the package loss as described in [24–28], and is is
defined as a Bernoulli random variable.

In our case it represents the detection loss, and it is defined in equation 7

γk =

{
1 if detection data arrives before or at time t, t ≤ k,

0 otherwise
(7)

where the arrival time is defined as tk and k is the sample number with a
smapling period ts, and thus for every detection the DVS sensor sends a packet
yk. That is:

yk =

{
Cxk + vk if the object is detected

0 otherwise
(8)

this is the main difference from the formulation in [26], where:

yk =

{
Cxk + vk if the packet is delivered

vk otherwise
(9)
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i.e. if the packet is not delivered the output is pure noise.

The detection D, is defined as:

D =

{
1 if pd > ζ

0 otherwise
(10)

where pd is the probability of detecting an object and ζ is a threshold. The detec-
tion success, i.e. γk = 1, is dependent on the DNN’s inferencing process, which is
difficult to model as it depends on a multitude of identifiable and unidentifiable
sources. Some of these are: type of the DNN, amount of data used for training,
size of the object within an image, current lighting conditions, use of accelera-
tion hardware and amount of memory available in the computing device, among
others.

Assumption 1. If the object cannot be detected for k = {t,∞} by the DNN, we
will have the following condition: γk = 0, for k = {t,∞}

Typically this is considered as a sensor failure, but in the case of the DVS
this represents the inability of the DNN to detect an object even though the
system continues working.

The DVS’s stochastic and dynamic properties have been used in our exper-
imental set-up, described in section 4. The experimental results are shown in
figure 3. In this figure, the top plot shows the reference signal for the servo [u],
the angle of the camera measured with the IMU [ψ], the object location in the
image plane measured by the DNN [DNN], the data is normalized. The mid-
dle plot shows the computed translational velocity of the object, relative to the
camera. The bottom plot shows the detection data arrival time difference at the
controller node [∆tdp

].
From the results in figure 3, we can observe that the detection loss occurs

more frequently as the relative object’s velocity increases and thus it becomes
more difficult to detect. The unknown properties of γ represent a great challenge
to the feedback control structure, as the loss of feedback signal might bring the
system to instability.

5.2 Delay

In addition to the detection loss, the system shown in figure 2, suffers from a
detection delay. The detection delay at time k, τk, represents the delay or latency
of the DVS. τk comprises multiple delay sources, the main of which are:

τk = τos + τif + τcp (11)

where τos is the delay caused by the operating system scheduling, τif is the
delay caused by the inference process within the DNN, τct is the delay caused
by the communication protocol. Thus τk represents the time from when the
object is observed to the time when its detection is outputted from the DVS and
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Fig. 3: Experimental results, analysis of the DVS sensor.
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consequently this is analogous to the bandwidth of the DVS. In the experimental
set-up, We have observed in our system that the following relationship holds:

τif > τos + τcp (12)

meaning that inference time is the largest latency. This relationship is highly
dependable on the network type and size, and on the hardware and communica-
tion protocol. A more powerful tensor processing unit (TPU) could potentially
invert this relationship.

Another important aspect is that the total delay τk is dependent on the
detection loss γk, similarly as was stated in [24], having the following relationship:

τk =

{
∞ if γk = 0

τk otherwise
(13)

We have that if we get lost detection at time t we will not expect to receive
that detection data in the future.

Thus the measurement model is defined as:

yk = γkCkxk + vk (14)

where vk ∼ N(0, Qk) is the measurement error covariance. Now we can formulate
the delayed output equation 5, following [13], as:

y∗k = γkC
∗
sxs + v∗k (15)

where s = k −M , where M is the number of delayed samples. In comparison
to a typical sensor used in robot feedback control, such as a gyroscope, which
has a bandwidth of > 500Hz [3], the bandwidth of a DVS sensor depends on
several factors as mentioned earlier. In the current work we have analyzed the
bandwidth of our experimental set-up, by subjecting the sensor to a pseudo-
random amplitude step input, refer to figure 4, to analyze the response and
check if the delay is time varying. And in this case we have measured an average
delay of τ̄k = −0.71776 s which equates to a bandwidth of 1.3931 Hz. This delay
can play a significant factor in typical robotic systems as the bandwidth of the
sensors is relatively low in comparison to the closed loop systems bandwidth.

6 Discussion

It is well known that the performance and robust stability of a control system
changes significantly when the plant includes time-delay [23], and as shown ear-
lier, detection loss adds a significant additional delay into the system which can
be even larger than τk, if no object is detected for long periods of time.

To ensure that the system behaves desirably the following assumption can
be made:

Assumption 2. The closed loop system bandwidth ωCL follows the following
inequality ωCL <

1
max (τ)
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Fig. 4: Experimental Data, the DVS sensor subjected to a pseudo-random am-
plitude step input.
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Due to equation 13, the assumption 2 can be difficult to fulfill, as the system
might experience very long delays due to detection loss. This can be solved
in a series of ways. One possible solution is to use a low pass filter (LPF), as
is commonly used as a way of handling disturbances [23], or by changing the
physical properties of the system e.g. the inertia. However, changing the inertia
in real time is in most cases not practically feasible. On the other hand a dynamic
LPF could easily be implemented, where τ could be estimated using normalized
cross-correlation between z and x [1].

Switching Controller Rule

One workaround to manage the detection losses, could be to introduce a hybrid
controller structure:

According to assumption 1, we could under certain circumstances have a
γk = 0, for k = {t,∞}, thus we define β as

β =

{
1 if

∑
γk < dmax

0 otherwise
(16)

where

u = βK1x+ (1− β)K2x (17)

where dmax ∈ Z = {0, 1, 2, 3, . . . } is the maximal number of detection losses
and β is the switching rule. If β = 1 one controller design option could be to
have K1 = 0, i.e. stay still until the DVS sensor has regained tracking on the
object. This evidently results in the system reducing its speed and with reduced
speed increases the probability of tracking the object.

7 Conclusion

In this work we analysed the effect that the dynamic behaviour of a DVS may
have on a control system, through a series of experiments. We then formulated
a model for this type of visual servoing system, based on the principles of net-
worked control systems, which models the random delay and detection loss asso-
ciated with the DVS. One of the key differences between the networked control
systems and the DVS is that the detection loss is different in nature to packet
loss. The difference being that in the case of a DVS, if detection loss occurs, the
data will be lost forever. However, in the case of a networked control system, in
most cases the package drop will result in data arriving later in the buffer. In
order to use the DVS signal as a feedback to a controller, an estimator would
be needed to predict the true state during loss of data. This and how to im-
plement it in our prototype system will be part of our future work. Lastly, we
discussed some possible solutions to this problem and some potential control
systems issues.
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