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Density-Based Top-K Spatial Textual Clusters
Retrieval

Dingming Wu, Ilkcan Keles#, Song Wu#, Hao Zhou, Simonas Šaltenis,
Christian S. Jensen, and Kezhong Lu�

Abstract—So-called spatial web queries retrieve web content representing points of interest, such that the points of interest
have descriptions that are relevant to query keywords and are located close to a query location. Two broad categories of such
queries exist. The first encompasses queries that retrieve single spatial web objects that each satisfy the query arguments.
Most proposals belong to this category. The second category, to which this paper’s proposal belongs, encompasses queries
that support exploratory user behavior and retrieve sets of objects that represent regions of space that may be of interest to the
user. Specifically, the paper proposes a new type of query, the top-k spatial textual cluster retrieval (k-STC) query that returns
the top-k clusters that (i) are located close to a query location, (ii) contain objects that are relevant with regard to given query
keywords, and (iii) have an object density that exceeds a given threshold. To compute this query, we propose a DBSCAN-based
approach and an OPTICS-based approach that rely on on-line density-based clustering and that exploit early stop conditions.
Empirical studies on real data sets offer evidence that the paper’s proposals can find good quality clusters and are capable of
excellent performance.

F

1 INTRODUCTION

Spatial keyword query processing [1]–[12] allows
users to receive answers to geographically constrained
queries that take into account information about
“what” the user is searching for as expressed by
keywords. For instance, a query may request a “good
micro-brewery that serves pizza” that is close to the
user’s hotel. In general, a spatial keyword query
retrieves a set of spatial web objects that are located
close to the query location and whose text descrip-
tions are relevant to the query keywords. Figure 1(a)
illustrates a query q (black dot) with keywords ‘out-
door seating’ that requests the top-5 restaurants (red
squares) in London from TripAdvisor1 based on a
ranking function that is a weighted sum of spatial
distance and text relevance. Several spatial keyword
query variants have been studied. Proposals differ
in terms of the query arguments and in how the
objects matching the query arguments are found and
ranked. A continuously moving top-k spatial keyword
query [9], [13] requests the up-to-date result while
the query location changes continuously. A location-
aware top-k prestige-based text retrieval query [14]
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gives high rankings to the objects that have relevant
surrounding objects. A collective spatial keyword
query [15] retrieves a set of objects that taken together
best match the query arguments. Spatial keyword
queries are also investigated in road networks [16],
[17], and Li et al. [18] study spatial keyword search
constrained by a movement direction.

Most studies consider the retrieval of one or more
objects, each of which satisfies the query. However,
in some use cases, users may be interested in re-
gions with many objects that satisfy query parameters
rather than in a set of objects scattered in space.
For instance, a user may prefer to visit one nearby
shopping area to explore multiple outlets selling jeans,
rather than visiting one jeans shop in zone A and
another in zone B. Such functionality is also useful for
a marketing manager, who wishes to get an overview
of the locations of coffee shops in a central business
district. In addition, similar businesses are often lo-
cated close to each other and form small regions,
such as shopping, dinning, and entertainment areas,
to attract customers [19]. Some previous studies [20]–
[22] consider co-location relationship between objects
and retrieve regions so that the total weights of
objects inside the regions are maximized. However,
these studies are limited regarding the shapes of
the regions retrieved, such as a fixed-size rectangle
or a circle. A recent study [23] requests the length-
constrained maximum-sum region of interest where
the road network distance between objects is less than
a query constraint and the sum of the ranking scores
of the objects inside the region is maximized. This
kind of query may still retrieve a region containing
many objects with low ranking scores and may ignore
promising regions with few objects with high ranking
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scores. Also a query range must be specified, which
helps reduce the search space.

We aim at a solution supporting convenient ex-
ploration of nearby web objects. It should have no
constraints on the shapes of retrieved regions. To this
end, we consider the regions of interest as spatial tex-
tual clusters and study a new type of query, namely,
the top-k Spatial Textual Cluster (k-STC) query that
returns the top-k clusters, such that (i) each cluster
contains relevant spatial web objects with regard to
query keywords, (ii) the density of each cluster sat-
isfies a query constraint, and (iii) the clusters are
ranked based on both their spatial distance and text
relevance with regard to query arguments. Figure 1(b)
shows an example 5-STC query (black dot) with the
same keywords, ‘outdoor seating,’ and location as the
query in Figure 1(a). The top-5 spatial textual clusters
(restaurants in London from TripAdvisor) are shown
in Figure 1(b).

(a) Top-5 Objects (b) Top-5 Clusters

Fig. 1. Top-k Objects vs. Top-k Clusters

Finding clusters can be achieved using different
approaches. We adopt density-based clustering due to
the following advantages: (i) no need to specify the
number of clusters, (ii) clusters may have arbitrary
shapes, and (iii) clusters are robust to outliers. The
basic steps for the top-k STC retrieval are (i) obtaining
the objects that are relevant to the query keywords
and (ii) applying a density based clustering algorithm
to find the top-k clusters of the relevant objects. The
clustering algorithm processes the objects in a pre-
defined order. It terminates when no cluster with a
better ranking score can be found. We consider a
function to rank clusters (introduced in Section 2)
that favors clusters close to the query location that
contain objects with high textual relevance to the
query keywords. Different query keywords result in
different clusters. For example, Figure 2 shows the
top-5 clusters of two queries with the same loca-
tion (black dot) but keywords ‘local cuisine’ versus
‘dessert’ when applied to the restaurants in London
from TripAdvisor. The query keywords are unknown
until a query arrives. Pre-computing the clusters for
all possible query keywords is computationally pro-
hibitive. We thus target efficient solutions that are
able to compute on the fly top-k clusters with good
response times.

(a) ‘local cuisine’ (b) ‘dessert’

Fig. 2. Example Top-5 Clusters

Based on the density-based clustering model, we
study DBSCAN and OPTICS based approaches to the
efficient processing of k-STC queries. The DBSCAN-
based approach targets scenarios where users have ex-
plicit density requirements, while the OPTICS-based
approach targets the cases where density parameters
are difficult to specify.

The DBSCAN-based approach applies the state-
of-the-art density based clustering algorithm DB-
SCAN [24] together with the IR-tree [10] to find the
top-k clusters. The original DBSCAN algorithm has
to check the neighborhood of each relevant object
in order to identify dense neighborhoods because a
cluster found by DBSCAN consists of several core
objects and their dense neighborhoods. We improve
this by reducing the number of objects to be exam-
ined. Moreover, determining whether a neighborhood
is dense or not is time-consuming, since it involves
issuing range queries. We design spatially gridded
posting lists (SGPL) to estimate the selectivity of range
queries so that sparse neighborhoods can be detected
quickly, thus saving computational cost. The SGPL
also enable processing of the remaining necessary
range queries more efficiently compared to using the
IR-tree.

The OPTICS-based approach extends the state-of-
the-art algorithm OPTICS [25] and generates an or-
dering of relevant objects w.r.t. the query keywords,
which represents the inherent density-based cluster-
ing structure of the data. The top-k clusters are ex-
tracted from this structure. We observe that simply
using the original OPTICS algorithm is inefficient. In-
stead, we propose an algorithm OPTICS-OM based on
a word-ordering index that avoids computing clusters
from scratch, reducing the computational cost of the
k-STC query significantly.

The rest of the paper is organized as follows. Sec-
tion 2 formally defines the top-k spatial textual cluster
query. The DBSCAN-based approach is proposed in
Section 3. The OPTICS-based approach is presented
in Section 4. We report on an empirical performance
study in Section 5. Finally, we cover related work in
Section 6 and offer conclusions in Section 7.
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2 PROBLEM DEFINITION

We consider a data set D in which each object p
is a pair 〈λ, ψ〉 of a point location p.λ and a text
description, or document, p.ψ (e.g., the facilities and
menu of a restaurant). Document p.ψ is represented
by a vector (w1, w2, · · · , wi) in which each dimension
corresponds to a distinct term ti in the document. The
weight wi of a term in the vector can be computed in
different ways, e.g., using tf-idf weighting [26].

We adopt density-based clustering [24], meaning
that clusters are query dependent. We proceed to
adapt existing definitions to the top-k spatial textual
cluster query studied in this paper.

Definition 1: Given a set of keywords ψ, the rel-
evant object set Dψ satisfies (i) Dψ ⊆ D and (ii)
∀p ∈ Dψ(trψ(p.ψ) > θ ∧ p.ψ contains at least one
keyword in ψ).

Function trψ(p.ψ) is used for evaluating the text
relevance of an object p w.r.t. keywords ψ, e.g., using
language models [27]. In general, the larger the func-
tion value is, the more relevant the object is. System
parameter θ is pre-defined to exclude objects with low
relevance.

Definition 2: The ε-neighborhood of a relevant ob-
ject p ∈ Dψ , denoted by Nε(p), is defined as Nε(p) =
{pi ∈ Dψ | ‖p pi‖ ≤ ε}, where ‖p pi‖ is the Euclidean
distance between p and pi.

Definition 3: An ε-neighborhood of a relevant object
Nε(p) is dense if it contains at least minpts objects, i.e.,
|Nε(p)| ≥ minpts .

Definition 4: A relevant object p is a core if its ε-
neighborhood is dense.

Definition 5: A relevant object pi is directly reach-
able from a relevant object pj with regard to ε and
minpts if

1) pi ∈ Nε(pj)
2) |Nε(pj)| ≥ minpts

Definition 6: A relevant object pi is reachable from a
relevant object pj with regard to ε and minpts if there
is a chain of relevant objects p1, · · · , pn, where pi = p1,
pj = pn, such that pm is directly reachable from pm+1

for 1 ≤ m ≤ n.
Definition 7: A relevant object pi is connected to a

relevant object pj with regard to ε and minpts if there
is a relevant object pm such that both pi and pj are
reachable from pm with regard to ε and minpts .

Definition 8: A spatial textual cluster R with regard
to ψ, ε, and minpts satisfies the following conditions:

1) R ⊆ Dψ .
2) R is a maximal set such that ∀pi, pj ∈ R, pi and

pj are connected when considering only objects
in Dψ .

A spatial textual cluster is a density-based clus-
ter [24] found from the relevant object set Dψ

that is parameterized by the query keywords ψ. A
top-k Spatial Textual Cluster (k-STC) query q =

〈λ, ψ, k, ε,minpts〉 takes five parameters: a point loca-
tion λ, a set of keywords ψ, a number of requested ob-
ject sets k, a distance constraint ε for neighborhoods,
and the minimum number of objects minpts in a dense
ε-neighborhood. It returns a list of k spatial textual
clusters that minimize a scoring function and that are
in ascending order of their scores. The maximality of
each cluster indicates that the top-k clusters do not
overlap. The density parameters ε and minpts indicate
intuitively how far a user is willing to travel before
reaching another place of interest. They depend on
users’ preferences.

The k-STC query favors clusters with high text
relevance to the query keywords and that are located
close to the query location. We use the following
scoring function.

Sq(R) = α · dq.λ(R) + (1− α) · (1− trq.ψ(R)), (1)

where dq.λ(R) is the minimum spatial distance be-
tween the query location and the objects in R and
trq.ψ(R) is the maximum text relevance value of the
objects in R. Our approaches are not limited to the
above scoring function but rather are applicable to
any scoring function that is monotone in both the
spatial distance and the text relevance. Parameter α
is used to balance between the spatial proximity and
the text relevance of the retrieved clusters. All spatial
distance and text relevance values are normalized to
range [0, 1].
Example 2.1: Consider an example k-STC query q with
location q.λ and q.ε as shown in Figure 3(a) and with
q.ψ = {coffee, tea}, q.k = 1, and q.minpts = 2. The
data set contains the 7 objects p1, p2, · · · , p7 shown in
Figure 3(a). Figure 3(b) shows the document vectors
and the Euclidean distances to the query location of
the objects. Let α = 0.5 and trq.ψ(p.ψ) =

∑
t∈q.ψ wt,

where wt is the value of the corresponding dimension
in p.ψ for term t in the query keywords. The top-1
cluster is R = {p3, p5} with score 0.155 (= 0.5× 0.11 +
0.5× (1− 0.8)). �

p1
p2

p4 p5
p6

q

p7

p3

ε coffee tea pizza dq.λ(pi.λ)
p1 (0.2, 0.2, 0) 0.25
p2 (0.2, 0.2, 0) 0.2
p3 (0.5, 0.2, 0) 0.11
p4 (0, 0, 0.5) 0.18
p5 (0.3, 0.5, 0) 0.15
p6 (0.5, 0, 0) 0.1
p7 (0.5, 0.5, 0) 0.19

(a) (b)

Fig. 3. Example k-STC Query

3 DBSCAN-BASED APPROACH

3.1 Basic Algorithm

We first introduce the index structures used for orga-
nizing objects and then present a basic algorithm for
the processing of k-STC queries.
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3.1.1 Indexes

We adopt the IR-tree [10] and inverted file [28] index
to organize objects.

An inverted file index has two main components.
• A vocabulary of all distinct words appearing in

the text descriptions of the objects in the data set.
• A posting list for each word t, i.e., a sequence of

pairs (id , w) where id is an identifier of an object
whose text description contains t and w is the
weight of t.

The IR-tree is an R-tree [29] extended with inverted
files. Each leaf node contains entries of the form
e0 = (id ,Λ), where e0.id refers to an object and e0.Λ is
a minimum bounding rectangle (MBR) of the spatial
location of the object. Each leaf node also contains a
pointer to an inverted file that indexes the text of all
objects stored in the node. Each non-leaf node N in
the IR-tree contains entries of the form e = (id ,Λ),
where e.id points to a child node of N and e.Λ is the
MBR of all rectangles in entries of the child node. Each
non-leaf node also contains a pointer to an inverted
file that indexes the pseudo text of the entries stored
in the node. A pseudo text description of an entry
e is a summary of all (pseudo) text descriptions in
the entries of the child node pointed to by e. This
enables the derivation of an upper bound on the text
relevance of a query of any object contained in the
subtree rooted at e.
Example 3.1: Table 1 shows the inverted file indexing
the 7 objects in Figure 3. For example, the posting
list for word ‘pizza’ tells that the text description
of p4 contains ‘pizza’ that has weight 0.5. Figure 4
illustrates the IR-tree with fanout 2 indexing the same
objects. For example, the weight of ‘coffee’ for entry
N6 in inverted file IF 7 is 0.5, which is the maximal
weight of ‘coffee’ in the two documents in the child
node of N6. �

TABLE 1
Example Inverted File

coffee (p3, 0.5), (p6, 0.5), (p7, 0.5), (p5, 0.3), (p1, 0.2), (p2, 0.2)
tea (p5, 0.5), (p7, 0.5), (p1, 0.2), (p2, 0.2), (p3, 0.2)
pizza (p4, 0.5)

p4 p5 p6 p7 p1 p2p3

N1 N2 N3 N4

N5 N6

IF1

pizza: (p4,0.5) 
tea: (p5,0.5)

coffee: (p5,0.3)

IF2

coffee: (p3,0.5)

tea: (p3,0.2)

IF3

coffee: (p6,0.5),(p7,0.5)

tea: (p6,0.5)

IF4

coffee: (p1,0.2),(p2,0.2)

tea: (p1,0.2),(p2,0.2)

IF6

coffee: (N3,0.5),(N4,0.2)

tea: (N3,0.5),(N4,0.2)

IF5

pizza: (N1,0.5) 
tea: (N1,0.5),(N2,0.2) 
coffee: (N2,0.5),(N1,0.3)

IF7

pizza: (N5,0.5)

tea: (N5,0.5),(N6,0.5)

coffee: (N5,0.5),(N6,0.5)

Fig. 4. Example IR-tree

3.1.2 Algorithm

A k-STC query returns the top-k density-based clus-
ters found in the relevant object set Dψ with regard
to the query keywords. A straightforward solution is
first obtaining the relevant object set Dψ and then find
all density-based clusters in Dψ . These clusters are
sorted according to the scoring function (Equation 1),
and the top-k clusters are returned. This solution is
inefficient because finding all clusters is expensive.
The complexity of this straightforward solution is
O(N logN), which equals the complexity of DBSCAN.
The proposed basic algorithm is able to return the
top-k clusters without first computing all clusters.
Specifically, candidate clusters are obtained first. A
threshold is set as the score of the k-th candidate
cluster. The basic algorithm estimates a lower bound
on the scores of all unfound clusters. If the bound is
worse than the threshold, the top-k candidate clusters
constitute the final result.

Algorithm 1 shows the pseudo code of the basic
algorithm. It first obtains the relevant object set Dψ

with regard to the query keywords by unioning the
posting lists of the query keywords in the inverted
index (line 1). Next, it sorts the objects in Dψ in
ascending order of their Euclidean distances to the
query location, i.e., dq.λ(p.λ), and stores the result in
slist (line 2). Then, the objects in Dψ are sorted in
descending order of their text relevance to the query
keywords, i.e., trq.ψ(p.ψ), and the result is stored in
tlist (line 3). The candidate list rlist is initialized as
empty and the threshold is set to infinity (line 4).
The algorithm then traverses the two sorted lists in
parallel (line 6). Specifically, the algorithm alternates
between removing top elements from the two lists.
As object p is obtained from one of the lists, function
GetCluster (Algorithm 2) tries to build a cluster
containing p as a core object (line 7). Meanwhile, the
objects contained in the cluster are removed from both
slist and tlist . If the cluster is not empty, it is added to
the candidate list rlist , and the threshold τ is updated
to the score of the k-th candidate in rlist (lines 8–10).
As detailed later, the algorithm then computes a lower
bound bound on the scores of all unfound clusters
(line 11). The result is guaranteed to be found when
bound ≥ τ or slist is exhausted (indicating that tlist is
also exhausted) (line 12). The top-k candidate clusters
in rlist are the result.

Before describing how the lower bound of the
scores of all unfound clusters is computed, we first
consider how clusters are built. To retrieve a cluster
R containing p as a core object, function GetCluster
(Algorithm 2) issues a range query centered at p
with radius q.ε on the IR-tree (line 2). The goal is to
check whether the ε-neighborhood of p is dense. If
the result neighbors of the range query contains fewer
than q.minpts objects (a sparse neighborhood), object
p is marked as noise, and an empty set is returned
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(lines 3–6). Otherwise, neighbors is considered as a
temporary cluster (line 8). Next, the temporary cluster
is expanded by checking the ε-neighborhood of each
object pi in neighbors except p (lines 12 and 13). If
the ε-neighborhood of pi is dense (line 14), the objects
in the neighborhood that were previously labeled as
noise are added to the temporary cluster (lines 16 and
17). Further, the objects in the neighborhood that do
not belong to R are added to both the temporary
cluster and neighbors in preparation for further ex-
pansion in the following iterations (lines 18–21). To
avoid duplicate operations, the objects that are either
marked as noise or added to the temporary cluster
are removed from lists tlist and slist (lines 4, 9, and
20). Temporary cluster R is finalized and returned if
no more object can be added.

Algorithm 1 Basic(Query q, IR-tree irtree, InvertedIn-
dex iindex )

1: Dψ ← LoadRelevantObjects(q.ψ, iindex);
2: slist ← sort objects in Dψ in ascending order of
dq.λ(p.λ);

3: tlist ← sort objects in Dψ in descending order of
trq.ψ(p.ψ);

4: rlist ← ∅; τ ←∞;
5: repeat
6: Object p← sorted access in parallel to slist and

tlist ;
7: c← GetCluster(p, q, irtree, tlist , slist);
8: if c 6= ∅ then
9: Add c to rlist ;

10: τ ← score of the k-th cluster in rlist ;
11: bound ← α · sb + (1− α) · (1− tb);
12: until bound ≥ τ ∨ slist = ∅
13: Return rlist ;

Function RangeQuery on the IR-tree is used
to find the objects that are relevant to the query
keywords and located within distance q.ε of pi,
which is the ε-neighborhood of object pi. Details on
RangeQuery can be found elsewhere [30].

The lower bound of the score is calculated as
bound = α · sb(slist) + (1 − α) · (1 − tb(tlist)) (lines
12), where sb(slist) is a lower bound on the spatial
distance (Lemma 1) between the query location and
all unfound clusters and tb(tlist) is an upper bound on
the text relevance (Lemma 2) of all unfound clusters.
To derive these bounds, let Dn contain the objects that
are currently marked as noise. Each object pn ∈ Dn is
associated with a subset Npn of its ε-neighborhood
Nε(pn), in which the objects have not been processed.
As the algorithm proceeds, the objects in Npn are re-
moved as they are either added to clusters or marked
as noise. An object in Dn is removed when it is
either added to a cluster or its ε-neighborhood is
empty. In other words, Dn contains the objects that
are temporarily marked as noise, but may be added

to clusters later.
Lemma 1: Let s0 be the spatial distance of the cur-

rent first object in slist . A lower bound of the spatial
distance between the query location and all unfound
clusters sb is min(s0,min{dq.λ(pn.λ)|pn ∈ Dn}).

Lemma 2: Let t0 be the text relevance of the
current first object in tlist . An upper bound of
the text relevance of all unfound clusters tb is
max(t0,max{trq.ψ(pn.ψ)|pn ∈ Dn}).

The proofs of the lemmas are straightforward and
thus omitted.

Algorithm 2 GetCluster(Object p, Query q, IR-tree
irtree, List tlist , List slist)

1: R← ∅;
2: neighbors ← irtree.RangeQuery(q, p);
3: if neighbors.size < q.minpts then
4: Remove p from tlist and slist ;
5: Mark p as noise;
6: Return R;
7: else . p is a core;
8: Add neighbors to R;
9: Remove neighbors from tlist and slist ;

10: Remove p from neighbors ;
11: while neighbors is not empty do
12: Object pi ← remove an object from

neighbors ;
13: neighborsi ← irtree.RangeQuery(q, pi);
14: if neighborsi.size ≥ q.minpts then
15: for each object pj in neighborsi do
16: if pj is noise then
17: Add pj to R;
18: else if pj /∈ R then
19: Add pj to R;
20: Remove pj from tlist and slist ;
21: Add pj to neighbors ;
22: Return R;

3.2 Enhancements
The basic algorithm is inefficient for two main rea-
sons.
• It checks the neighborhoods of all relevant objects

with regard to the query keywords.
• Checking the neighborhood of an object in-

volves a range query on the index that is time-
consuming.

Next , we address these inefficiencies.

3.2.1 Object Skipping
Function GetCluster tries to find a cluster R con-
taining a relevant object p as a core object. It first
determines whether the ε-neighborhood of p is dense.
If dense, cluster R is initialized as the set of relevant
objects inside the ε-neighborhood of p. Next, the rel-
evant objects other than p inside the ε-neighborhood
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of p are examined in turn. An object is examined if
its neighborhood has been checked. If a neighbor-
hood under consideration is dense, the newly found
relevant objects in it are added to cluster R. This
way, cluster R is finalized after every relevant object
has been examined. However, it is possible to get
cluster R by examining only a portion of the rele-
vant objects. Consider the example in Figure 5. The
neighborhoods of the four objects p1, p2, p3, and p4 are
illustrated by dashed and solid circles. It can be seen
that the neighborhood of p4 (solid circle) is covered
by the union of the neighborhoods of p1, p2, and p3
(dashed circles). Having already examined p1, p2, and
p3, checking the neighborhood of p4 is unnecessary
because all objects in the neighborhood of p4 have
been considered. Based on this observation, we define
a skipping rule that reduces the number of relevant
objects to be examined and design an algorithm OS
that implements the rule.

p1

p4p3

p2

Fig. 5. Neighborhoods of Objects

Skipping Rule: Let S = (p1, p2, · · · , pn) be an exam-
ining order of a set of objects. Object pi (i > 1) can
be skipped if the neighborhood of pi is fully covered
by the union of the neighborhoods of the objects
examined before pi, i.e., Nε(pi) ⊂ ∪1≤j<iNε(pj), where
Nε(pi) is a circle centered at pi with radius ε.

The effectiveness of the skipping rule depends on
the ordering S. In Figure 5, if S = (p1, p2, p4, p3), no
object can be skipped. However, if S = (p1, p2, p3, p4),
object p4 can be skipped. Intuitively, if the union of the
neighborhoods of the objects that have been examined
covers a large area, the probability of skipping a
subsequent object is high. Algorithm OS that imple-
ments the skipping rule follows Algorithm 2 with the
following differences.
• Given an object p and its neighborhood, the ob-

jects in the neighborhood are sorted in descend-
ing order of their distance to p. The motivation
is that the farther the objects are from p, the
larger the area covered by the neighborhoods
are. Referring to lines 2 and 13 in Algorithm 2,
the objects returned from the RangeQuery are
sorted in descending order of their distances.

• Each time before checking the neighborhood of
an object (line 13 in Algorithm 2), the skipping
rule is applied. If it is successful, the algorithm
continues to process the next object. The im-
plementation of the skipping rule involves the
judgement of whether a circle is covered by the
union of several circles. This can be done using

a recursive subdivision of the circle by non-
overlapping squares [9].

3.2.2 Spatially Gridded Posting Lists
Object skipping reduces the number of objects to
be exmained. However, for those objects that cannot
be skipped, checking involves time-consuming range
queries. The result of checking a neighborhood is
that it is either dense or sparse. Here, we design
spatially gridded posting lists (SGPL) to facilitate
efficient estimation of the selectivity of a range query
on the IR-tree, such that sparse neighborhoods can be
determined quickly without issuing expensive range
queries.

An n × n grid is created on the data set. For each
word w, a spatially gridded posting list is constructed
covering all the objects that contains w. Let Dwi

be the
set of objects containing word wi. The SGPL of word
wi is a sorted list of entries (cj , Swi,cj ), where cj (sort-
ing key) is the index value of a grid cell Ccj and Swi,cj

is a set of objects that belong to Dwi
and are located

in grid cell Ccj , i.e., ∀p ∈ Swi,cj (p ∈ Dwi
∧ p.λ ∈ Ccj ).

Grid cells are indexed using a space filling curve, e.g.,
a Hilbert or Z-order curve. The SGPLs of all distinct
words in the data set are organized similarly to the
inverted file. Note that empty cells are not stored.
Given a word, its SGPL can be retrieved.

Let Nw be the number of distinct words, and let N
be the number of objects in the data set. On average,
the number of objects in a grid cell is N/n2. The space
complexity of the SGPLs is O(Nw ·N · n) on average,
where n is small compared to Nw and N .
Example 3.2: Figure 6(a) illustrates a 4×4 grid on the
7 objects in Example 2.1. Grid cells are indexed using
a 2-order Z-curve. Numbers in italics are the Z-order
values of the cells. Figure 6(c) shows the SGPLs for
words ‘coffee’ and ‘tea’. For example, the first entry
in the SGPL for ‘coffee’ tells that the document of p3
contains ‘coffee’ and that p3 is located in cell 3. �

Given a set of m query keywords, the correspond-
ing m SGPLs are merged to estimate the selectivities
of range queries. We define a merging operator

⊕
on

several SGPLs that produces a count for each non-
empty cell. The count for cell C is the cardinality of
the union of the sets of objects located in C from
different SGPLs, i.e.,⊕

wi∈q.ψ

SGPLwi
= {(cj , |

⋃
wi∈q.ψ

Swi,cj |)}, (2)

where q.ψ is the query keywords.
Example 3.3: Consider the example SGPLs in Fig-
ure 6(c). The third row is the result of merging the
SGPLs of words ‘coffee’ and ‘tea’. For example, the
first entry (3, 2) tells that cell 3 contains 2 objects after
merging. �

The merged result of the SGPLs of the query key-
words is used to estimate the selectivity of the circular
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coffee (3, {p3}), (10, {p7}), (11, {p6}), (14, {p2}),
(15, {p1})

tea (3, {p5}), (10, {p7}), (14, {p2}), (15, {p1})
coffee

⊕
tea(3, 2), (10, 1), (11, 1), (14, 1), (15, 1)

(c) SGPL

Fig. 6. Example Spatially Gridded Posting Lists

range qc query centered at an object p with radius ε
(e.g., the dashed circle in Figure 6(a)). We approximate
the circle qc by its circumscribed square qs (e.g., the
dashed square in Figure 6(a)). The sum of the counts
of the grid cells that intersect square qs in the merged
SGPLs of the query keywords is returned as the
selectivity. Note that it is not necessary to merge the
whole SGPL of each query keyword. For the sake of
efficiency, only the cells that intersect square qs need
to be considered. We define a parameterized merging
operator

⊕
(qs) as follows.⊕

wi∈q.ψ

(qs)SGPLwi
= {(cj , |

⋃
wi∈q.ψ

Swi,cj |) | Ccj∩qs 6= ∅}

(3)
The computational cost of the merging operator

is proportional to the number of objects in the grid
cells intersecting qs and whose documents contain
the query keywords. The size of qs is small, and the
number of objects involved is low in real data sets.
Thus, the computational cost of the merging operator
is generally low.

In Figure 6 where qs is the dashed square, we
have coffee

⊕
(qs)tea = {(10, 1), (11, 1)}. Based on the

coding scheme of the space filling curve, we adopt an
efficient existing algorithm [31] to retrieve the cells
that intersect the query range qs.

The derived selectivity serves as an upper bound
on the number of objects in circle qc. It is not always
a tight upper bound due to the granularity of the grid
and the use of the circumscribed square of the circular
range. If the selectivity estimate is less than q.minpts ,
the ε-neighborhood of object p is sparse and can
be disregarded. Otherwise, function RangeQuery is
called to compute the exact number of objects in the
ε-neighborhood of object p. This way, some sparse ε-
neighborhoods can be eliminated efficiently.

We observe that a finer grid may improve the
quality of the selectivity estimation, potentially avoid-
ing additional expensive RangeQuery operations.
However, the cost of the selectivity estimation also

increases when using a finer grid. In the empirical
study, we study how the performance is affected by
the granularity of the grid.

3.2.3 FastRange
In addition for supporting selectivity estimation, SG-
PLs are also useful for processing range queries that
are issued on the IR-tree. We propose an algorithm
FastRange that handles range queries on SGPL. Be-
fore presenting the algorithm, we first override the
parameterised merging operator

⊕
(qs) as

⊕̃
(qs).⊕̃

wi∈q.ψ

(qs)SGPLwi
= {(cj ,

⋃
wi∈q.ψ

Swi,cj ) | Ccj ∩qs 6= ∅}

(4)
The result of operator

⊕
(qs) records the number of

objects inside each cell intersecting query range qs,
while the result of operator

⊕̃
(qs) maintains the list

of the identifiers of the objects inside each cell intersect-
ing query range qs. Function FastRange takes two
arguments: list , the result of operator

⊕̃
(qs), and qc,

a circle centered at an object p with radius ε. If a cell
c from list is completely inside the query range qc,
all the objects in c are added to the result. If a cell c
intersects qc, only objects in c that have distance to p
at most ε are added to the result.

4 OPTICS-BASED APPROACH
The DBSCAN-based approach is suitable when users
have clear density requirements, i.e., when clear
choices exist for parameters ε and minpts . However,
in some cases, it may be difficult to provide such
parameters. For example, appropriate values of the
parameters may depend on the characteristics of the
data. We proceed to present an approach to find the
top-k spatial textual clusters without requiring users
to provide ε and minpts parameters.

We adopt the idea of OPTICS [25] that generates
an ordering of the data representing its density-based
clustering structure. The clusters are then extracted
based on that ordering. Although OPTICS needs the
parameters ε and minpts when creating an ordering,
the result is insensitive to the values of the parame-
ters. In other words, we can hide ε and minpts from
users and use default values for the two parameters.

Section 4.1 introduces relevant concepts in OP-
TICS. We extend OPTICS to process k-STC queries
in Section 4.2.1. To improve the performance, an
index-based algorithm OPTICS-OM is proposed in
Section 4.2.2.

4.1 Preliminaries [25]
Definition 9: Let minpts-dist(p) be the distance from

relevant object p to its minptsth neighbor. The core-
distance c-dist(p) of p is defined as follows.

c-dist(p) =

{
+∞, if |Nε(p)| < minpts
minpts-dist(p), otherwise

(5)
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Definition 10: Let p and o be relevant objects from
Dψ and let Nε(o) be the ε-neighborhood of o. The
reachability-distance r-dist(p, o) of p with respect to
o is defined as follows.

r-dist(p, o) =

{
+∞, if |Nε(o)| < minpts
max(c-dist(o), ‖o p‖), otherwise (6)

Ordering Generation (OG). The OPTICS algo-
rithm [25] generates an ordering of the objects L
and the corresponding reachability values, denoted by
r(p), in the following way. A priority queue Q is used
to organize the objects to be processed, prioritized by
r(p). Initially, a randomly selected object is added to
Q, and its reachability value is set to +∞.

1) The next unprocessed object p is appended to L
together with r(p); then Nε(p) and c-dist(p) are
computed.

2) If p is a core, for each unprocessed object
pi in Nε(p), we compute r-dist(pi, p). If pi is
not in the priority queue Q, we assign the
value of r-dist(pi, p) to r(pi) and add pi to
Q. Otherwise, we update r(pi) in Q to be
min(r(pi), r-dist(pi, p)).

3) If p is not a core, we discard it.
Cluster Detection. After computing the ordered list
of objects L, the clusters are discovered according to
Defintion 13 by scanning the objects in L sequentially.
To define the clusters, we need a couple of auxiliary
concepts.

Definition 11: An object p ∈ Dψ is an ξ-steep up-
ward object if it is ξ% lower than its successor ps:

UpPointξ(p) ⇐⇒ r(p) ≤ r(ps)× (1− ξ)

An object p ∈ Dψ is an ξ-steep downward object if p’s
successor ps is ξ% lower:

DownPointξ(p) ⇐⇒ r(p)× (1− ξ) ≥ r(ps)

Definition 12: An interval I = [s, e] is an ξ-steep
upward area UpAreaξ(I) if it satisfies the following
conditions:
• Both s and e are ξ-steep upward objects, i.e.,

UpPointξ(s) and UpPointξ(e).
• Each object x between s and e is at least as high

as its predecessor xp:

∀x, s < x < e (r(x) ≥ r(xp))

• I contains at most minpts consecutive points that
are not ξ-steep upward objects.

• I is maximal.
An ξ-steep downward area DownAreaξ(I) is defined
analogously.

Definition 13: An interval C = [s, e] is an ξ-cluster,
denoted clusterξ(C) if ∃D = [sD, eD] and U = [sU , eU ]
exist that satisfy the following conditions:

1) DownAreaξ(D) ∧ s ∈ D
2) UpAreaξ(U) ∧ e ∈ U
3) e− s ≥ minpts

4) ∀x ∈ (eD, sU )(r(x) ≤ min{r(sD), r(eU )}×(1−ξ))

5) (s, e) =


(max{x ∈ D|r(x) > r(esU )}, eU ),

if r(sD)× (1− ξ) ≥ r(esU )
(sD,max{x ∈ U |r(x) < r(sD)}),

if r(esU )× (1− ξ) ≥ r(sD)
(sD, eU ), otherwise

We use the example shown in Figures 7(e) and 7(f)
to explain the intuition underlying OPTICS. Suppose
that Figure 7(f) shows the output of the ordering
generated for the objects shown in Figure 7(e). In
this ordered list, the r(pi) value of an object pi is its
reachability-distance w.r.t. one object located before pi
in the list. Consecutive objects with small r(pi) values
are close to each other. Objects with large r(pi) values
are far from the objects located before them in the
list, which can be signs of separation between clusters.
The two valleys shown in Figure 7(f) are considered
as clusters by OPTICS.

4.2 Algorithms
4.2.1 Baseline OPTICS-OG
The OPTICS-based baseline algorithm encompasses
two phases. In the first, the algorithm uses the in-
verted index to retrieve all objects Dψ that are relevant
to the query keywords. In the second, it applies
algorithm OG to generate an ordering of the objects
in Dψ . Finally, it discovers the clusters according to
Definition 13. The clusters are ranked, and the top-k
results are returned.

4.2.2 OM Algorithm
The baseline algorithm is inefficient because it calls
algorithm OG to compute the ordering of the relevant
objects from scratch for each query. We propose an
index-based algorithm, called OM (Ordering Merg-
ing), that generates and stores the ordering of the
objects for each word in advance. When a k-STC query
arrives, the orderings of objects of each word in the
query are loaded and merged so that the ordering of
the relevant objects and the corresponding r(p) used
for discovering clusters can be obtained efficiently.
Word-Ordering Index. Let D(w) be the set of objects
whose documents contain word w. Algorithm OG is
applied to D(w) to obtain an ordered list of objects
L(w), where each entry is of the form (pi, r(pi)). Fig-
ures 7(b) and 7(d) show the lists for words w1 and w2,
respectively. The two valleys in Figure 7(b) indicate
two potential clusters of objects that are relevant to
w1. Similarly, the valley in Figure 7(d) indicates one
potential cluster of objects that are relevant to w2.

For each word w, algorithm OG consumes the
objects in D(w) in ascending order of the object
identifier. This way, objects in different ordered lists
that belong to the same spatial region will have
consistent identifiers. For instances in Figures 7(a)
and 7(c), the objects in the upper spatial region have
consistent identifiers in L(w1) (Figure 7(b)) and L(w2)
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(a) D(w1)

p0 p1 p3 p5 p4 p2 p6 p7 p8 p9 p10 p13 p14 p15 p16

(b) L(w1) (c) D(w2)

p7 p8 p9 p10 p13 p14 p12 p11 p15 p16

(d) L(w2) (e) Dψ

p0 p1 p3 p5 p4 p2 p6 p7 p8 p9 p10p13p14p12p11p15p16

(f) Lψ

Fig. 7. Example of Ordering Merging

(Figures 7(d)). The OM algorithm introduced below
relied on the consistency of object identifiers.

The word-ordering index consists of the ordered
lists L(w) of all the words in the data set. It can be
implemented as a key-value mapping, so that L(w)
can be retrieved using word w.
Ordering Merging (OM). Having the ordered lists of
all the words indexed, OM (Algorithm 3) computes
the ordering L(ψ) of the objects relevant to the given
query keywords ψ in the following way.

1) For each keyword wi in ψ, it loads its ordered
list L(wi).

2) If ψ contains only one keyword, L(w) is re-
turned.

3) Otherwise, it merges all ordered lists L(wi) into
one ordered list L(ψ) as follows:

a) A priority queue queue with key r(p) is
used to organize the entries in the ordered
lists. Ties are broken using object identifiers.

b) The first entries are removed from all or-
dered lists and added to queue .

c) If queue is not empty, the first entry e is
dequeued. If the object in this entry has not
been seen before, entry e is added to L(ψ).
Otherwise, this entry is discarded.

d) Let L(e) be the set of ordered lists, where
the object in e is removed from each list
in the previous step. Next, the current first
entry e′ that has not been seen before from
each ordered list in L(e) is removed and
added to queue .

e) Steps c) and d) are repeated until queue is
empty. Finally, L(ψ) is returned.

Given the ordering L(ψ) of the objects relevant to
the query keywords, clusters are extracted based on
Definition 13. In Figure 7, in the plots ((b), (d), (f))
of an ordering of objects, valleys indicate potential
clusters. The ordering produced by algorithm OM
differs from that generated by algorithm OG. The
clusters extracted from the ordering produced by OM
may overlap spatially, due to how lists are merged.
Hence, a post-processing step that merges spatially
overlapping clusters is required. As will be shown in
the case study and efficiency evaluation in Section 5,
OG finds clusters that cannot be found by OM, and
OG also fails to find clusters discovered by OM. Yet,
the quality of the OG and OM clusters (based on

DBCV) are similar. But OM incurs substantially lower
computational cost than OG.
Example 4.1: Figures 7(a) and 7(c) show the objects
whose documents contain w1 and w2, respectively.
Given minpts = 2, L(w1) contains the corresponding
entries of the 15 objects {p0, p1, p3, · · · , p16}, and L(w2)
contains the corresponding entries of the 10 objects
{p7, p8, p9, · · · , p16}. Figures 7(b) and 7(d) show the
r(pi) values of the objects in L(w1) and L(w2), respec-
tively. Given ψ = {w1, w2}, after merging L(w1) and
L(w2), we obtain the list of objects whose documents
are relevant to ψ, as shown in Figure 7(f). Specifically,
objects p0, p1, p3, · · · , p6 and their r(p) are added to
L(ψ) and removed from L(w1). When encountering
object p7 in both L(w1) and L(w2), the smaller r(p)
from L(w1) is used in L(ψ). �

Algorithm 3 OM(Query q, Index windex )
1: for each wi ∈ q.ψ do
2: L(wi)← LoadOrderedList(wi,windex );
3: if |q.ψ| = 1 then
4: Return L(w);
5: PriorityQueue queue ← ∅;
6: L(ψ)← ∅;
7: for each wi ∈ q.ψ do
8: Entry e← L(wi).RemoveFirst();
9: queue.Enqueue(e);

10: while queue is not empty do
11: Entry e← queue.Dequeue();
12: if e has not been seen before then
13: Add e to L(ψ);
14: for each L ∈ L(e) do
15: Entry e′ ← L.Remove();
16: queue.Enqueue(e′);
17: Return L(ψ);

5 EMPIRICAL STUDY

We conduct an empirical study to evaluate our pro-
posals. Section 5.1 presents the datasets, queries, pa-
rameters, and platform used in the study. The quality
of the clusters found by DBSCAN, OPTICS-OG, and
OPTICS-OM is analyzed in Section 5.2. The efficiency
of the DBSCAN-based and the OPTICS-based ap-
proaches are evaluated in Section 5.3.
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5.1 Experimental Setup

We use a subset of SimpleGeo2 for efficiency evalua-
tion, which roughly covers the entire United States of
America. It contains 10,823,427 objects. Each object has
a text description that is six words long on average.
The total number of distinct words is 33,314. To evalu-
ate the quality of clusters, we extract a subset of Sim-
pleGeo, named as Arizona that roughly covers a spa-
tial rectangular range [(−114.0, 31.0), (−108.0, 37.0)]
and contains 216,070 objects.

We generate 4 query sets in the space of the dataset,
in which the number of keywords is 1, 2, 3, or 4.
Each set comprises 50 queries. Queries are generated
from objects, and we guarantee that no query has
an empty result. Specifically, to generate a query, we
randomly pick an object in the dataset. We then take
the location of the object as the query location and
randomly choose words from the document of the
object as the query keywords.

Table 2 shows the parameter values used in the
experiments, where the values in bold are default
values. All algorithms were implemented in Java, and
an Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz with
100GB main memory was used for the experiments.
All the data structures are memory resident. We report
the average elapsed time consumed and the average
number of range queries issued by the k-STC queries.

TABLE 2
Parameter Values

Parameter Values
k 5, 10, 15, 20
|q.ψ| 1, 2, 3, 4
ε 0.0001, 0.0005, 0.001, 0.005, 0.01

minpts 10, 20, 50, 100, 200
h 6, 8, 10, 12, 14, 16
α 0.1, 0.3, 0.5, 0.7, 0.9

5.2 Qualitative Analysis

Visual Analysis. We compare visually the clusters
found by DBSCAN, OPTICS-OG, and OPTICS-OM.
The density parameters are determined based on the
k-dist plot [32] of the data (shown in Figure 8),
in which a sharp change corresponds to a suitable
value of ε. Figure 9 shows the results found by the
three approaches on small regions from datasets Ari-
zona. Generally speaking, DBSCAN finds clusters that
cover large spatial regions, while OPTICS-OG and
OPTICS-OM can discover small clusters inside the
large clusters found by DBSCAN. These small clusters
cannot be found by DBSCAN via tuning the density
parameters. The objects in these small clusters are
either considered as noise when increasing parameter
minpts or included in a large cluster when decreasing
parameter minpts . The clusters found by OPTICS-OM

2. https://archive.org/details/2011-08-SimpleGeo-CC0-Public-
Spaces

and OPTICS-OG are similar. The following case study
illustrates the differences of these approaches.
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Fig. 8. k-dist Plot (Arizona)

In Figure 9, the query keywords are “retail goods,”
and the query location is given by symbol “F”.
DBSCAN finds a large cluster surrounding the query
location—see Figures 9(a) and 9(b). The query user
cannot get useful information from these results and
does not know where to go, especially when the user
does not have time to explore a large region. OPTICS-
OG and OPTICS-OM return small clusters close to the
query location, e.g., the cluster represented by green
dots at the top center in Figure 9(c) and the cluster
represented by red triangles in Figure 9(d). With these
results, the query user is able to choose a small region,
where relevant objects can be found.

To understand the differences between OPTICS-OG
and OPTICS-OM in this case study, we show the
clusters found by OPTICS-OG for keywords “goods”
and “retail” in Figures 9(e) and 9(f), respectively.
Comparing the results of OPTICS-OG and OPTICS-
OM, we have the following two observations. First,
OPTICS-OM cannot recognize the objects in region
R4 as a cluster (Figure 9(d)), while OPTICS-OG finds
a cluster in the same region, denoted by R1 (Fig-
ure 9(c)). The reason is that the set of objects whose
documents contain “goods” in that region, denoted
by R7 in Figure 9(e), does not satisfy the conditions
of forming a cluster. Neither does the set of objects
whose documents contain “retail,” denoted by R10 in
Figure 9(f). But the union of the objects in R7 and
R10 yields a dense region. Thus, based on the ordered
lists of “goods” and “retail,” OPTICS-OM considers
them as noise, while OPTICS-OG finds a cluster in
R1 based on the union of the objects. Second, OPTICS-
OG fails to find the cluster in region R3 (Figure 9(c))
while OPTICS-OM does, denoted by R6 (Figure 9(d)).
The reason is as follows. The set of objects whose
documents contain “goods” in region R9 (Figure 9(e))
is considered as a cluster, while the set of objects
whose documents contain “retail” in the same region,
denoted by R12 (Figure 9(f)), is considered as noise.
Because of the merging method in OPTICS-OM, the
cluster of objects in R9 is kept, denoted by R6 in
Figure 9(d). However, the union of the objects in
R9 and R12 forms a region where separations exist
among small sets of objects. OPTICS-OG considers
this layout as noise. For the same reason, OPTICS-OG
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and OPTICS-OM find different clusters at the bottom
left, denoted by R2 and R5.

(a) DBSCAN (minpts = 5) (b) DBSCAN (minpts = 20)

R1

R2

R3

(c) OPTICS-OG (minpts = 5,
ξ = 0.01)

R4

R5

R6

(d) OPTICS-OM (minpts = 5,
ξ = 0.01)

R7

R8

R9

(e) OPTICS-OG (“goods,”
minpts = 5, ξ = 0.01)

R10

R11

R12

(f) OPTICS-OG (“retail,”
minpts = 5, ξ = 0.01)

Fig. 9. Arizona (ε = 552 m)

Cluster Quality Evaluation. We evaluate the qual-
ity of the clusters found by DBSCAN, OPTICS-OG,
and OPTICS-OM using DBCV [33], a relative val-
idation index for density-based, arbitrarily shaped
clusters. The index assesses clustering quality based
on the relative density connections between pairs of
objects. The larger the index value, the better the
clusters. We extract a set of objects from Simple-
Geo by arbitrarily specifying a spatial rectangular
range [(−113.85, 38.61), (−107.93, 41.85)], which con-
tains 99,272 objects. Table 3 reports the DBCV index
of the three approaches on the extracted set of objects
when varying the number of query keywords from
1 to 4. In each test, 10 queries are processed, and
the average DBCV index is calculated. The results
show that OPTICS-OG and OPTICS-OM outperform
DBSCAN with various values of minpts and that
OPTICS-OM and OPTICS-OG produces similar re-
sults. In addition, OPTICS-OM finds fewer clusters
than does OPTICS-OG, which is expected according to
the ordering merging algorithm in OPTICS-OM. The
bottom part of Table 3 shows the number of clusters
and the average cluster sizes discovered by OPTICS-
OG and OPTICS-OM.

TABLE 3
DBCV Index (ε = 1003 m)

# of query keywords 1 2 3 4 Average
DBSCAN (minpts = 5) -0.066 -0.379 -0.416 -0.652 -0.378

DBSCAN (minpts = 10) -0.059 -0.292 -0.318 -0.604 -0.318
DBSCAN (minpts = 15) -0.020 -0.228 -0.260 -0.541 -0.262

OPTICS-OG (minpts = 5, ξ = 0.01) 0.126 0.109 0.113 0.125 0.118
OPTICS-OM (minpts = 5, ξ = 0.01) 0.126 0.108 0.115 0.097 0.112

Number of clusters
OPTICS-OG (minpts = 5, ξ = 0.01) 290 756 663 1604 -
OPTICS-OM (minpts = 5, ξ = 0.01) 290 673 611 1337 -

Average size of clusters
OPTICS-OG (minpts = 5, ξ = 0.01) 9 10 10 10 -
OPTICS-OM (minpts = 5, ξ = 0.01) 9 10 11 12 -

5.3 Performance Evaluation
5.3.1 Algorithms of DBSCAN-based Approach
We evaluate the performance of the basic approach
(Basic) and the advanced approaches with selectivity
estimation (Adv1), with selectivity estimation and ob-
ject skipping (Adv2), and with selectivity estimation,
object skipping, and FastRange (Adv3) under varying
parameter settings. Overall, after applying the three
enhancements, the performance of the basic approach
is improved by an order of magnitude. The elapsed
time and the number of range queries are proportional
to each other, which indicates that the time consuming
part of the k-STC queries is the range queries. The
proposed advanced approach significantly reduces
the cost of the range queries.
Varying the Number of Keywords |q.ψ|. Figure 10
shows the performance of the four approaches when
varying the number of query keywords. Their perfor-
mance get worse as the number of query keywords
increases, since more objects are involved and the
search space becomes larger. As expected, the number
of range queries issued (Figure 10(b)) is consistent
with the runtime (Figure 10(a)). In the rest of the
experiments, we only report the runtime.
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Fig. 10. Varying Number of Keywords

Varying Density Parameters. The density require-
ment involves two parameters, ε and minpts . Fig-
ure 11 shows the performance of the four approaches
when varying ε. Figure 12 shows their performance
when varying minpts . Large ε and small minpts in-
dicate a low density requirement. In general, as ε
(minpts) increases (decreases), the performance be-
comes worse. The reason is that low density re-
quirement makes more objects’ neighborhoods dense.
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Recall the basic idea of our proposals. If the ε-
neighborhood of a relevant object satisfies the den-
sity requirement, we need to examine the relevant
objects inside the ε-neighborhood to expand the clus-
ter. Hence, more dense neighborhoods increase the
computational cost. The performance gap between
Basic and Adv1 (using selectivity estimation) is large
when the density requirement is high (using small ε
or large minpts). This is because many objects become
noises and are pruned by the selectivity estimation,
so that the number of range queries is reduced. On
the other hand, the performance gap between Adv1
and Adv2 is large when the density requirement is
low. Here, the reason is that many objects become
cores and cannot be pruned by selectivity estimation,
but are pruned by object skipping. Hence, selectivity
estimation is effective when the density requirement
is high, while object skipping is effective when the
density requirement is low.
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Varying α. Figure 13 shows the runtimes of the four
approaches when varying α that balances the spatial
distance and the text relevance in the ranking func-
tion. Their performance is insensitive to parameter
α. Hence, our advanced approach offers good perfor-
mance no matter what the user preferences are.
Varying the Number of Requested Clusters k. Fig-
ure 14 shows the runtimes when varying the number
of requested clusters k. Their performance is insensi-
tive to parameter k. For a small k, the reason may
be that the threshold in the basic algorithm is not
tight enough to prune the clusters beyond the top-k
result early. For a large k, the reason may be that the
total number of clusters found from the whole data
set cannot exceed k.
Scalability. Figure 15 shows how the performance of
the basic and advanced algorithm change as the size
of the data set increases. The data sets used in this
experiment are randomly generated from SimpleGeo.
We observe that both algorithms scale nearly linearly.
The advanced algorithm significantly outperforms the
basic algorithm.
Varying the Order of Z-Curve h in SGPL. The SGPL
is constructed based on a space filling curve indexed
grid over the dataset. We adopt the Z-curve in our
evaluation. Other space filling curves are also applica-
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ble. The order h of the Z-curve defines the granularity
of the grid, which in turn affects the performance
of the SGPL. Large h provide finer granularities, so
that the selectivity estimation of the range queries
for detecting sparse ε-neighborhoods is improved. The
results in Figure 16 illustrate this point. As h increases,
the performance improves. We observe that when h
exceeds 12, the performance of the SGPL gets worse.
This is because it takes time to process more grid cells.
This indicates that it is not beneficial to construct an
SGPL using a finer grid.
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5.3.2 Algorithms of OPTICS-based Approach

We proceed to evaluate the performance of algorithms
OPTICS-OG and OPTICS-OM in different parameter
settings. According to the k-dist plot of SimpleGeo
(Figure 17), the density parameters are set as follows:
ε = 1152m, minpts = 4, ξ = 0.01.
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Fig. 17. k-dist Plots on SimpleGeo

Varying the Number of Keywords |q.ψ|. Figure 18
shows the performance of the two approaches when
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varying the number of query keywords. Their perfor-
mance decreases as the number of query keywords
increases. This is because the number of objects in-
volved in computation increases. OPTICS-OM signifi-
cantly outperforms OPTICS-OG, and the performance
gap grows with the number of query keywords. The
reason is that when the number of keywords is large,
there are many relevant objects, and OPTICS-OM is
designed for saving computations on large sets of
objects.
Varying α. Figure 19 shows the runtime of the two
approaches when varying α that balances the spatial
distance and the text relevance in the ranking func-
tion. Their performance is insensitive to parameter
α. OPTICS-OM beats OPTICS-OG for all values of α.
Hence, OPTICS-OM algorithm can guarantee a good
performance no matter what the user preferences are.
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Varying the Number of Requested Clusters k. Fig-
ure 20 shows the runtime of the two approaches
when varying the number of requested clusters k.
Their performance is insensitive to parameter k.
Again, OPTICS-OM performs significantly better than
OPTICS-OG for all values of k.
Scalability. Figure 21 shows how the performance
of OPTICS-OG and OPTICS-OM change as the size
of the data set increases. The data sets used are
randomly generated from SimpleGeo. We observe that
both algorithms scale linearly.
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6 RELATED WORK
Spatial Textual Search. Spatial keyword search has
attracted much attention in recent years. A spatial

keyword query retrieves spatial web objects (e.g., web
content relating to shops and restaurants) that are
spatially and textually relevant to provided query
arguments. Several efficient geo-textual indexes have
been proposed to support spatial keyword queries.
Most indexes combine the R-tree for spatial indexing
with inverted or signature files for text indexing, such
as the IR2-tree [3], the IR-tree [10], and the S2I [8].
These hybrid structures are able to utilize both spatial
and textual information to prune the search space
at query time. Our proposal is orthogonal to these
indexes. We adopt the state-of-art IR-tree [10] in the
basic algorithm. Other R-tree based indexes can also
be used.

Beyond indexing, many studies investigate interest-
ing variants of the typical spatial keyword query that
satisfy different user needs. Chen et al. [34] study the
problem of matching a stream of incoming Boolean
range continuous queries over a stream of incom-
ing geo-textual objects in real time. The keyword-
aware optimal route query [35] finds an optimal
route that covers a set of user-specified keywords
and satisfies a specified budget constraint such that
an objective score of the route is optimal. Collective
spatial keyword search [15], [36], [37] aims to retrieve
a group of objects that are close to a query point
and collectively cover a set of query keywords. Wu et
al. [9] explore the problem of maintaining the result
set of top-k spatial keyword queries while the user
is moving. Salgado et al. [38] propose an efficient
solution for processing continuous range spatial key-
word queries over moving spatio-textual objects. In
the spatial keyword search, some studies [14], [39]
take the objects nearby into account when ranking
the results. The Reverse Spatial Textual k Nearest
Neighbor (RSTkNN) query [12] finds objects that take
the query object as one of their k most spatial-textual
similar objects. Bøgh et al. [40] target the common
case where the user wishes to find nearby groups
of points of interest that are relevant to the query
keywords. Such groups are relevant to users who wish
to conveniently explore several options before making
a decision such as to purchase a specific product.
A spatio-textual similarity join [41] retrieves pairs of
objects that are spatially close and textually similar.
Zhang et al. [42], [43] study a query that takes a
set of keywords as parameters and returns a set of
geo-textual objects such that the union of their text
descriptions cover all query keywords and such that
the diameter of the objects is minimized. A semantic-
aware top-k spatial keyword query [44] returns the
k objects most similar to the query, subject to not
only their spatial and textual properties, but also
the coherence of their semantic meanings. Zhang et
al. [45] augment the spatial keyword search with a
boolean expression constraint, which is used to query
structured or semi-structured spatial entities.

These studies either return single objects as results
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or retrieve a set of objects located in an ad-hoc spatial
region (e.g., a rectangular region). Our work aims to
discover natural clusters of objects that are relevant to
a given query.

The paper substantially extends a 6-page confer-
ence paper [46] that proposed the DBSCAN-based
approach to computing the k-STC query.
Density-based Clustering Algorithms. In density-
based clustering, clusters are defined as regions of
higher density than the remainder of the data set. Ob-
jects in the sparse regions that are required to separate
clusters are often considered to be noise and border
points. The most popular density-based clustering
method is DBSCAN [24]. It features a well-defined
cluster model called“density-reachability.” It is based
on connecting points that are within a certain distance
range of each other. A cluster consists of all density-
connected objects, plus all objects that are within
these objects’ range. OPTICS [25] is a generalization of
DBSCAN that removes the need to choose an appro-
priate value for the range parameter, and produces a
hierarchical result related to that of linkage clustering.
DBRS [47] improves DBSCAN by repeatedly pick-
ing an unclassified point at random and examining
its neighborhood. VDBSCAN [32] supports varied-
density dataset clustering. Before adopting traditional
DBSCAN algorithm, some method is used to select
several values of parameter ε for different densities
according to a k-dist plot. With different values of
ε, it is possible to find clusters with varying densi-
ties simultaneously. GDBSCAN [48] clusters spatial
objects according to both their spatial and nonspatial
attributes.

These clustering models can be considered as com-
ponents in our work. We use two state-of-the-art
methods, i.e., DBSCAN and OPTICS, in the k-STC
query.

7 CONCLUSIONS

This paper proposes a new type of query, the top-
k spatial textual cluster retrieval (k-STC) query that
returns the top-k clusters, such that (i) they are located
close to a query location, (ii) they contain objects
whose text descriptions are relevant to query key-
words, and (iii) the density of the clusters satisfies
a query constraint. We propose DBSCAN-based and
OPTICS-based approaches for evaluation of the k-
STC query. The DBSCAN-based approach is suitable
when users have clear density preferences. It includes
three techniques: (i) a skipping rule that is used to
reduce the number of objects to be examined, (ii)
spatially gridded posting lists (SGPL) that are used to
estimate the selectivity of range queries so that sparse
neighborhoods can be detected quickly, and (iii) a fast
range query algorithm on the SGPL. The OPTICS-
based approach is preferable when it is difficult to
set the density parameters of DBSCAN. It includes a

word-ordering index and efficient ordering merging
algorithm OPTICS-OM. An empirical study on real
datasets provide evidence that the paper’s proposals
are effective at finding good quality clusters and at
offering scalable performance.
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