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Abstract Nearest neighbor (NN) search is inherently

computationally expensive in high-dimensional spaces

due to the curse of dimensionality. As a well-known

solution, locality-sensitive hashing (LSH) is able to an-

swer c-approximate NN (c-ANN) queries in sublinear

time with constant probability. Existing LSH methods

focus mainly on building hash bucket-based indexing

such that the candidate points can be retrieved quickly.

However, existing coarse-grained structures fail to of-

fer accurate distance estimation for candidate points,

which translates into additional computational over-

head when having to examine unnecessary points. This

in turn reduces the performance of query processing.

In contrast, we propose a fast and accurate in-memory

LSH framework, called PM-LSH, that aims to com-

pute c-ANN queries on large-scale, high-dimensional
datasets. First, we adopt a simple yet effective PM-tree

to index the data points. Second, we develop a tunable

confidence interval to achieve accurate distance estima-

tion and guarantee high result quality. Third, we pro-

pose an efficient algorithm on top of the PM-tree to

improve the performance of computing c-ANN queries.
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In addition, we extend PM-LSH to support clos-

est pair (CP) search in high-dimensional spaces. We

again adopt the PM-tree to organize the points in a low-

dimensional space, and we propose a branch and bound

algorithm together with a radius pruning technique to

improve the performance of computing c-approximate

closest pair (c-ACP) queries.

Extensive experiments with real-world data offer ev-

idence that PM-LSH is capable of outperforming exist-

ing proposals with respect to both efficiency and accu-

racy for both NN and CP search.

1 Introduction

Nearest neighbor (NN) querying in high-dimensional

spaces is classic functionality that is used in a wide vari-

ety of important applications, such as sequence match-

ing [1], recommendation [14], similar-item retrieval [30],

and de-duplication [38], to name but a few. Let D be a

set of points in d-dimensional space Rd. Given a query

point q, an NN query returns a point o∗ in D such that

its Euclidean distance to q is the minimum among all

points in D.

While the exact NN query in low-dimensional space

already has efficient solutions [6, 8], providing an ef-

ficient solution for large, high-dimensional datasets re-

mains a challenge, as both the query time and the space

cost may increase exponentially with respect to the di-

mensionality. This phenomenon is called the “curse of

dimensionality.” Fortunately, it frequently suffices to

find an approximate nearest neighbor (ANN). Given

an approximation ratio c (c > 1) and a query point q,

a c-ANN query returns a point o whose distance to q is

at most cr∗, where r∗ is the distance between q and its

exact NN.

ar
X

iv
:2

10
7.

05
53

7v
1 

 [
cs

.D
B

] 
 6

 J
ul

 2
02

1



2 Bolong Zheng et al.

A widely adopted locality-sensitive hashing (LSH)

method enables computing c-ANN queries in sublinear

time with constant probability. Generally, LSH maps

the points in the dataset to buckets in hash tables by

using a set of predefined hash functions that are de-

signed to be locality-sensitive so that close points are

hashed to the same bucket with high probability. A

query is answered by examining the points that are

hashed to the same bucket as the query point, or to

similar buckets. Based on their main ideas, we classify

the mainstream LSH methods into three categories: 1)

Probing Sequence-based (PS) approaches [33,35,36]; 2)

Radius Enlargement-based (RE) approaches [18,27,48];

and 3) Metric Indexing-based (MI) approaches [47]. PS

approaches use a carefully derived probing sequence to

examine multiple hash buckets that are likely to con-

tain the nearest neighbor of a query. RE approaches

process a sequence of range queries by enlarging the

query range repeatedly until a qualified point is found.

In MI approaches, the points are transformed into a

low-dimensional, so-called projected space. The coordi-

nates of a point in the projected space are the point’s

hash values. MI approaches then use a metric index to

organize the points such that the distance between two

points in the projected space can be used to approxi-

mate the distance between them in the original space.

When evaluating the performance of LSH methods,

many pertinent performance metrics for c-ANN search

exist, including efficiency, accuracy, memory consump-

tion, and preprocessing overhead. Among these, both

efficiency and accuracy are important metrics since a

desirable algorithm should return results as soon as pos-

sible with a quality that is as high as possible, while the

memory consumption and preprocessing overhead must

be tolerable in the setting of a commodity machine. The

performance of LSH depends on two aspects: 1) the esti-

mation of distances between the query point and candi-

date points; and 2) the probing order of buckets/points.

It is proved [47] that the ratio of the projected dis-

tance to the original distance between any two points

follows a χ2 distribution. Therefore, if we are able to es-

timate the distance between two points accurately, we

are able to find high-quality candidates. In addition,

a well-designed index structure is required to quickly

locate high-quality candidates.

However, the existing LSH methods suffer from ei-

ther inaccurate distance estimation or unnecessary point

probing overhead. For instance, SRS [47] is the state-

of-the-art algorithm that uses an R-tree to index the

points in the projected space. By searching the R-tree,

SRS is able to iteratively return the next nearest point

to q. The problem is that finding the next exact NN

in an R-tree generally causes additional computational

overhead, while the next NN is not necessarily the best

next candidate in the original space. Next, Multi-Probe

[35] iteratively identifies the next hash bucket to be ex-

amined that has the least distance to q. However, most

of the points in the identified buckets have to be probed

due to poor estimation of the distance between q and

the candidate point. Finally, QALSH [27] shares the

same issue as Multi-Probe, and it uses a large number

of hash functions that may incur high space consump-

tion.

We propose a fast and accurate in-memory frame-

work, called PM-LSH, for computing c-ANN queries on

large-scale, high-dimensional datasets. The framework

consists of three components, namely data partition-

ing, distance estimation, and point probing. First, we

adopt the simple yet effective PM-tree [46] to index the

points in the projected space. Second, in order to im-

prove the distance estimation accuracy, we exploit the

strong relationship between the original and projected

distance of any two points, and we develop a tunable

confidence interval on the projected distance w.r.t. a

given original distance. Third, we propose an efficient

algorithm to search the PM-tree with a sequence of

range queries with increasingly large radius. PM-LSH is

able to achieve both high efficiency and high accuracy

when compared with existing LSH methods.

We extend the PM-LSH technique to solve another

classical problem, approximate closest pair (CP) search

in high dimensional spaces. Like NN search, CP search

is used in a wide range of settings, such as unsupervised

classification or clustering [42], user pattern similarity

search [55], and geographic information systems [22],

to name but a few. For a given approximation ratio c

(c > 1) and a datasetD, a c-approximate closest pair (c-

ACP) query returns a point pair (o1, o2) with distance

at most cr∗, where r∗ is the distance of the exact closest

pair in D. Early studies mainly adopt space partitioning

indexing techniques to solve exact CP queries in two or

three dimensions [12, 13, 26, 29, 44, 45]. However, these

methods cannot be extended directly to support high-

dimensional CP queries efficiently due to the curse of di-

mensionality. Therefore, improved indexes are proposed

to address the effects of dimensionality [17, 19, 31, 41].

Nonetheless, when faced with hundreds or thousands

of dimensions, the performance of these methods still

degenerates to nearly brute-force performance. Thus,

another direction is to use dimension reduction meth-

ods to solve c-ACP, such as LSH or random projec-

tion. For instance, the LSB-tree [49] uses a compound

hash function to project points into a low-dimensional

space and adopts the Z-curve to transform projected

points into one-dimensional values that are indexed by

a B-tree. The candidate point pairs are generated from
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points with the same Z-values. To improve the query

accuracy, L = O(
√
n) B-trees are built, which yields

a large space consumption. Next, ACP-P [7] projects

the points directly into a one-dimensional space. The

points with close distances in the projected space are

considered as candidate point pairs. However, the dis-

tance estimation is inaccurate and leads to unnecessary

candidate verification.

To compute approximate CP queries, we still em-

ploy the PM-tree to index the points in the projected

space, which provides an accurate distance estimation

for point pairs. Next, we adopt a branch and bound

method combined with a radius pruning technique to

improve the query efficiency, which enables generation

of sufficient candidate pairs with only a small space con-

sumption. We also note that our method is tunable and

enables different trade-offs between query accuracy and

query efficiency.

The major contributions are summarized as follows:

– We present a unified interpretation of the existing

mainstream LSH methods and thoroughly analyze

the competitors in relation to our method.

– We propose an accurate and fast method called PM-

LSH for c-ANN querying of large-scale, high-dimensional

datasets. First, we use the PM-tree to index the

points in the projected space. Second, we develop

a tunable confidence interval for distance estima-

tion. Third, we propose a c-ANN query algorithm

that uses the PM-tree.

– We extend the PM-LSH to support CP queries. First,

we still employ the PM-tree to index the points

in the projected space. Next, we propose a branch

and bound algorithm together with a radius pruning

technique for computing c-ACP queries.

– We conduct an extensive performance study using

real datasets that covers the state-of-the-art algo-

rithms, which indicates that PM-LSH is efficient as

well as accurate in terms of both the overall ratio

and recall for both NN and CP search.

The paper extends its conference version [53] in sev-

eral respects. Key extensions include (1) the extension

of PM-LSH to support CP queries, (2) the coverage of

related work on high-dimensional CP search, and (3)

the paper’s report on the experimental evaluations of

the corresponding proposals. In addition, other parts

of the paper have been revised when compared to the

conference version.

The rest of the paper is organized as follows. Sec-

tion 2 presents the problem setting and preliminaries.

Section 3 introduces a unified LSH framework, followed

by our PM-LSH framework in Section 4. Sections 5 and

6 introduce the NN and CP query processing based on

Table 1: Summary of Notations

Notation Definition

D Dataset of points in Rd
n = |D| Dataset cardinality

d Dataset dimensionality
o A point in D
o′ A point o in the projected space
c Approximation ratio

h(o), h∗(o) Hash functions
m The number of hash functions
T The number of candidate points or pairs
M The node capacity of the PM-tree

PM-LSH, respectively. Section 7 covers experimental

studies that offer insight into the performance of the

proposed PM-LSH and the main competitors for both

NN and CP search. Section 8 reviews related work. Fi-

nally, Section 9 concludes the paper.

2 Preliminaries

We proceed to present the problem definitions of ap-

proximate nearest neighbor (NN) and closest pair (CP)

search, and the basic idea of LSH. Frequently used no-

tation is summarized in Table 1.

2.1 Problem Definition

Let D be a set of points in d-dimensional space Rd with

cardinality |D| = n. Let ‖o1, o2‖ denote the Euclidean

distance between points o1, o2 ∈ D. We define approxi-

mate nearest neighbor and closest pair queries in turn.

Definition 1 (c-ANN Query) Assume a query point

q and an approximation ratio c > 1, and let o∗ be the

exact nearest neighbor of q in D. A c-approximate near-

est neighbor query returns a point o ∈ D such that

‖q, o‖ ≤ c · ‖q, o∗‖.

We generalize the c-ANN query to the (c, k)-ANN

query that returns k approximate nearest points.

Definition 2 ((c, k)-ANN Query) Assume we have a

query point q, an approximation ratio c > 1, and a pos-

itive integer k. Let o∗i be the i-th exact nearest neighbor

of q in D. A (c, k)-approximate nearest neighbor query

returns a sequence of k points 〈o1, o2, . . . , ok〉 such that

for each oi, we have ‖q, oi‖ ≤ c · ‖q, o∗i ‖, i ∈ [1, k].

Definition 3 (c-ACP Query) Assume we have an

approximate ratio c > 1, and let (o∗1, o
∗
2) be the exact

closest pair in D. A c-approximate closest pair query re-

turns a point pair (o1, o2) ∈ D×D such that ‖o1, o2‖ ≤
c · ‖o∗1, o∗2‖.
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(b) Projected Space

ID (x,y) h*(o) ID (x,y) h*(o)

q (5,5) (9.5,11.5) o8
(10,6) (15.4,14.2)

o1
(0,1) (0.9,3.7) o9

(2,3) (4.7,7.5)

o2
(6,6) (11.4,13.4) o10

(9,8) (16.2,17.4)

o3
(9,2) (10.8,7.2) o11

(6,10) (15.0,20.2)

o4
(10,5) (14.5,12.5) o12

(4,7) (10.3,14.7)

o5
(2,6) (7.4,12.6) o13

(3,4) (6.6,9.4)

o6
(4,3) (6.7,7.9) o14

(4,6) (9.4,13.0)

o7
(6,3) (8.7,8.3) o15

(7,2) (8.8,6.8)

(c) Points and Hash Values

Fig. 1: Running Example with h1(o) = b ~a1·~o4 c, h2(o) = b ~a2·~o+2
4 c and ~a1 = [1.0, 0.9], ~a2 = [0.2, 1.7]

We generalize the c-ACP query to the (c, k)-ACP

query that returns k approximate closest pairs.

Definition 4 ((c, k)-ACP Query) Assume we have

an approximate ratio c > 1, and a positive integer k.

Let (o∗i,1, o
∗
i,2) be the i-th exact closest pair in D. A

(c, k)-approximate closest pair query returns a sequence

of k point pairs 〈(o1,1, o1,2), (o2,1, o2,2), . . . , (ok,1, ok,2)〉
such that for each (oi,1, oi,2), we have ‖oi,1, oi,2‖ ≤ c ·
‖o∗i,1, o∗i,2‖, i ∈ [1, k].

Example 1 As shown in Fig. 1(a), the exact NNs of

query q are o2 and o14 with distance
√

2. For a 2-ANN

query, any point whose distance to q is within 2
√

2 can

be considered as a result, i.e., any object in the set

{o2, o14, o12, o13, o6, o7}.
The exact CPs are (o4, o8) and (o12, o14) with dis-

tance 1. For a 2-ACP query, any point pair whose dis-

tance is within 2 can be considered as a result, i.e., any

pair in the set {(o6, o7),(o4, o8),(o6, o9),(o6, o13),(o9, o13),

(o2, o14),(o5, o14),(o12, o14),(o3, o15),(o7, o15)}.

2.2 Basic Locality Sensitive Hashing

We first introduce the LSH scheme, and then explain

how to answer the (r, c)-ball cover and c-ANN queries

using the basic LSH [3,15].

Hash Family. Given a distance r, an approxima-

tion ratio c > 1, two probability values p1 and p2,

where p1 > p2, a family H = {h : Rd → U} is called

(r, cr, p1, p2)-locality sensitive, if for any o1, o2 ∈ Rd, it

satisfies both of the following conditions:

1. If ‖o1, o2‖ ≤ r then Pr[h(o1) = h(o2)] ≥ p1
2. If ‖o1, o2‖ ≥ cr then Pr[h(o1) = h(o2)] ≤ p2

A well-adopted hash function is formally defined as fol-

lows:

h(o) = b~a · ~o+ b

w
c, (1)

where ~o is the vector representation of a point o ∈ Rd,
~a is a d-dimensional vector where each dimension is

drawn independently from a p-stable distribution [15],

b is a real number uniformly and randomly drawn from

[0, w), and w is a user-specified constant. The 2-stable

distribution is the normal distribution.

Formally, let τ = ‖o1, o2‖ and let f(·) denote the

normal probability distribution function (pdf). We then

have:

p(τ) = Pr[h(o1) = h(o2)] =

∫ w

0

1

τ
·f(

t

τ
)·(1− t

w
) dt (2)

The intuition behind Eq. 2 is that, given a fixed w, the
collision probability of two hash values h(o1) and h(o2)

grows as the distance ‖o1, o2‖ decreases. Therefore, h(·)
in Eq. 1 is (r, cr, p1, p2)-sensitive with p1 = p(r) and

p2 = p(cr).

Before we consider how to answer the c-ANN query,

we define an (r, c)-ball cover query that can be answered

directly by an (r, cr, p1, p2)-sensitive hash family.

Definition 5 ((r, c)-BC Query) Assume a query point

q, a distance threshold r, and an approximation ratio

c > 1. Let B(q, r) denote a ball centered at q with ra-

dius r. An (r, c)-ball cover query returns the following

result:

1. If B(q, r) covers at least one point in D, it returns

a point in B(q, cr);

2. If B(q, cr) covers no points in D, it returns nothing.

E2LSH [3] is a seminal solution that forms L hash

tables and randomly chooses m hash functions for each

hash table. By concatenating the m hash functions, a
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compound hash function G(o) = (h1(o), . . . , hm(o)) is

formed in each hash table, and each point o ∈ D is

stored in a hash bucket based on G(o). Given a query

point q, E2LSH computes G(q) and enumerates the

points in the corresponding hash bucket. In all L hash

tables, it examines at most 3L points and returns a

point o if ‖q, o‖ ≤ cr. By setting m = log1/p2 n and

L = 1/pk1 , the (r, c)-BC query can be answered cor-

rectly with at least constant probability.

From (r, c)-BC to c-ANN. It is easy to see that

the ball cover query can be considered as a decision

version of the approximate NN query. Processing a se-

quence of (r, c)-BC queries with r = 1, c, c2, . . . , x, once

a point is returned, we take it as a result of the ANN

query. Interestingly [28], the ANN query can be an-

swered with approximation ratio c2, i.e., c2-ANN.

Example 2 In the example in Fig. 1, we choose m = 2

hash functions h1(o) = b ~a1·~o4 c, h2(o) = b ~a2·~o+2
4 c with

~a1 = [1.0, 0.9], ~a2 = [0.2, 1.7], b1 = 0, b2 = 2, and

w = 4. For simplicity, we only construct L = 1 hash

table. Figs. 1(b) and 1(c) show the coordinates of the

objects in the projected space. To answer a (1, 2)-BC

query with r = 1 and c = 2, we first compute G(q) =

(h1(q), h2(q)) = (2, 2). Then we search the hash bucket

(2, 2) that is indicated by a red rectangle; the (1, 2)-BC

query returns o7. As o14 is the exact NN with ‖q, o14‖ =√
2 and ‖q, o7‖ =

√
5 < 4 ×

√
2, we have that o7 is a

result of the 4-ANN query for q.

3 A Unified Interpretation of LSH

We proceed to introduce the main competitors and give

a unified interpretation.

3.1 Main Competitors

Probing Sequence (PS). The representative PS meth-

ods include Multi-Probe [35,36] and GQR [33] that use

a carefully derived probing sequence to examine multi-

ple hash buckets that are likely to contain the nearest

neighbors of a query point. Unlike the basic LSH that

builds L hash tables and checks only one hash bucket

in each hash table, PS probes multiple nearby buck-

ets in order to achieve higher recall with fewer hash

tables. Given a query point q, PS adopts a “generate-

to-probe” paradigm that iteratively generates the next

hash bucket to be examined with the least distance to

q in the remaining buckets.

Radius Enlargement (RE). This category mainly

includes the LSB-Tree [48], C2LSH [18], and QALSH

[27]. These do not build multiple hash tables based on

   

High-
dimensional 

Database

Data Partitioning

Distance Estimation

Point Probing

Top-k 
Results

A Query q

Fig. 2: Unified LSH Framework

different radii. Generally, RE methods build a hash ta-

ble like the basic LSH and processes a sequence of (r, c)-

BC queries by enlarging r = 1, c, c2, . . . , x when a c-

ANN query is issued. Suppose ri = ci and r0 = 1. It has

been shown [18] that hri(·) = bh(·)ri c is (ri, cri, p1, p2)-

sensitive. Instead of building multiple hash tables with

corresponding hash functions hri(·) to handle (ri, cri)-

BC queries, RE methods adopt the smart idea of “vir-

tual rehashing” to avoid consuming unnecessary space.

For the (1, c)-BC query, RE probes the hash bucket

h(q). For the remaining (ri, cri)-BC queries, RE probes

rmi hash buckets near h(q) in the original hash table in

the i-th iteration. Note that among these rmi buckets,

rmi−1 buckets were already examined in the previous it-

eration. Interestingly, it is easy to see that the rmi hash

buckets in the original hash table correspond to the

hash bucket hri(q) in the hash table w.r.t. hri(·).
Metric Indexing (MI). SRS [47] is the state-of-

the-art algorithm that projects the points from the orig-

inal d-dimensional space into a lower m-dimensional

projected space by using m hash functions. It utilizes

an R-tree to index the points based on their hash values

and uses the Euclidean distance between two points in

the projected space to approximate their distance in the

original space. The intuition is that the points close to

the query point q in the projected space are also likely

close to q in the original space. SRS repeatedly calls an

incSearch function that utilizes the R-tree to return the

next nearest point to q in the projected space.

3.2 A Way of Probing

We proceed to introduce a unified interpretation of ex-

isting LSH methods as shown in Fig. 2, which consists of

three components, namely data partitioning, distance

estimation, and point probing.
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Generally, we adopt a random projection h(o) as the

locality sensitive hash functions:

h∗(o) = ~a · ~o (3)

By using h∗(o), the points in the original space are

mapped into a projected space, as shown in Figs. 1(a)

and 1(b). Let o′ = [h∗1(o), . . . , h∗m(o)] denote point o in

the projected space. For any two points o1 and o2, let

r = ‖o1, o2‖ and r′ = ‖o′1, o′2‖ denote the distance be-

tween o1 and o2 in the original and in the projected

space, respectively. In addition, we let ρ(o1, o2) denote

an m-dimensional vector, where each dimension is the

hash value difference between points o1 and o2, i.e.,

ρi = h∗i (o1)− h∗i (o2) = o′1[i]− o′2[i]. Therefore, we have

r′ =
√∑m

i=1 ρ
2
i .

Based on a property of a 2-stable distribution, for

any d real numbers o[1], . . . , o[d], independent and iden-

tically distributed (i.i.d.) random variables X1, . . . , Xd

(corresponding to ~a) following the 2-stable distribution,∑
i o[i] · Xi has the same distribution as the variable

(
∑d
i=1 o[i]

2)1/2 ·X, where X is a random variable with

distribution N(0, 1). For any two points o1 and o2, since

ρ = h∗(o1)− h∗(o2) = ~a · (~o1 − ~o2), we know that ρ is a

random variable with distribution r ·X. In other words,

ρ has distribution N(0, r2), i.e., ρ
r ∼ N(0, 1).

Lemma 1 r′2/r2 follows the distribution χ2(m).

Proof If Y1, . . . , Ym are i.i.d. variables with N(0, 1) then∑m
i=1 Y

2
i follows the χ2 distribution with m degrees of

freedom. Given m hash functions h∗1(·), . . . , h∗m(·), for

any o1 and o2, we have ρ1, . . . , ρm. Thus, r′2/r2 follows

the distribution χ2(m).

Data Partitioning. After mapping the points into

the projected space by using hash functions, the ex-

isting LSH methods adopt the “divide-and-conquer”

paradigm that partitions the projected space into sub-

spaces. When a query is issued, the regions that are

likely to contain the results are probed, and finally

the results of these regions are combined and returned.

Generally, there are two kinds of data partitioning ap-

proaches in the existing LSH methods:

(1) Interval based Partitioning. The basic LSH con-

structs hash buckets based on G(o), and each bucket

can be viewed as an m-dimensional hypercube with

equal side lengths w. Most of the LSH methods belong

to this class, including Multi-Probe, LSB-Tree, C2LSH,

and QALSH. Specifically, an LSB-Tree assigns each hy-

percube a Z-order value and stores the values in a B-

tree. In contrast, QALSH does not physically build hy-

percubes, but stores the values of h∗(o) in a B+-tree.

When a query arrives, the length-w intervals are formed

virtually on the B+-tree.
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Fig. 3: Comparison on Recall and Overall Ratio

(2) Metric Space Partitioning. SRS uses an R-tree to

index all the points o′ in the projected space such that

incremental kNN search is supported. For in-memory

processing, it is also able to use a Cover Tree. In our

proposed PM-LSH, we partition the projected space us-

ing a PM-tree so that efficient range querying can be

supported.

Distance Estimation. In order to accurately es-

timate distances, two aspects are considered, i.e., the

distance estimator and the estimation granularity.

(1) Distance Estimator. As ρ follows distribution

N(0, r2), for any o1 and o2, ρ(o1, o2) = [ρ1, . . . , ρm].

We estimate the value of r2 by using r′2 as follows.

Lemma 2 r̂2 = r′2

m is an unbiased estimator of r2.

Proof Let r̂2 be the estimated value of r2. We compute

the expectation of r′2 as follows.

E[r′2] = E[

m∑
i=1

ρ2i ] =

m∑
i=1

E[ρ2i ] = mr2

Therefore, we have E[r̂2] = E[r′2]/m = r2.

We also provide an interesting alternative proof that

uses maximum likelihood estimation (MLE) [24]. MLE

is a procedure for finding the value of one or more pa-

rameters for a given statistic that maximizes the known

likelihood distribution. As Pr[ρ = ρi] = 1√
2πr

exp(− ρ2i
2r2 ),

the probability that the hash value difference ρ(o1, o2)

between o1 and o2 equals [ρ1, . . . , ρm] is computed as

follows.

Pr[ρ(o1, o2) = [ρ1, . . . , ρm]]

= f(ρ1, . . . , ρm|µ = 0, σ = r)

=

m∏
i=1

(
1√
2πr

)m exp(−
∑m
i=1 ρ

2
i

2r2
)

The objective of the maximum likelihood is to find an

r such that the above probability is maximized. Given

ln f = − 1
2m ln(2π)−m ln r−

∑
ρ2i

2r2 and ∂(ln f)
∂r = −mr +∑

ρ2i
r3 = 0, we obtain r̂2 =

∑m
i=1 ρ

2
i

m = r′2

m .
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To evaluate the performance of our estimator in

Lemma 2, i.e., L2 = r′ (the same as our estimator when

m is fixed), we compare it with three other distance esti-

mators: L1, QD [33], and Rand (assign a random value).

We randomly sample a small dataset that contains 10K

points from the Trevi dataset [34] and choose 100 points

as query points. For each query point q, we first com-

pute its exact 100NNs. With m = 15 hash functions,

we compute the distances in the projected space be-

tween q and all the points based on different estima-

tors. Then, we choose the top-T points with smallest

estimated distances (T varies from 100 to 2,000). For

each q, we compare its exact 100NNs with the 100NNs

from the T points. Finally, we compute the average re-

call and overall ratio (discussed in Section 7) of these

estimators. As shown in Fig. 3, we can see that our es-

timator has the best performance in terms of both the

recall and overall ratio.

(2) Estimation Granularity. The distance estimation

methods may use different granularities:

– Bucket to Bucket. The hash bucket based index-

ing methods, such as Multi-Probe, LSB-tree, and

C2LSH, store points in hash buckets. When a query

is issued, we first find its corresponding bucket and

then decide which additional buckets to probe. There-

fore, the quality of the distance estimation between

buckets is affected by the bucket side length w.

– Point to Bucket. QALSH is an improved version of

C2LSH that stores points by a B+-tree instead of

using a hash table. When a query q arrives, the

length-w intervals are conceptually built on the B+-

tree with q as the center. So the distance estimation
can be considered as between point q and bucket

intervals.

– Point to Point. SRS uses the projected Euclidean

distance between two points to estimate their orig-

inal distance. This offers a finer precision than the

previous two methods due to the fine granularity.

Our PM-LSH also adopts this method.

Point Probing. Suppose we probe T points. In

the hash bucket based indexing methods, we directly

probe the points in the bucket, where the time cost is

O(T ). The second approach is QALSH that searches the

points in a B+-tree, where the time cost is O(log n+T ).

Unlike the previous two approaches, SRS indexes the

points with an R-tree and iteratively finds the next NN

in the projected space. The time cost is O(log n·T ). Our

PM-LSH can be considered as a combination of the sec-

ond and third approaches in that we build a PM-tree

in the projected space and execute range queries to re-

trieve points.
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N6

(b) PM-tree

Fig. 4: The Structure of PM-LSH

4 The PM-LSH Framework

We proceed to present the details of the PM-LSH frame-

work. As mentioned previously, the RE methods quickly

probe the points stored in the hash buckets by enlarg-

ing the search radius, but suffer from inaccurate dis-

tance estimation due to a coarse-grained index struc-

ture, which translates into computational overhead when

having to examine unnecessary points. In contrast, the

MI methods index the points with an R-tree and itera-

tively return the next nearest point to q in the projected

space. However, finding the next exact NN in an R-tree

is also computationally costly, and the next NN is not

necessarily the best next candidate in the original space.

To achieve the best of both worlds, PM-LSH combines

the ideas of the RE and MI methods. To achieve both

efficiency and accuracy, we adopt the PM-tree instead

of the R-tree to index the points in the projected space

and execute a sequence of range queries with increas-

ingly large radius.

Next, we briefly describe how to construct a PM-

tree. Then, we analyze the cost models of the PM-

tree and the R-tree to understand how the PM-tree

performs better than the R-tree for the relevant range

query workload. Finally, we present the details of the

algorithms.
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4.1 Building a PM-tree in the Projected Space

In the projected space, each o′i w.r.t. oi ∈ D is an m

dimensional vector. For the paper to be self-contained,

we briefly explain how to build a PM-tree on the o′is.

Interested readers may refer to [46] for more details on

the PM-tree.

Selecting Pivots. The PM-tree combines the M-

tree with pivot mapping. Methods for selecting an opti-

mal set of pivots have been studied extensively. For each

set of pivots, a PM-tree region is the intersection of the

M-tree hyper-spherical region and hyper-rings caused

by the pivots. We choose a set of pivots with the aim

of making the overall volume of the corresponding PM-

tree region the smallest.

PM-tree Structure. The structure of a PM-tree is

shown in Fig. 4. Being an extension of the M-tree, it re-

tains all the information of the M-tree. For each node e,

it stores the covered radius e.r, a pointer to its covered

sub-tree e.ptr, the center of the covered hyper-sphere

e.RO, the distance e.PD between e.RO and its parent

node, and the smallest interval e.HR covering the dis-

tances between the pivots and each of the point stored

in leaves. For a data entry o, it stores the point data,

the ID of the point o, the distance o.PD between o and

its parent entry, and the minimum and the maximum

distances to pivots.

Range Query Processing. A range query, de-

noted by range(q, r), returns all points that are located

in B(q, r). The nodes in the PM-tree are traversed in

a depth-first fashion. When a node is accessed, we ver-

ify its pruning condition by using the triangle inequal-

ity. When a data entry is accessed, we insert the corre-

sponding point into the result set if it is in B(q, r).

Example 3 As shown in Fig. 4, we choose o1 and o11
as pivots, and partition the space by using the ball parti-

tioning, as shown in Fig. 4(a). The nodes e1, e2, · · · , e6
contain the points inside a hyper-sphere, whose center

and radius are saved as the part of an entry. When

a range query range(q, 2) is issued, we check pruning

conditions when accessing the nodes. Only e4 and e6 are

checked. Finally, we return {o14} as the result.

4.2 Cost Models of the PM-tree Versus the R-tree

To compare the performance of the PM-tree and the R-

tree, we adopt a node-based cost model [10] to examine

how the PM-tree performs compared to the R-tree from

a theoretical point of view.

In this cost model, a concept called distance distri-

bution of a dataset D is computed as follows.

F (x) = Pr[‖oi, oj‖ ≤ x], (4)

where oi, oj ∈ D. In addition, for each dataset used

in our experiments, we compute its “homogeneity of

viewpoints” (HV), which is shown in Table 3. HV eval-

uates the homogeneity of the distance distributions of

the data points. Let Fo(x) denote the distribution of

the distances between all points to point o. Given two

points o1 and o2, a higher HV means that o1 and o2 are

more likely to have similar distance distributions Fo1(x)

and Fo2(x). The HV values of all the datasets are no

smaller than 0.9, which enables us to approximate their

distance distributions when estimating the cost models

of the two trees.

Cost Model of the PM-tree. Consider a range

query range(q, rq). Assume that a PM-tree has s pivot

points p1, · · · , ps. A node e is accessed iff the following

conditions are satisfied:


‖q, e.RO‖ ≤ e.r + rq

∧si=1{‖q, pi‖ − rq ≤ e.HR[i].max}
∧si=1{‖q, pi‖+ rq ≥ e.HR[i].min}

(5)

Therefore, the probability of e being accessed can

be computed as follows.

Pr[e] =F (e.r + rq) ·
s∏
i=1

[F (e.HR[i].max+ rq)

− F (e.HR[i].min− rq)]
(6)

Assume that there are N nodes in the PM-tree. The

number of distance computations (computation cost)

is estimated by considering the probability that a node

is accessed multiplied by its number of entries N(e),

thus obtaining the number of distance computations as

follows.

CC(range(q, rq)) =

N∑
i=1

N(ei) · Pr[ei] (7)

Cost Model of the R-tree. For each node e of an

m-dimensional R-tree, we denote its minimum bound-

ing rectangle as MBR(e) = [l1, u1] × · · · × [lm, um].

Given a range query range(q, rq), the condition of e be-

ing accessed is that B(q, rq) intersects with MBR(e).

Since it is hard to quantify the probability that a ball

intersects with a high-dimensional rectangle, we substi-

tute an isochoric hyper-cube for the ball. Specifically,

an m-dimensional ball with radius rq is substituted by

a hyper-cube with the length of sides l = m

√
2πm/2

mΓ (m/2)rq

[28]. We also denote the data distribution of dataset D
on the i-th dimension as follows.

Gi(x) = Pr[Xi ≤ x], (8)
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Table 2: Computation Cost (CC) of PM-tree and R-tree

Datasets Audio Cifar MNIST Trevi NUS GIST Deep

PM-tree 38,182 35,210 56,670 34,281 201,448 739,720 964,451
R-tree 40,565 54,869 59,043 63,884 252,187 889,974 1,017,604

Reduction 6% 36% 4% 46% 20% 17% 5%

where Xi is the i-th dimension of a random point in

D. Similarly, we let N be the number of nodes in the

R-tree and let N(ei) be the number of entries in node

ei. We obtain the number of distance computations as

follows (details are omitted for brevity).

CC(range(q, rq)) =

N∑
i=1

N(ei)·
m∏
i=1

[Gi(ui+l)−Gi(li−l)]

(9)

Comparison of the PM-tree and the R-tree.

In order to compare the computation costs for the two

trees, we construct PM-trees and R-trees for the points

in all the datasets (introduced in Table 3) after trans-

forming them into the projected space. We choose m =

15 hash functions and set the maximum number of en-

tries per node to 16. For each dataset, we choose the

same range r to estimate the cost of computing a range

query. The value of r is chosen to return approximately

the nearest 8% of all points, since these points usually

suffice to return a c-ANN result. The estimated compu-

tation costs are computed based on Eqs. 7 and 9, and

the results are presented in Table 2. We can see that

using the PM-tree reduces the number of distance com-

putations by about 5%−46% for the different datasets.

This observation offers evidence that the PM-tree has

better performance than the R-tree in our setting.

4.3 Tunable Confidence Interval

Based on Lemma 2, we further estimate the confidence

interval of r′ between o1 and o2 for a given r = ‖o1, o2‖.

Lemma 3 Given two points o1 and o2, we have:

– P1: The probability that r′ < r
√
χ2
1−α(m) is α

– P2: The probability that r′ > r
√
χ2
α(m) is α

Here, χ2
α(m) is the upper quantile of a χ2 distribution

with m degrees of freedom, where∫ +∞

χ2
α(m)

f(x;m)dx = α,

and f(x;m) is the probability density function of a χ2

distribution with m degrees of freedom.

αα

1-2α

m vu

α α

Fig. 5: Confidence Interval

Proof From Lemmas 1 and 2, we know r′2

r2 ∼ χ2(m).

Constructing a confidence interval I = [u, v] for r′2

r2 re-

quires that the probability that r′2

r2 falls into I is 1−2α

for any given α. A standard approach is to select u and

v that make Pr[ r
′2

r2 < u] = α, i.e., Pr[ r
′2

r2 > u] = 1− α,

and Pr[ r
′2

r2 > v] = α. Further,
∫ +∞
u

f(x;m)dx = 1− α
and

∫ +∞
v

f(x;m)dx = α. According to the definition of

upper quantile, we have u = χ2
1−α(m) and v = χ2

α(m).

The confidence interval and its corresponding probabil-

ity are shown in Fig. 5.

Lemma 3 establishes a strong relationship between

an original distance and the confidence interval of the

corresponding projected distance, which we use to an-

swer (r, c)-BC and c-ANN queries.

5 Nearest Neighbor Query Processing

We proceed to cover the nearest neighbor query pro-

cessing based on PM-LSH. First, we present the details

of (r, c)-BC query processing. Then, we extend the cov-

erage to include (c, k)-ANN query processing.

5.1 The (r, c)-BC Query

An (r, c)-BC query can be computed directly by Al-

gorithm 1. Given a query q and m hash functions, we

compute the hash value q′ = (h∗1(q), . . . , h∗m(q)) and

use the PM-tree to answer a range query range(q′, tr),

where t is a parameter that guarantees that a point in-

side B(q, r) in the original space will fall into B(q′, tr)
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Algorithm 1: (r, c)-BC Query

Input: A query point q and parameters β, n, t, c, r
Output: A point p in B(q, cr) or nothing

1 Compute q′ = (h∗1(q), . . . , h∗m(q));
2 Initialize a candidate set C ← the results of a range

query q′ with radius t · r on the PM-tree;
3 if |C| ≥ βn+ 1 then
4 return p in C that is closest to q;

5 else
6 if |{p | p ∈ C ∧ ‖p, q‖ ≤ c · r}| ≥ 1 then
7 return p in C that is closest to q;

8 else
9 return ∅;

in the projected space with a constant probability. Then

we collect the result of the range query into a candidate

set C.

According to Lemma 4, introduced in Section 5.3,

the correctness of the (r, c)-BC query can be guaran-

teed. In other words, by properly choosing a parame-

ter β, we examine a sufficient number of βn candidate

points such that the following two situations hold with

constant probability.

– If the total number of points in C exceeds βn, there

must be at least one point from C in B(q, cr).

– If no point from C is in B(q, cr), there exists no

point in D is in B(q, r).

Therefore, we can correctly answer an (r, c)-BC query

by processing a range query using the PM-tree. In Sec-

tion 5.3, we consider how to set parameters t and β.

5.2 The (c, k)-ANN Query

Answering a c-ANN query is more complicated than

answering an (r, c)-BC query since we do not know the

distance ‖q, o∗‖ in advance. In order to answer a (c, k)-

ANN query with a constant probability, we must ensure

that we access enough points, i.e., at least βn points.

Therefore, we have to enlarge the search radius in the

projected space when fewer than βn points are found

until k points inside B(q, cr) have been obtained.

The details of computing a (c, k)-ANN query can be

found in Algorithm 2. Most of the steps are similar to

ones in Algorithm 1. The difference is that when both

termination conditions (Lines 4 and 8) are violated, an-

other range query with a larger radius is required.

Selecting the Radius r of a Range Query. As

executing multiple range queries is time consuming, it

is attractive to reduce the number of iterations in the

while-loop. Intuitively, we hope to find a “magic” rmin
such that the process terminates quickly. An ideal rmin

Algorithm 2: (c, k)-ANN Query

Input: A query point q, and parameters rmin, β, n,
t, c, k

Output: k points
1 Initialize a candidate set C ← ∅ and r ← rmin;
2 Compute q′ = (h∗1(q), . . . , h∗m(q));
3 while true do
4 if |{p | p ∈ C ∧ ‖p, q‖ ≤ c · r}| ≥ k then
5 return top-k points closest to q in C;

6 Initialize a range query q′ with radius t · r in the
PM-tree;

7 while |C| < βn+ k do
8 Find a node in B(q′, t · r) on the PM-tree;

C ← C ∪ {the points in the node};
9 if |C| ≥ βn+ k then

10 return top-k points closest to q in C;

11 r ← c · r;

must yield a number of points inside B(q′, trmin) that

exceeds βn + k such that Algorithm 2 is able to ter-

minate after processing the range query B(q′, trmin).

In addition, to avoid returning a large number of un-

necessary points, which also is costly, the number of

points inside B(q′, trmin/c) should be below βn + k.

Otherwise, a range query B(q′, trmin/c) with a smaller

radius is able to return enough points.

As the rmin can be selected from a relatively large

range, we design a selection scheme as follows. Suppose

that we have obtained the distance distribution F (x)

of all datasets. Due to a good HV value, the distance

distribution of a query point can be estimated for the

dataset. Then we can find a suitable r that satisfies

n · F (r) = βn + k, which implies that βn + k points

locate in B(q, r) on average. However, to avoid the case

where the number of points in B(q, r) exceeds βn +

k, we choose an rmin that is slightly smaller than r.

As the choice of rmin is not unique and the selection

range is relatively large, and since the performance is

not strongly dependent on the specific choice, the effect

of the estimation is expected to be small.

Example 4 Setting βn = 4, we need to retrieve at least

5 points for a (2, 1)-ANN query. Initially, we set rmin =

r′ = 2. As explained in Example 3, o14 is returned. As

the number of returned points is below 5, we set r′ = 4.

In this round, only the subtree of e5 can be discarded,

and we check the points in e3, e4, and e6 and obtain

{o2, o5, o7, o12, o13, o14}. The number of returned points

is 6, and the process terminates. Finally, we return the

(2, 1)-ANN result o14.
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5.3 Analysis

Quality Guarantee. In Algorithms 1 and 2, we ex-

ecute a range query on the PM-tree with a radius tr

in the projected space. Therefore, we have to compare

the projected distances of candidate points to q with tr.

Specifically, two types of points need to be discussed:

true positives (the points inside B(q, r)) and false pos-

itives (the points outside B(q, cr)).

Lemma 4 Given a query q, we set probabilities α1 and

α2, and parameter t such that they satisfy Eq. 10:

{
t2 = χ2

α1
(m)

t2 = c2χ2
1−α2

(m)
(10)

We then have:

– E1: If a point o exists in B(q, r), its projected dis-

tance to q is smaller than tr.

– E2: There are fewer than βn (β > α2) points out-

side B(q, cr) whose projected distances to q are smaller

than tr.

The probability that E1 occurs is at least 1−α1, and

the probability that E2 occurs is at least 1− α2

β .

Proof Given a point o ∈ B(q, r), let ro = ‖o, q‖ ≤ r and

r′o = ‖o′, q′‖ be the original and projected distances

to q, respectively. By setting t =
√
χ2
α1

(m), accord-

ing to the Lemma 3, we have Pr[r′o > ro
√
χ2
α1

(m)] =

Pr[r′o > tro] = α1. Since ro ≤ r, Pr[r′o > tr] is at

most α1. Therefore, we know that Pr[E1] = Pr[r′o ≤
tr] > 1 − α1. Likewise, given a point o /∈ B(q, cr),

let ro = ‖o, q‖ > cr and r′o = ‖o′, q′‖ be the original

and projected distances to q, respectively. By setting

t = c
√
χ2
1−α2

(m), according to the Lemma 3, we have

Pr[r′o < ro

√
χ2
1−α2

(m)] = Pr[r′o < t roc ] = α2. Since
ro
c > r, Pr[r′o < tr] is at most α2. Therefore, by using

Markov’s inequality, we have Pr[E2] > 1− α2

β .

Note that if E1 and E2 hold at the same time, then

Algorithm 1 computes the (r, c)-BC query correctly.

Lemma 5 Algorithm 1 answers an (r, c)-BC query with

at least a constant probability.

Proof Let m = O(1). If α1 is a constant, α2 is also a

constant due to Eq. 10. By setting β = 2α2, the lower

bound probabilities of E1 and E2, i.e., 1− α1 and 1−
α2

β , will also be constant. Therefore, we can guarantee

that E1 and E2 hold at the same time with at least a

constant probability. Thus, if we access at least βn+ 1

points with projected distances to q smaller than tR,

due to E2, there are at most βn points outside B(q, cr),

and we thus obtain at least one point inside B(q, cr).

On the other hand, if we access no more than βn + 1

points with projected distances to q smaller than tR,

the correctness of E2 is not guaranteed. Therefore, it

is safe to return either no points or the points whose

distances to q are at most cr for an (r, c)-BC query.

As a typical setting in the LSH methods, we choose

parameters that satisfy Pr[E1] = 1−1/e and Pr[E2] =

1/2. Note that we can also choose parameters that achieve

more accurate results. In our setting, we have α1 = 1/e

and t =
√
χ2
α1

(m). Based on Eq. 10, both α2 and β can

be determined easily.

Theorem 1 Algorithm 2 returns a c2-ANN with prob-

ability at least 1/2− 1/e.

Proof Due to Lemma 5, we find that E1 and E2 can

hold at same time with probability at least 1/2 − 1/e

in our setting. Now we show that when E1 and E2

hold, the output of Algorithm 2 is c2-approximate. We

denote the set of points whose projected distances to q

are smaller than tr as C(r). When enlarging r according

to the sequence 1, c, c2, · · · , there must exist a radius

ropt that makes |C(ropt)| ≥ 1 + βn and |C(ropt/c)| <
1+βn hold. Then, if r∗ = ||o∗, q|| ≤ ropt/c, its projected

distance to q is smaller than tropt/c according to E1,

and we must have found it in C(ropt) because C(ropt) ⊃
C(ropt/c). As a result, Algorithm 2 returns the exact

NN. If r = ||o∗, q|| > ropt/c, according to E2, there is

at least one point in C(ropt) whose distance to q is at

most cropt. Therefore, we return a point whose distance

to q is smaller than c2r∗.

Algorithm Analysis of PM-LSH. In PM-LSH, if we

choose a large m, it will be costly to process a sequence

of range queries in the projected space. So we consider

m as a constant and fix its value at 15 in all experi-

ments.

Theorem 2 PM-LSH has space cost O(n) and time

cost O(log n+ βn), where β is much smaller than 1.

Proof The space consumption is due mainly to the PM-

tree, which has n items. Each item consumes m+O(1)

space, so the overall space consumption is O(n) as m =

O(1). The query time cost comes from two parts: 1)

finding candidate points in the PM-tree; and 2) veri-

fying the real distances of candidate points to q. The

former has cost O(log n), and the latter has cost O(βn)

when d is considered as a constant. Therefore, the total

query time is O(log n+ βn).
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Fig. 6: Illustration of Computing Mindist

6 Closest Pair Query Processing

We proceed to cover closest-pair query processing based

on PM-LSH. First, we propose a branch and bound

algorithm that processes the nodes in the PM-tree in

best-first manner. Due to the low efficiency of the branch

and bound algorithm, we develop a radius filtering method

to improve the query efficiency while sacrificing only

slightly the accuracy of the candidate pairs found in

the projected space.

6.1 Branch and Bound Algorithm

A straightforward method is to employ a branch and

bound search strategy on the PM-tree. First, we aim

to find T point pairs in the PM-tree with the small-

est distances in the projected space. Next, we verify

their distances in the original space. Finally, we report

k closest pairs as the result.

For any two nodes e1 and e2, we denote the mini-

mum distance of any point pair (o1, o2) ∈ e1 × e2 by

Mindist(e1, e2), which is computed as follows.

Mindist(e1, e2) =

max

{
maxi LB(pi),

‖e1.RO, e2.RO‖ − e1.r − e2.r

(11)

For the first term, we define a pivot-based lower

bound LB(pi) of the minimum distance between e1 and

e2 w.r.t. pi, where pi is the i-th global pivot. In Fig. 6,

we have two points o1 ∈ e1 and o2 ∈ e2. According to

the property of the PM-tree, we know that ‖o1, pi‖ is

in the range I1:

I1 = [e1.HR[i].min, e1.HR[i].max]

Likewise, ‖o2, pi‖ is in the range I2:

I2 = [e2.HR[i].min, e2.HR[i].max]

We compute LB(pi) based on the triangle inequality.

Since ‖o1, o2‖ ≥ |‖o1, pi‖ − ‖o2, pi‖|, if I1 overlaps I2,

we have LB(pi) = 0. Otherwise, LB(pi) is the dis-

tance between I1 and I2. In Fig. 6, we have LB(pi) =

e2.HR.min− e1.HR.max.

For the second term, we estimate the minimum dis-

tance between e1 and e2 using their centers. We com-

pute ‖o1, o2‖ with e2.RO as follows.

‖o1, o2‖ ≥ ‖o1, e2.RO‖ − ‖e2.RO, o2‖

We continue to compute ‖o1, e2.RO‖ with e1.RO as fol-

lows.

‖o1, e2.RO‖ ≥ ‖e1.RO, e2.RO‖ − ‖e1.RO, o1‖

Combined with the fact that ‖e1.RO, o1‖ ≤ e1.r and

‖e2.RO, o2‖ ≤ e2.r, we obtain the second term.

Let dT be the current T -th smallest distance in the

projected space. We access the node pairs in best-first

manner according to the ascending Mindist order. When

the Mindist of the next node pair to process exceeds dT ,

the search terminates, and T point pairs are returned

for verification.

The details of Algorithm 3 are explained as follows.

1. We initialize a point pair candidate set C of size

|C| = T . We apply a self-join on each leaf node in

the PM-tree and update C and dT accordingly.

2. We maintain a priority queue PQ to store node pairs

in ascending Mindist order. We initialize PQ by in-

serting (er, er), where er is the root of the PM-tree.

3. We pop the top element (e1, e2) from PQ. If we

have Mindist(e1, e2) > dT , the procedure stops; oth-

erwise, we continue to examine (e1, e2). The PM-

tree is a balanced tree, and we only consider node

pairs at the same level. Therefore, if e1 and e2 are

leaf nodes, we compute the distance of each point

pair in e1 × e2 and update C and dT accordingly. If

e1 and e2 are non-leaf nodes, for each child node e′1
of e1 and each child node e′2 of e2, we insert (e′1, e

′
2)

into PQ. This process terminates when PQ is empty

if it did not terminate earlier.

4. We verify the original distance of each point pair in

C and return top-k point pairs.

Example 5 In Fig. 4, for a (2, 2)-ACP query, we set

T = 3. First, we apply a self-join to all leaf nodes

e3, e4, e5, and e6, obtaining the top-3 result (o7, o15),

(o2, o14), and (o6, o13) with dT = 1.70. Then, we con-

sider pairs of points in different leaf nodes. We initialize

PQ with (er, er). As Mindist(er, er) = 0 < dT , we con-

tinue to insert (e1, e1), (e2, e2), and (e1, e2) into PQ.

Next, (e1, e1) and (e2, e2) are examined. For e1’s child

nodes e3 and e4, since (e3, e3) and (e4, e4) have been
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Algorithm 3: Branch and Bound Algorithm

Input: A dataset D, a PM-tree T indexing the
projected data and parameters T , n, k

Output: k point pairs
1 Apply a self-join on each leaf node in T and store k

found pairs with the smallest distance in the
projected space;

2 dT ← maximum distance of pairs in C;
3 Initialize a priority queue PQ to store node pairs in

ascending Mindist order;
4 PQ← (T .root, T .root);
5 while PQ is not empty do
6 (e1, e2)← PQ.Pop;
7 if Mindist(e1, e2) > dT then
8 Break;

9 foreach child node e′1 of e1 do
10 if e′2 is a leaf node then
11 foreach point pair (o′1, o

′
2) in e′1 × e′2 do

12 Compute ‖o′1, o′2‖ and update C and
dT accordingly;

13 else
14 foreach child node e′2 of e2 do
15 Insert (e′1, e

′
2) into PQ;

16 Verify the original distance of each point pair in C;
17 Return Top-k results from the verified pairs;

examined, we only need to insert (e3, e4) into PQ. Af-

ter employing a similar operation for e2, the node pairs

in PQ are 〈(e1, e2), (e5, e6), (e3, e4)〉. This process pro-

ceeds until we examine (e4, e6), since Mindist(e4, e6) =

2.91 > dT . We return the top-3 pairs (o7, o15), (o2, o14),

and (o6, o13) in the projected space. We verify their dis-

tances in the original space and return (o7, o15) and

(o6, o13) as the result.

6.2 Limitations of the Branch and Bound Algorithm

In the branch and bound algorithm, the search pro-

cedure terminates when Mindist > dT , where Mindist
is a lower bound distance on unexamined pairs. How-

ever, this bound is often so loose that the algorithm

efficiency suffers. Specifically, due to the property of

the PM-tree, the ranges covered by two nodes at the

same level overlap with high probability. No matter how

small the overlap is, Mindist(e1, e2) = 0.

To understand this issue better, we conduct an ex-

periment on dataset Audio to count the number of node

pairs with Mindist = 0. We employ the branch and

bound algorithm to search the PM-tree, and we count

the number of node pairs with Mindist = 0 among all

verified node pairs. We find that more than 70% of the

node pairs have Mindist = 0, which indicates that most

node pairs overlap.

This phenomenon may be explained by the fact that

PM-trees are built so that structured clusters are achieved

for the subtrees of each node. The differences between

nodes are not considered during construction, due to

the high computational cost. Therefore, when points

are located in a dense region, the tree nodes constructed

for this region are likely to overlap substantially due to

their limited node capacity.

Consequently, we have to examine about 90% of all

pairs in the branch and bound algorithm when using a

PM-tree with m = 15, which makes the algorithm de-

generate to nearly a brute-force nested loop algorithm.

We observe that we can lower m to reduce the cost of

finding exact closest pairs in the projected space. How-

ever, a small m may lead to an inaccurate confidence

interval when estimating the correlation between orig-

inal and projected distances. As a result, we have to

verify more candidate pairs to achieve a high recall.

6.3 Improvement with Radius Filtering

To fewer pairs, we provide a radius filtering method.

The idea is to compute an upper bound distance of the

k-th best point pair in the original space. We then esti-

mate a candidate distance in the projected space based

on the upper bound and use this distance to prune un-

necessary node pairs.

Specifically, we still apply a self-join on each indi-

vidual leaf node in the PM-tree. Let ub denote the up-

per bound distance in the original space. We verify the

original distances of all self-join pairs and initialize ub

to be the current k-th smallest distance. According to

Lemma 4, if a point pair exists whose original distance

is smaller than ub, its projected distance is smaller than

t · ub with a high probability. Therefore, we aim to find

point pairs in the PM-tree whose projected distance is

within t · ub. As we have already examined all point

pairs in leaf nodes via self-joins, we only need to check

pairs of points from different leaf nodes.

Let (o′1, o
′
2) be the point pair of (o1, o2) in the pro-

jected space. We observe that there is a strong rela-

tionship between the projected distance ‖o′1, o′2‖ and

the radius of their lowest common ancestor in the PM-

tree. We define the concept of lowest common ancestor

as follows.

Definition 6 (Lowest Common Ancestor) The low-

est common ancestor (LCA) of two points o′1 and o′2 is

a node e in the PM-tree such that:

– Points o′1 and o′2 are stored in the subtree of e.

– No child node e′ of e exists such that o′1 and o′2 are

also stored in the subtree of e′.
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Let R = e.r denote the radius of the LCA node e of

o′1 and o′2. We assume that γ · ‖o′1, o′2‖ ≤ R holds with

high probability, where the setting of parameter γ is

explained later. Therefore, in order to find point pairs

with projected distance smaller than t ·ub, we only have

to examine the points of nodes in the PM-tree whose

radius is smaller than γ · t · ub.
We explain the details of Algorithm 4 as follows.

1. We initialize a point pair candidate set C of size

|C| = k. We apply a self-join on each leaf node in

the PM-tree, and we compute the original distances

of all pairs found. We then update C and ub accord-

ingly.

2. Let R = γ ·t ·ub be the radius used for node filtering

in the PM-tree.

3. We employ Algorithm FindLCA() that traverses the

PM-tree to find the nodes with radius smaller than

R. A node e returned by FindLCA() may not be an

LCA of the points it covers. But we can find the

LCA of any point pair it covers in the subtree of e,

and the radius of the LCA is smaller than R. There-

fore, it suffices to examine the point pairs covered

by e.

4. We consider the nodes returned by FindLCA() in

ascending order of their radii. The intuition is that

a node with a small radius is likely to cover point

pairs with small projected distances.

5. We examine the nodes in turn. For any two points

o′1 and o′2 in the sub-tree of a node e, we compute

‖o′1, o′2‖, and if ‖o′1, o′2‖ < t · ub, we consider (o1, o2)

as a candidate pair. Then, we compare ‖o1, o2‖ with

ub and update both ub and C if necessary. This

process stops when we have T candidate pairs.

6. We return C as the result.

Example 6 In the example in Fig. 4, the PM-tree has

4 leaf nodes e3, e4, e5, and e6. To compute a (2, 2)-ACP

query, we first apply a self-join to all leaf nodes and ob-

tain the preliminary top-2 pairs (o4, o8) and (o12, o14),

both with distance 1. We set ub = 1. Setting t = 3 and

γ = 3, we get t · ub = 3 and R = 9. We find all inner

nodes whose ranges are within 9 and obtain e2. The un-

verified pairs in the subtree of e2 come from e5× e6. As

‖o′4, o′2‖ = 3.2 > 3, we skip it and process the remaining

pairs. Finally, we obtain R = 〈(o4, o8), (o12, o14)〉.

Determining the Setting of γ. For any two points

o′1 and o′2 in the projected space, we observe that ‖o′1, o′2‖
and the radius of their LCA have a strong correlation.

Let γ = R
‖o′1,o′2‖

be the ratio of R over ‖o′1, o′2‖. To en-

sure the quality of the nodes returned by the radius

filtering, we need to find an appropriate setting for γ.

Algorithm 4: Radius Filtering Method

Input: A dataset D, a PM-tree T indexing the
projected data and parameters T , n, t, k, γ

Output: k point pairs
1 Apply a self-join on each leaf node in T and verify

all found point pairs;
2 count← The number of verified pairs;
3 ub ← The k-th smallest real distance in found pairs;
4 R← γ · t · ub;
5 C ← ∅;
6 Initialize an array A to store the nodes;
7 FindLCA(T .root, R,A);
8 Sort the nodes in A in ascending order of their radii;
9 foreach node e in A do

10 foreach point pair (o1, o2) in e’s subtree do
11 if ‖o′1, o′2‖ < t · ub then
12 Verify (o1, o2) and update ub;
13 count++;

14 if count > T then
15 Break;

16 if count > T then
17 Break;

18 Return All pairs in C;

Algorithm 5: FindLCA(e,R,A)

Input: A PM-tree node e, a radius R, and an array
A

Output: A
1 if e is an inner node then
2 if e.r < R then
3 Insert e into A;

4 else
5 foreach child node ei of e do
6 FindLCA(ei, R,A);

To do so, we study the probability density functions of

γ on real datasets.

Let us take dataset Audio (Details are provided in

Sec. 7) as an example. We use m = 15 hash functions.

First, we randomly select 10K data points. We then

index these points in the projected space using two

PM-trees with node capacity M = 2 and M = 16, re-

spectively. We obtain some 50 million point pairs from

10K points. For each pair, we compute the value of γ.

Fig. 7 shows the probability density functions fγ(x) for

M = 2 and M = 16. It is easy to see that the two

functions have similar trends. Both peak quickly and

then decline quickly. An appropriate value of γ is very

likely to be within the neighborhood of the peak, which

indicates that γ varies slightly for different pairs. With

Pr(γ) being the success probability, we choose γ such

that Pr(γ) =
∫ γ
0
fγ(x)dx = 85% for all datasets. Note

that we can enlarge the value of Pr(γ) to examine more

nodes. But this represents a tradeoff between accuracy
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Fig. 7: The Probability Density Function of γ

and efficiency, and Pr(γ) = 85% already provides good

performance. We analyze the cost of computing γ ex-

perimentally in Section 7. Specifically, the cost is the

time it takes to compute the distances of 50 million

point pairs, which is acceptable when compared with

the total cost.

Promote Methods for the PM-tree. The PM-

tree is built bottom-up by inserting the data points one

by one. When a node e overflows after inserting M + 1

entries, we allocate a new node e′ at the same level and

distribute the M + 1 entries among the two nodes. One

study [9] contributes the concept of a Promote method

that selects two points as the centers of two nodes e

and e′. It is easy to see that different centers may lead

to different partitioning results, which affects the algo-

rithm performance. We consider two Promote methods

as follows.

– m RAD selects two points from all possible combina-

tions as the centers such that the sum of the two cov-

ering radii is the minimum after partitioning. This

method incurs many distance computations but also
yields high-quality partitioning.

– RANDOM selects two points as node centers at ran-

dom.

It is obvious that m RAD provides no worse parti-

tioning than does RANDOM, since m RAD aims to min-

imize the sum of the two covering radii, which repre-

sents a locally optimal partitioning of the M+1 entries.

Consequently, the two nodes are covered by a parent

node with a small radius. In this case, the radius filter-

ing strategy enables to obtain T candidate pairs with

higher quality.

Algorithm Analysis of Radius Filtering. In the

radius filtering method, as we have n(n−1)/2 pairs, we

set T = βn(n− 1)/2 + k, which is similar to the setting

for the NN query.

Theorem 3 PM-LSH answers an ACP query with space

cost O(n) and time cost O(βn2), where β is much smaller

than 1.

Table 3: Datasets

Dataset n (×103) d HV RC LID
Audio 54 192 0.9273 2.97 5.6
Deep 1,000 256 0.9393 1.96 12.1
NUS 269 500 0.9995 1.67 24.5

MNIST 60 784 0.9531 2.38 6.5
GIST 983 960 0.9670 1.94 18.9
Cifar 50 1,024 0.9457 1.97 9.0
Trevi 100 4,096 0.9432 2.95 9.2

Proof The space consumption is due mainly to the PM-

tree with n points. Each point consumesm+O(1) space,

so the overall space consumption is O(n) as m = O(1).

The query time cost stems from two operations: 1) find-

ing candidate pairs in the PM-tree, and 2) verifying the

real distances of candidate pairs. Both operations have

cost O(T ) when d is considered as a constant. Accord-

ing to the setting of T , the total query time is O(βn2).

7 Experiments

We report on extensive experiments with real datasets

that offer insight into the performance of PM-LSH for

both NN and CP queries.

7.1 Experimental Settings

All the algorithms are implemented in C++, and com-

pilation is done with the O3 optimization. All experi-

ments are run on a Linux machine with an Intel 3.4GHz

CPU and 32GB memory.

Datasets. We use seven real datasets: Audio, Deep,

NUS, MNIST, GIST, Cifar, and Trevi, which are used

widely in existing LSH studies [18, 27, 33, 34, 47]. Table

3 reports key statistics of the datasets: Homogeneity of

Viewpoints (HV [10]), Relative Contrast (RC [25]), and

Local Intrinsic Dimensionality (LID [2]). RC computes

the ratio of the mean distance over the NN distance for

the data points. LID computes the local intrinsic di-

mensionality. A small RC value and a large LID value

imply that it is challenging to compute NN results for

the dataset. HV evaluates the homogeneity of the dis-

tance distributions of the data points. A higher HV

means that the points are more likely to have similar

distance distributions.

Query Set. For NN queries, we randomly select

200 points from each dataset, and we repeat each ex-

periment 20 times and report the average value. We

set the default value of c to 1.5, and vary its value in

{1.1, 1.2, . . . , 2.0}. We vary the value of k in {1, 10, 20, . . . , 100}
and set the default value to 50. For CP queries, we re-

peat each experiment 20 times and report the average
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Fig. 8: Performance of PM-LSH when Varying s and m

value. We vary the value of k in {1, 10, 102, . . . , 104}
and set the default value to 103. The default value of c

is 4 in PM-LSH and the LSB-tree.

Competing Algorithms. For NN queries, we com-

pare PM-LSH with the following competitors:

1. Multi-Probe [35]: A probing sequence (PS) based

algorithm.

2. QALSH [27]: A radius enlargement (RE) based al-

gorithm.

3. SRS [47]: A metric indexing (MI) based algorithm.

4. R-LSH: In order to compare the PM-tree and the

R-tree, we index the points in the projected space

with an R-tree instead of a PM-tree to see how PM-

LSH then performs. We call this method R-LSH.

5. LScan: We consider a linear scan algorithm called

LScan that randomly selects a portion of points (de-

fault 70%) and returns the top-k points with the

smallest distances to the query.

For CP queries, we compare PM-LSH with the fol-

lowing competitors:

1. LSB-tree [49]: The LSB-tree supports both NN

and CP queries.

2. MkCP [19]: MkCP supports CP queries with the

M-tree. We choose the variant called GMA that

uses grouping and N-consider techniques that en-

ables trade-offs between time and accuracy.

3. ACP-P [7]: The state-of-the-art solution for CP

queries.

4. NLJ: Nested loop join (NLJ) is an exact algorithm

that computes the distance between any two points

with two nested loops and then returns the top-k

CPs.

Parameter Settings. For NN queries, we choose

m = 15 hash functions for all the algorithms except

QALSH and Multi-Probe. In our method, we set the

number of pivots s = 5 and α1 = 1/e, so α2 = 0.1405

and β = 0.2809 are obtained according to Eq. 10, and

rmin is determined according to the description in the

previous section. For QALSH, the false-positive per-

centage β = 100/n, and the error probability δ = 1/e.

For SRS, the threshold of its early-termination con-

dition p′τ = 0.8107, and the maximum percentage of

points accessed in the projected space is T = 0.4010

when c = 1.5.

For CP queries, we choose m = 15 hash functions

for our algorithm. We set the number of pivots s =

5, Pr(γ) = 0.85, and α1 = 1/e, so α2 = 0.0024 are

obtained according to Eq. 10, and thus T = α2n(n −
1) + k. For ACP-P, we set the hyper parameter h = 5

and the range value is set to 5 according to the advice of

its authors. For MkCP, we set the number of groupings

to N = 2. For the LSB-tree, the approximation ratio is

set to c = 4.

Evaluation Metrics. We adopt three metrics to

assess the performance of the algorithms: query time

(ms for NN, s for CP), overall ratio, and recall, where

the query time quantifies the algorithm efficiency and

the overall ratio and recall capture the result quality.

For an NN query q, we denote the result of a (c, k)-ANN

query by R = 〈o1, o2, · · · , ok〉. Let R∗ = 〈o∗1, o∗2, · · · , o∗k〉
be the exact kNNs. The overall ratio and recall are com-

puted as follows.

OverallRatio =
1

k

k∑
i=1

‖q, oi‖
‖q, o∗i ‖

(12)

Recall =
|R ∩R∗|
|R∗|

(13)

For a CP query, we denote the result of a (c, k)-ACP

query by R = 〈(o1,1, o1,2), (o2,1, o2,2), . . . , (ok,1, ok,2)〉.
Let R∗ = 〈(o∗1,1, o∗1,2), (o∗2,1, o

∗
2,2), . . . , (o∗k,1, o

∗
k,2)〉 be the

exact kCPs. The recall is the same as for the NN query,

and the overall ratio is computed as follows.

OverallRatio =
1

k

k∑
i=1

‖oi,1, oi,2‖
‖o∗i,1, o∗i,2‖

(14)
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Table 4: Performance Overview of NN Queries

PM-LSH SRS QALSH Multi-Probe R-LSH LScan

Audio

Query Time (ms) 13.5 15.3 22.5 15.3 14.2 19.6

Overall Ratio 1.0014 1.0025 1.0043 1.0242 1.0019 1.0073

Recall 0.9662 0.9126 0.9003 0.8669 0.9633 0.6839

MNIST

Query Time (ms) 12.3 18.4 24.7 19.1 16.2 60.3

Overall Ratio 1.0076 1.0101 1.0085 1.0103 1.0095 1.0276

Recall 0.8857 0.8514 0.8655 0.8502 0.8705 0.7073

NUS

Query Time (ms) 125.7 142.1 133.2 125.9 129.6 176.8

Overall Ratio 1.0009 1.0015 1.0027 1.0025 1.0011 1.0053

Recall 0.9257 0.9247 0.8677 0.8782 0.9214 0.7057

Trevi

Query Time (ms) 37.2 47.9 145.5 239.3 63.9 57.68

Overall Ratio 1.0004 1.0015 1.0029 1.0057 1.0044 1.0084

Recall 0.9961 0.9342 0.8240 0.8534 0.9568 0.7103

Cifar

Query Time (ms) 11.6 16.1 38.3 26.8 35.6 58.2

Overall Ratio 1.0009 1.0025 1.0057 1.0038 1.0056 1.0125

Recall 0.9746 0.9624 0.7917 0.8011 0.9610 0.7081

GIST

Query Time (ms) 398.7 452.5 627.7 782.9 425.3 1528.3

Overall Ratio 1.0047 1.0049 1.0037 1.0053 1.0059 1.0076

Recall 0.8436 0.8145 0.8534 0.8122 0.8098 0.7023

Deep

Query Time (ms) 227.8 252.9 458.2 401.4 457.5 507.5

Overall Ratio 1.0037 1.0077 1.0124 1.0112 1.0152 1.0145

Recall 0.8816 0.8894 0.646 0.8118 0.8801 0.6938

7.2 Evaluation of NN Query Processing

To evaluate the performance of PM-LSH for NN query

processing, we first determine parameter settings. Then,

we compare the performance of all algorithms with de-

fault parameter settings on all datasets. Finally, we

compare the algorithms by studying the changes of the

overall ratio and recall under fixed query times.

Parameter Study on PM-LSH for NN Query.

We consider two parameters that may affect the perfor-

mance of PM-LSH, i.e., the number of pivots s and the

number of hash functions m. Here, we only show re-

sults from the Trevi dataset. It is easy to see that s

only affects the query time. The overall ratio and re-

call do not change when we vary s. As we can see from

the Fig. 8(a), when s changes, the query time remains

steady, which indicates that PM-LSH is largely unaf-

fected by different settings for s. When using a larger

number of pivots, we have a higher chance to prune

subtrees in the PM-tree. However, the cost of checking

the pruning condition also increases. In conclusion, we

set s = 5.

As shown in Fig. 8, when the value of m increases,

we obtain a higher overall ratio and recall, but the query

time also increases. The higher quality occurs because

a larger m leads to more accurate distance estimation.

However, the average cost to retrieve a point from the

PM-tree also increases. Taking both efficiency and ac-

curacy into consideration, we set m = 15.

When comparing PM-LSH with R-LSH, we observe

in all the experiments that PM-LSH outperforms R-

LSH on all metrics, which confirms the expected supe-

riority of the PM-tree over the R-tree.

Performance Overview of NN Query. To com-

pare all the algorithms with default parameter settings,

we report the query time (ms), overall ratio, and recall

on all datasets in Table 4. PM-LSH is more efficient

than the competitors on all datasets, and its overall ra-

tio and recall are also better than those of its competi-

tors. Moreover, we find that either query time, overall

ratio, or recall depend only slightly on the dataset di-

mensionality. For instance, Audio, MNIST, and Cifar

have nearly the same cardinality, but different dimen-

sionality, i.e., 192, 784, and 1024. However, the query

times of PM-LSH on them are different and it is not

only affected by data dimensionality. So we explain this

by the query time being affected by the data distribu-

tion. In Table 3, we can see that dataset GIST has

large LID value and small RC value, so it is consid-

ered as challenging dataset. As shown in Table 4, it has

larger query times than the other datasets.

Effect of k. In this set of experiments, we study

the performance when varying k in {1, 10, 20, · · · , 100}.
Due to the space limitation, we only report the perfor-

mance on Deep, Cifar, and Trevi. The results are shown

in Figs. 9–11. In the Cifar and Trevi datasets, we can

see that PM-LSH achieves the best performance on all
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metrics. SRS is the second-best algorithm. When using

the Deep dataset, PM-LSH has the smallest query time

and overall ratio, and its recall is close to that of SRS.

As k increases, all algorithms achieve a higher over-

all ratio and a smaller recall, but the query time is rel-

atively steady. In fact, the algorithms return the best k

objects from a candidate set whose size exceeds βn+k.

Therefore, a larger k has little effect on the query time

but obviously has an adverse effect on the result quality.

When considered across different datasets with dif-

ferent cardinality n and dimension d, PM-LSH exhibits

a consistent high accuracy. This is because PM-LSH is

unaffected by the dimensionality of the datasets and

because its cost is sublinear in the cardinality of the

datasets. In contrast, Multi-Probe is affected signifi-

cantly by the dataset dimensionality. The hash num-

ber of QALSH is O(n log n), so its query time increases

super-linearly with the dataset cardinality. Similarly,

when the dataset cardinality increases, SRS incurs a

higher query cost to find an NN in the projected space.

To sum up, PM-LSH has the smallest query time

among all competitors. In addition, the accuracy is high.

Only SRS is able to achieve a competitive recall in some

cases but exhibits longer query times than PM-LSH.

Recall-Time and OverallRatio-Time Curves.

In this set of experiments, we evaluate the relationship

between the recall or overall ratio and the query time

for (c, k)-ANN queries on all the datasets when vary-

ing c to obtain different query times. The results are

shown in Figs. 12 and 13. As the tradeoff between the

query quality and the query time is the key tradeoff,

the LSH methods focus on returning relatively good

results with much smaller query time than the exact

NN algorithms. The results show that all algorithms

return more accurate results when more query time

is used. They also show that PM-LSH achieves supe-

rior efficiency and accuracy when compared to SRS,

QALSH, and Multi-Probe. This can be explained as

follows. First, PM-LSH has a better distance estima-

tor than QALSH and Multi-Probe, so PM-LSH outper-

forms them with the same number of retrieved points.

Second, PM-LSH needs lower time to obtain the same

number of retrieved points since only one or two range

queries are required. In contrast, SRS needs T rounds

of incremental NN search.

7.3 Evaluation of CP Query Processing

To evaluate PM-LSH for CP query processing, we first

conduct an evaluation to determine the setting of γ

and compare two Promote methods. Then, we compare

with the competitors by varying the parameter values.

Finally, we consider the changes of the overall ratio and

recall under different query times.

Determining the Setting of γ. In this set of ex-

periments, we study the effects of the node capacity M

and the dataset cardinality on choosing γ in datasets

Audio, Trevi, and NUS. We choose M = 16 and m RAD
as defaults. We randomly sample n′ = 10K points from

each dataset. After we build a PM-tree, we compute the

value of γ for each pair and use the probability density

distribution function fγ(x) to study the effects.

We first consider fγ(x) when varying the value of

M in {2, 16, 64}. As shown in Fig. 14, the tendency

of fγ(x) remains nearly unchanged when varying M .

However, the peak position, the peak value, and the

gradient are affected slightly by M . To make Pr(γ) =

0.85, the settings for γ are different. Note that when

M = 2, fγ(x) has the smallest peak position, the largest

peak value, and the largest gradient. This indicates that

a small M yields a good partitioning. However, a small

γ increases the PM-tree size and leads to additional

computational costs. To achieve a good tradeoff, we set

M = 16.

Next, we study fγ(x) when varying the number of

sampled points n′ in {5000, 10000, 20000}. As shown in

Fig. 15, fγ(x) changes slightly when varying n, which

enables us to determine the setting of γ by using only
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Table 5: Construction Time of m RAD and RANDOM

Dataset
Construction Time (s)

RANDOM m RAD

Audio 0.82 28.75

NUS 2.84 116.81

Trevi 1.06 45.09

a subset that preserves the information of the whole

dataset. The cost of computing γ equals the time needed

to compute the distances of 50 million point pairs formed

by 10K points, which is about 0.3s when we use m = 15

hash functions for each dataset.

Effect of Promote methods. We compare the

performance of the two Promote methods, m RAD and

RANDOM. Fig. 16 shows that the recall and overall

ratio are very similar for the two methods, but that

the query time when using m RAD is smaller than that

achieved when using RANDOM. This can be explained

by the fact that the PM-tree constructed with m RAD
has a better structure, meaning that fewer candidate

pairs need to be verified to achieve a high recall. So

we choose m RAD as the default Promote method. On

the other hand, Table 5 shows that the construction of

the PM-tree with m RAD takes more time than with

RANDOM, while still being acceptable.

Performance Overview of CP Query. We com-

pare the algorithms with default settings on all datasets

and report the query time (s), overall ratio, and recall

in Table 6. We observe that PM-LSH has the best per-

formance for all evaluation metrics and datasets. To

analyze what affects the query time of PM-LSH on dif-

ferent datasets, we notice that Cifar takes more time

than Trevi. However, the cardinality and dimensional-

ity of Cifar are both smaller than those of Trevi, indi-

cating that the query time is not only affected by the

dataset cardinality and dimensionality. Other factors,

including the data distribution, also have an effect. All

algorithms exhibit a poor performance on NUS. This

can be explained by NUS having a small RC value and

a large LID value, which make it challenging to com-

pute CP queries. MkCP has the worst performance on

all datasets. The reason is that MkCP uses the M-Tree

to index points directly, causing vulnerability to the

curse of dimensionality. For high-dimensional datasets,

the MkCP query algorithm nearly degenerates to being

a brute-force algorithm. In practice, operations such

as computing lower bounds and maintaining priority

queues incur additional costs.

Effect of k. Next, we study the performance when

varying k in {1, 10, 102, 103, 104}. For brevity, we only

report the performance on datasets Audio, Trevi, and

NUS. We choose Audio and NUS instead of Cifar and

Deep because MkCP and ACP-P are inefficient for the

latter two. The results are shown in Figs. 17–19.

With the increase of k, most algorithms incur longer

query times and worse recall and overall ratio. The rea-

son for a larger query time is that k affects the number

of candidate pairs. PM-LSH, ACP-P, and MkCP all

use the k-th smallest distance for pruning, so a large

k means that more candidate pairs must be verified.

The LSB-Tree returns the best k objects from a nearly

fixed-size candidate sets, so its query time increases

only slowly with k. An exceptional case occurs for the

LSB-tree on NUS. The overall ratio improves with the

increase of k. This is because many pairs have almost

the same distances. When the result size increases, al-

though the exact results are not found, the ratio of the

distance of the i-th returned pair over that of the i-th

exact pair decreases.

When considered across datasets, PM-LSH exhibits

a consistent high accuracy. However, the query time of

each algorithm varies substantially across the different

datasets, which can be explained by three observations.

(1) The query time is affected significantly by dataset

cardinality n. For instance, the query times of PM-LSH,

the LSB-tree, and ACP-P are subquadratic to n; the

query time of MkCP is O(n2) in the worst case. (2)

The query time is affected by dataset dimensionality d.

All algorithms need to verify candidate pairs, and the

cost is linear in d. (3) The data distribution also affects

the query time, which is a key determining factor for

when the algorithms terminate.

To sum up, PM-LSH has the smallest query time

among all competitors. In addition, the accuracy is high.

Only the LSB-tree is able to achieve a competitive re-
call in some cases but incurs longer query time than

PM-LSH.

Recall-Time and OverallRatio-Time Curves.

We proceed to study the relationship between the re-

call or overall ratio and the query time for (c, k)-ACP

queries on all the datasets when varying their configura-

tions to obtain different query times, such as c for PM-

LSH, N for MkCP, L for the LSB-tree, and repeat times

for ACP-P. The results are shown in Figs. 20 and 21. As

the query quality and the query time represent the key

tradeoff, the algorithms focus on returning relatively

good results with much smaller query times than those

of exact CP algorithms. The results show that all algo-

rithms return more accurate results when more query

time is used. They also show that PM-LSH achieves

superior efficiency and accuracy when compared to the

LSB-tree, ACP-P, and MkCP. This can be explained as

follows. First, PM-LSH has a better distance estimator

than the LSB-tree and ACP-P, so PM-LSH outperforms

them with the same number of retrieved points. Second,



PM-LSH: a fast and accurate in-memory framework for high-dimensional approximate NN and closest pair search 21

0 5 10 15
�

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
M=2

M=16

M=64

(a) fγ(x) on Audio

0 5 10 15
�

0.0

0.1

0.2

0.3

0.4

0.5
M=2

M=16

M=64

(b) fγ(x) on Trevi

0 20 40 60 80
�

0.00

0.05

0.10

0.15

0.20
M=2

M=16

M=64

(c) fγ(x) on NUS

Fig. 14: Effect of M for fγ(x)

0 5 10 15
�

0.0

0.1

0.2

0.3

0.4
n'=5000

n'=10000

n'=20000

(a) fγ(x) on Audio

0 5 10 15
�

0.0

0.1

0.2

0.3

0.4
n'=5000

n'=10000

n'=20000

(b) fγ(x) on Trevi

0 20 40 60 80
�

0.00

0.05

0.10

0.15

0.20
n'=5000

n'=10000

n'=20000

(c) fγ(x) on NUS

Fig. 15: Effect of Dataset Cardinality for fγ(x)

Audio NUS Trevi0.0

0.2

0.4

0.6

0.8

1.0

Time (s)
1.13 150.9 11.7

0.83 107.0

10.9

 RANDOM m_RAD

(a) Time (s)

Audio NUS Trevi0.0

0.2

0.4

0.6

0.8

1.0
Recall  RANDOM m_RAD

(b) Recall

Audio NUS Trevi0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4Ratio  RANDOM m_RAD

(c) OverallRatio
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PM-LSH uses a radius filtering technique to generate

candidate pairs, which reduces substantially the cost of

generating candidate pairs and provides a well-designed

condition to terminate the process early. Third, the

hyper-ball and hyper-ring space partitioning help re-

duce unnecessary verification overhead. In addition, al-

though MkCP also finds approximate closest pairs in

a space partitioning tree, it indexes high-dimensional

data directly, which makes pruning difficult. Therefore,

its query time is much larger than those of the other

methods.

8 Related Work

8.1 LSH for Nearest Neighbor Search

Locality-Sensitive Hashing (LSH) is a prominent ap-

proach to speeding up the processing of approximate

nearest neighbor querying [5, 15, 16, 20, 35]. LSH was

originally proposed by Indyk et al. [28] for use in Ham-

ming space, and it has since attracted substantial atten-

tion due to its excellent performance. Datar et al. [15]

propose an LSH function based on p-stable distribu-

tions in Euclidean space, which has become a main-

stream method that yields low computation cost, a sim-

ple geometric interpretation, and a good quality guar-
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Table 6: Performance Overview of CP Queries

PM-LSH LSB-tree ACP-P MkCP NLJ

Audio

Query Time (s) 0.83 12.82 384.60 756.26 388.03

Overall Ratio 1.002 1.004 1.004 1.083 1.000

Recall 0.964 0.911 0.930 0.288 1.000

MNIST

Query Time (s) 33.59 38.80 597.53 2946.45 1900.42

Overall Ratio 1.004 1.006 1.005 1.103 1.000

Recall 0.937 0.911 0.928 0.313 1.000

NUS

Query Time (s) 107.03 179.43 921.19 / 23322.10

Overall Ratio 1.298 3.904 1.669 / 1.000

Recall 0.446 0.005 0.190 / 1.000

Trevi

Query Time (s) 10.92 66.96 933.33 / 28400.6

Overall Ratio 1.014 1.019 1.016 / 1.000

Recall 0.946 0.905 0.918 / 1.000

Cifar

Query Time (s) 91.83 106.18 376.17 4140.29 2609.30

Overall Ratio 1.034 1.070 1.047 1.094 1.000

Recall 0.721 0.499 0.619 0.449 1.000

GIST

Query Time (s) 81.77 125.45 985.02 / 590321.43

Overall Ratio 1.101 1.998 1.283 / 1.000

Recall 0.772 0.16 0.504 / 1.000

Deep

Query Time (s) 128.74 132.73 129.16 / 174900.00

Overall Ratio 2.337 2.420 7.115 / 1.000

Recall 0.445 0.427 0.192 / 1.000
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Fig. 21: Ratio-Time Curve for CP Queries

antee. Since then, many LSH methods build on this

work to choose hash functions [18, 23, 27, 35, 47, 48]. In

addition to the competitors introduced in Section 3,

other proposals deserve mention. Based on a rigorous

theoretical analysis, Panigrahy et al. [39] propose an

entropy-based LSH, and Satuluri et al. [43] propose a

BayesLSH. The former tries to reduce the number of

hash tables by using multiple perturbed queries, and

the latter aims to reduce the query time by estimating

the similarity between data and query objects based

on Bayes rule. However, both yield limited performance

improvements as the assumptions made on the underly-

ing dataset are hard to satisfy and verify. Another inter-

esting proposal is LazyLSH [54], which supports queries

in multiple lp spaces by using one index, thus effectively

reducing the space overhead. Another line of hashing-

based methods is learning to hash (L2H) [50], which

is orthogonal to our work. LSH uses predefined hash

functions without considering the underlying dataset,

while L2H learns tailored, data dependent hash func-

tions. Many learning algorithms have been proposed,

such as iterative quantization (ITQ) [21] and generate-

to-probe QD ranking (GQR) [33].

8.2 High Dimensional Closest Pair Search

Closest-Pair (CP) search is an important problem in

the database domain. Early studies target mainly low-

dimensional closest pair search [12, 13, 26, 29, 44, 45].

They adopt spatial index structures, such as the R-tree

and Quadtree and their variants, to organize the data.
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However, these methods fail to handle high-dimensional

closest pair search due to the curse of dimensionality.

Corral et al. [11] propose a join method based on the

VA-file, which is an array structure rather than a tree

structure. Angiulli et al. [4] adopt the Z-curve to re-

duce the dimensionality and generate candidates in one-

dimensional spaces. Tao et al. [49] propose an LSB-tree

that uses a compound hash function to project points

into a low-dimensional space. Next, they adopt the Z-

curve to map the projected points into one-dimensional

values that are indexed by a B-tree. Candidate point

pairs are generated from the points with the same Z-

values. However, L = O(
√
n) B-trees are required, thus

causing a large space consumption. Mueen et al. [37]

partition the data based on their distances to a pivot

and thus map the high-dimensional data to a one-dimensional

space. Other studies use LSH [32,52] or random projec-

tion [7] to reduce the dimensionality. For instance, Cai

et al. [7] project the data directly into a one-dimensional

space. Nearby points in the projected space are consid-

ered as candidate point pairs. However, the distance

estimation is inaccurate and leads to unnecessary veri-

fication overhead.

Unlike the previously covered methods that use di-

mension reduction, yet other studies organize the orig-

inal data directly by means of novel index structures,

such as the LTC index [40], the multi-ball [17, 31], and

the eD-Index [41]. Specifically, Gao et al. [19] propose

several efficient algorithms using the count M-tree. How-

ever, these methods still suffer from the curse of dimen-

sionality.

In addition, distributed indexing based approaches

[32, 51] are proposed to accelerate CP search. These

enable in-memory processing of large scale datasets.

9 Conclusion

We present a fast and accurate in-memory framework,

called PM-LSH, for computing (c, k)-ANN and (c, k)-

ACP queries with theoretical result quality guarantees.

For NN queries, we first adopt the PM-tree to index the

data points to be queried in a projected space. Second,

in order to improve the distance estimation accuracy

in the projected space, we develop a tunable confidence

interval on the projected distance w.r.t. a given original

distance. Finally, we propose an efficient algorithm to

compute range queries using the PM-tree. The exper-

imental study using seven widely used datasets shows

that PM-LSH is capable of outperforming five competi-

tors in terms of both query efficiency and result accu-

racy. Specifically, PM-LSH improves the query time by

an average of 30% when compared to the closest com-

petitor. When all competitors are given approximately

the same query time, PM-LSH improves the recall by

about 10% when compared to the closest competitor.

For computing CP queries, we also use the PM-tree

to index the points in the projected space. We propose a

radius filtering technique for finding closest pairs in the

PM-tree. The experimental study shows that PM-LSH

is capable of outperforming four competitors in terms of

both query efficiency and result accuracy. Specifically,

PM-LSH improves the query time by an average of 40%

when compared to the closest competitor. When all the

competitors are given approximately the same query

time, PM-LSH improves the recall by about 50% when

compared to the closest competitor.
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