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Abstract: Organic solar cells (OSCs) have been widely studied due to the advantages of easy fab-
rication, low cost, light weight, good flexibility and sufficient transparency. In this work, flexible
and semitransparent OSCs were successfully fabricated with the adoption of both polyimide/silver
nanowires (PI/AgNW) and a conducting polymer PEDOT:PSS named PH1000 as the transparent
conductive electrodes (TCEs). It is demonstrated that PI/AgNW is more suitable as a cathode rather
than an anode in the viewpoint of its work function, photovoltaic performance, and simulations
of optical properties. It is also found that the light incidence from PH1000 TCE can produce more
plasmonic-enhanced photon absorption than the PI/AgNW electrode does, resulting in more high
power conversion efficiency. Moreover, a high light transmittance of 33.8% and a decent efficiency
of 3.88% are achieved for the whole all-flexible semitransparent device with only 9% decrease of
resistance in PI/AgNW after 3000 bending cycles. This work illustrates that PI/AgNW has great
potential and bright prospect in large-area OSC applications in the future.

Keywords: polyimide; Ag nanowires; plasmonic; semitransparent; flexible; organic solar cells

1. Introduction

Photovoltaic (PV) technology plays an important role in achieving solar energy
conservation and decreasing fossil fuels consumption due to its clean and sustainable-
development advantages [1–3]. Compared to the traditional inorganic solar energy ma-
terials with poor flexibility [4–6], polymeric semiconducting materials possess the super
mechanical flexibility due to the entanglement and relaxation of such long-chain molecules
with conjugated backbones equipped with solubilizing side-chains [7–9]. For construct-
ing the flexible organic solar cells (OSCs), transparent conductive electrodes (TCEs) with
good flexibility are equally essential. The most commonly used TCEs include carbon nan-
otube [10], ultra-thin metal [11], conductive polymer [12,13], and metal nanowires [14,15],
among which metal nanowire had been considered as the most potentially flexible one
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due to their high optical transparency, high conductivity, and low cost [16]. Although
silver nanowire (AgNW) has been used as the cathode for flexible thin-film solar cells with
many improvements having been made to improve device performance [17–22], the many
defects such as rough surface and poor adhesion prevent their more widespread use. The
reasons for AgNW being a better TCE in semi-transparent OSCs are still in need of further
study especially in the case of the semi-embedding polyimide (PI)/AgNW electrode with
ultra-lightweight and high thermal/mechanical stability.

Since scattering and plasma effects produced by AgNW could enhance the opti-
cal absorption of OSCs, optical analysis should be used for guiding the optimization
of each layer in device. The enhancement effect of light absorption can be simulated
by the finite-difference time-domain (FDTD) method [23–25], which has been used in
PET/AgNW electrode [26], ZnONPs/AgNWs/ZnONPs electrode [27] and AgNW elec-
trodes in OSCs [28–30]. This method is still an important tool towards accurately predicting
the optical absorption performance in PI/AgNW based OSCs. In addition, the reasonable
molecular level interactions between donor and acceptor is necessary to achieve high-
efficiency OSCs, as verified by multiscale characterization techniques and photovoltaic
device physics [31–33].

In order to further study the PI/AgNW based flexible and semitransparent OSCs
with the validation of the proposed design, simulations and experiments were carried
out for a typical active system of poly(4,8-bis[5-(2-ethylhexyl)thiophen-2-yl]benzo[1,2-b:4,5-
b′]dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophene-4,6-diyl)
(PTB7-Th) donor and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) acceptor in this
work. Since the high roughness of AgNW would easily cause short-circuit to the devices,
we adopted a simple method of embedding AgNW into PI for reducing the roughness.
Such PI/AgNW conductive film has the same high optical transmittance and low resis-
tance as the most widely used stiff ITO electrode. To determine the best device structure
with PI/AgNW electrode and to utilize the plasma effect of AgNW on optical absorption
enhancement, both normal and inverted opaque flexible OSCs were studied by optical- and
electrical-analysis in depth. The surface plasmon excited by light irradiation on AgNW can
improve the optical absorption of the active layer compared with that using the ITO elec-
trode, and the PI/AgNW as the cathode can help the active layer absorb significantly more
light than the PI/AgNW as the anode. We then applied the PI/AgNW cathode to building
the semitransparent flexible device. The optical analysis of photocurrents generated by
light incident from both sides of the device show that semitransparent flexible devices with
PI/AgNW cathodes can absorb more light when light is irradiated from the PH1000 side.
Such results promise future application of flexible substrate to the production of flexible
semitransparent devices.

2. Materials and Methods

The active layer consists of PTB7-Th (1-materials, Dorval of Canada) and PC71BM
(Solenne, Halland of Sweden). AgNW suspension (1 wt%) in ethanol was purchased
from Zhejiang Kechuang Advanced Materials Co. Ltd. The fabrication of PI/AgNW
TCE is depicted in Figure 1a. A dispersion of AgNWs (20–30 nm) in ethanol was spread
onto a plasma-treated glass substrate and the wet solution was vaporized in the air for
3 minutes. Then the AgNW coated glass substrate was washed with deionized water to
remove the solvent residue and baked at 100 ◦C for 5 min. Then PI in dimethylformamide
(DMAc) solution (14 wt%) was spin-coated on the AgNW film under 700 rpm for 9 s, and
immediately transferred into a vacuum drying oven and cured according to one-step or
multi-step heating processes. Finally, the edge of PI/AgNW film was scraped off and
soaked in deionized water for several minutes, leading to smooth PI/AgNW TCE after
peeling off.
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Figure 1. (a) Schematic diagram of preparation process of PI/AgNW TCEs. (b) Temperature-time
curve of PI annealing process. (c) Plot of relative resistance change rate vs. bending cycle of PI/AgNW
TCEs (bending radius: 2.5 mm). (d) AFM image of the PI/AgNW TCE. (e) Molecular structures of
PTB7-Th donor and PC71BM acceptor.

Flexible OSCs were prepared by spin-coating with PI/AgNW as the TCE. Zinc oxide
nanoparticles (ZnO NP) (Avantama, Zurich, Switzerland) or HILE-100 (Clevios, Hanau,
Germany) were spin-coated on top of PI/AgNW as the electron transport layer (ETL) or the
hole transport layer (HTL) and annealed at 80 ◦C for 2 min. The active PTB7-Th:PC71BM
blend with a weight ratio of 1:1.5 was dissolved in a mixed solvent of chlorobenzene (CB):
1,8-diiodooctane (DIO) (97:3 by volume) for about 12 h at 60 ◦C and then spun-coated onto
the substrates in a glove box. Next, MoO3 and Ag were thermally deposited under vacuum
less than 4 × 10−4 Pa. The active area was defined as a pixel size of 0.14 cm2. The flexible
semi-transparent device can be obtained by replacing Ag metal with 100 nm-thick PH1000
(Clevios) with adding 0.5% surfactant additive (FS-30) and 5% DMSO and annealing at
60 ◦C for 60 s.

The sheet resistance of AgNW/PI TCE was measured by a four-point probe system.
The performance of OSCs was characterized by a Keithley 2400 source meter under the
illumination of AM1.5G solar simulators with an intensity of 100 mW/cm2 (Sun 2000, Abet,
Milwaukee, Wisconsin of America). The light intensity of the solar simulator was calibrated
using a standard silicon photodiode (NIMMS1101, National Institute of Metrology, Beijing,
China), which was also used as the reference solar cell in the EQE measurement to obtain a
transformation coefficient that is compared to the current-voltage (J–V) curve. A quartz
crystal thickness/ratio monitor (model STM-100/MF, Sycon, Hilscher, Hattersheim of
Germany) was used to measure the thickness of films. Transient photovoltage (TPV) was
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performed by the Paios instrument. A FDTD method has been used for solving Maxwell’s
equations via the commercial FDTD Solution software from Lumerical [34–36].

In optical modeling, since both the device structure and the light source are axisym-
metric, symmetric/antisymmetric boundary conditions were selected, with X-axis set as the
antisymmetric boundary and Y-axis as the symmetric one. The main purpose was to reduce
the simulated area by using symmetry, so that the actual calculation area is reduced to 1/4
of the simulated one in order to reduce the memory requirement. To avoid re-introducing
reflections, the boundary conditions of perfectly matched layers (PMLs) are used along
the z-direction to absorb all light waves moving toward the outside of the simulation area.
For the homogeneous active layer, a mesh size of 5 nm was used. The incident light is a
plane wave with a wavelength range from 250 to 1000 nm, which encompasses the solar
spectrum. The optical constants of AgNW, ITO, ZnO and PTB7-Th:PC71BM are taken from
palik’book and refractiveindex database [37].

3. Results and Discussion

Colorless and soluble PI [38] was used as a flexible substrate of TCEs due to its
excellent mechanical properties, high thermal stability, and high transmittance. In this study,
AgNW/AgNW TCEs were made using a recently reported embedding procedure [39], in
which AgNW was drop-casted on a glass substrate followed by PI solution spin coating and
curing. For the sake of studying the effect of the curing process on the conductivity of the
resulting TCEs, the temperature-time curves in the one- and multi-step heating processes
and the relative resistance change rate vs bending cycle curves of the corresponding
PI/AgNW TCEs are shown in Figure 1b,c. It can be seen that the PI heating process
has a big effect on the conductivity stability of TCEs in many bending cycles. Generally,
the resistance increases with the increasing bending cycles, which can be attributed to
the deterioration of the conductive network during bending. The PI/AgNW TCE via
multi-step heating process shows higher conductivity stability than that via the one-step
heating process, indicating that the AgNW conductive network in the PI matrix processed
by multi-step heating maintains better electric contact than that via the one-step heating
process. The resistance of AgNW/PI TCE processed by multi-step heating increases only
9% after 3000 bending cycles comparing to 33% increase for the one via one-step heating
process. Furthermore, the high conductivity of 3560 S·cm−1 for the AgNW/PI TCE is
comparable with the commerical ITO TCE with inherent disadvantages of high cost and
poor bendability. Moreover, the very low roughness (RMS = 1.210 nm) of AgNW/PI
TCE in height is achieved with evenly distributed AgNW on the PI surface in a large
area of 20 × 20 µm2, which is very favorable for solar device fabrication by avoiding cell
breakdown and leakage (Figure 1d). Besides, the surface energies of AgNW/PI TCEs with
and without O2 plasma treatment were measured based on Owens equation [40], in which
the surface energy of the plasma-treated TCE (67.1 mN m−1) is much higher than that of
the non-plasma-treated one (24.9 mN m−1), indicating the quality of the subsequent anode
or cathode interfacial layer by coating can be effectively controlled using this method.

The prepared PI/AgNW TCE can be used as either anode or cathode in flexible
OSCs. However, the facts that PI/AgNW is more suitable as the anode or as the cathode
are in dispute. For sake of understanding this problem, two types of PI/AgNW based
OSCs with the normal structure (S1: PI/AgNW/HILE-100/PTB7-Th:PC71BM/ZnONP/Ag)
and the inverted structure (S2: PI/AgNW/ZnONP/PTB7-Th:PC71BM/MoO3/Ag) are
designed, comparing to the corresponding ITO-based OSCs with the normal structure
(S3: Glass/ITO/HILE-100/PTB7-Th:PC71BM/ZnONP/Ag) and the inverted structure (S4:
Glass/ITO/ZnONP/PTB7-Th:PC71BM/MoO3/Ag). The chemical structures of PTB7-Th
and PC71BM are shown in Figure 1e, which are very successful optically active materials.

The optical simulation of absorbed energy distribution was carried out for above four
types of devices. It was found that a significant amount of energy energy can be absorbed
in the center of the photoactive layer for the S2 device, whereas the majority of the absorbed
energy is distributed at the edge of the active layer when PI/AgNW acts as the anode
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for the S1 device (Figure 2a,b). As we know, photons absorption centralized in the active
layer can promote more excitons generation, which is very advantageous to producing
more photocurrent. Furthmore, it is apparent that the full-wavelength absorbed power for
ITO-based normal and inverted devices is less than that of the corresponding PI/AgNW
devices, due to the strong plasma-enhanced light absorption of AgNW. The optical analysis
shows that PI/AgNW as the cathode is advantageous to enhancing the optical absorption
of the active layer.
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As energy level matching is another important factor affecting device performance,
we tested the work function of AgNW and the energy levels of ZnONP. As shown in
Figure 3a, based on the threshold value of Ecutoff which corresponds to the cut-off edge of
secondary electron emission in UPS, the work functions (Φ) of ZnONP and AgNW films
can be calculated via the formula of Φ = hv − Ecutoff, where hv is 21.22 eV for a He I photon
source. Therefore, the work function of AgNW is determined as 4.17 eV. Moreover, as
shown in Figure 3b, the energy difference between the Fermi level (Ef) of ZnONP and the
value of the valence band maximum (VBM) is 2.55 eV by linear extrapolation, determining
the VBM of ZnONP to 6.8 eV, which is close to the value reported in the literature [41]. The
deep VBM of ZnONP can effectively prevent holes from entering the cathode, which is
beneficial to reduce carrier recombination at the AgNW cathode. To further calculate the
conduction band minimum (CBM) of ZnONP, the absorption spectrum of ZnONP was
measured (Figure 3c), determining the CBM of ZnONP to be 3.62 eV. As shown in Figure 3d,
the electron injection barrier (0.55 eV) between AgNW and ZnONP is much smaller than
that (1.03 eV) between AgNW and HIL E-100, indicating PI/AgNW is more suitable to be a
cathode TCE in flexible OSCs [42].
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S2 devices in comparison with the control rigid S3 and S4 devices.

To testify the above points experimentally, we fabricated two types of AgNW-based
normal and inverted flexible OSCs in comparison with the ITO-based rigid ones. Figure 3e
presents the J–V curves of S1, S2, S3 and S4 devices measured under simulated AM1.5G
illumination. The deduced photovoltaic parameters of all devices including the short-circuit
current (JSC), open-circuit voltage (VOC), fill factor (FF), and power conversion efficiency
(PCE) are summarized in Table 1. The PCE of S2 device is nearly one time higher than that
of S1 device, indicating the PI/AgNW is more suitable as the transparent flexible cathode
rather than an anode in the device. The comparable device performance of PI/AgNW based
devices to that of the rigid ITO-based OSCs illustrates that the flexible PI/AgNW TCE has
excellent photoelectric characteristics, which is comparable to ITO transparent electrode.

As mentioned above, we found that PI/AgNW is more suitable as cathode TCE
according to optical simulation, interface analysis and device performance. To further
develop the application of PI/AgNW TCE in solar energy, we designed and fabricated
the all-flexible semitransparent solar cell by replacing the opaque Ag anode with PE-
DOT:PSS (PH1000). The concrete device structure of all-flexible semitransparent solar cell
is PI/AgNW/ZnONP/PTB7-Th:PC71BM/PH1000 (S5), as depicted in the inset of Figure 4a.
To explore the influence of incident light direction on the photocurrent in device, the J–
V curves of all-flexible semitransparent device illuminated from either PH1000 side or
PI/AgNW side were measured, as shown in Figure 4a. When the light is irradiated from
the PI/AgNW side, a JSC of 8.30 mA/cm2 and a PCE of 3.23% are obtained, respectively,
which are much lower than 10.21 mA/cm2 and 3.88% when the light is irradiated from the
PH1000 side. Figure 4b shows the transmission spectra of the S5 device when the light is
incident from either PH1000 side or PI/AgNW side. It can be seen that the transmittance
intensity of the device is almost the same under different light incident directions with an
average visible transmittance as high as 33.8% (inset of Figure 4b). Thus we concluded that
the dependency of light absorption on spatial incident light-direction should exist in these
devices, which may come from the different extent of plasma absorption enhancement
induced by AgNW in the active layer [43]. The simulated absorption curves under different
solar radiation incidence further verified above conclusion that the device illuminated from
PH1000 side shows stronger absorption (Figure 4c). Moreover, as shown in Figure 4d, the
number of extracted charges for the device irradiated from the PH1000 side under different
light intensity is much higher than that from the PI/AgNW side. For example, the number
of extracted charges in dark (n0) is 2.08 × 1016 cm−3, while the number of extracted charges
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(n) under the illumination of visible light (70.0 mW/cm2) from the PH1000 side and the
PI/AgNW side are 3.31× 1016 and 3.10× 1016 cm−3 respectively. A high ratio of 0.59 to the
number of extracted charges in the darkness (n-n0) is obtained when the light illuminates
from the PH1000 side in comparison with that of 0.49 when the light illuminates from the
PI/AgNW side, illustrating that more charges can be effectively extracted from the active
layer when the all-flexible semitransparent device is illuminated from the PH1000 side.
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Figure 4. (a) J–V curves of the S5 device illuminated from the PH1000 and the PI/AgNW, respectively.
The inset in the figure is the schematic diagram of the structure of semitransparent flexible OSCs (S5)
with PI/AgNW TCEs as the cathode. (b) Transmittance curve. The inset in the figure is an actual
photo of the all-flexible semitransparent device S5. (c) Calculated absorbed power curve as well as
(d) extracted charges vs light intensity curve for the all-flexible semitransparent device illuminated
from the PH1000 and the PI/AgNW, respectively.

Table 1. Statistical VOC, JSC, FF, and PCE of flexible and semitransparent devices under the illumina-
tion of AM1.5G (100 mW/cm2).

Device Optical
Transparency Incidence VOC

[V]
JSC

[mA/cm2]
FF
[%]

PCE
[%]

S1 No PI/AgNW 0.71 ± 0.02 11.40 ± 0.09 40.90 ± 0.06 3.32 ± 0.06
S2 No PI/AgNW 0.76 ± 0.01 16.63 ± 0.05 48.80 ± 0.08 6.17 ± 0.04
S3 No ITO 0.77 ± 0.02 11.29 ± 0.05 36.40 ± 0.09 3.14 ± 0.05
S4 No ITO 0.75 ± 0.01 15.74 ± 0.08 57.30 ± 0.09 6.76 ± 0.06

S5 Yes PH1000 0.79 ± 0.01 10.21 ± 0.07 48.40 ± 0.05 3.88 ± 0.05
PI/AgNW 0.78 ± 0.02 8.30 ± 0.09 49.96 ± 0.08 3.23 ± 0.07

The electric field and full-wavelength absorbed power spectra of the all-flexible semi-
transparent device S5 from top and bottom illumination are presented in Figure 5. When the
light irradiates from PH1000 to AgNW, the plasmon resonance is generated on the AgNW
surface, and the electric field of the middle and bottom of the active layer is significantly
enhanced (Figure 5a). In contrast, the electric field of the active layer turns weaker when
the light irradiates from PI/AgNW to PH1000 since the plasmon resonance at the AgNW
surface primarily acts on the PI layer (Figure 5b). It can also be observed that excitons are
efficiently generated in the active layer of all-flexible semitransparent solar cell when the
light irradiates from PH1000 to AgNW due to absorption enhancement by advantageous
nearfield localized surface plasmon resonance (Figure 5c,d), which surely results in the
enhancement of photocurrent (Figure 4a). Assuming that there is no carrier recombination,
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all photogenerated charges should be collected by the electrode. The simulated short
circuit current density of the device illuminated from the PH1000 side is 14.53 mA/cm2,
while 13.84 mA/cm2 for the device illuminated from the PI/AgNW side is obtained. The
theoretical results are in good agreement with the experimental ones, favorably proving
the correctness of our analysis.
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Figure 5. The contour plot of electric field (573 nm) of all-flexible semitransparent inverted solar
cell illuminated from (a) PH1000 and (b) PI/AgNW. Full-wavelength absorbed power spectra of
all-flexible semitransparent inverted solar cell illuminated from (c) PH1000 and (d) PI/AgNW.

4. Conclusions

In this study, the PI/AgNW electrode with excellent mechanical and optoelectrical
properties was successfully fabricated as a promising alternative to ITO. It was demon-
strated that the PI/AgNW electrode is more suitable as the flexible transparent cathode
than that of the one as an anode in OSCs, which is investigated deeply by optical simu-
lation, electrical parameter measurement and performance of devices with normal and
inverted structures. The modeling results agreed well with the experimental ones, indi-
cating excellent plasmonic properties of AgNW should be exploited more efficiently for
surface-enhanced absorption. The higher device efficiency of all-flexible semitransparent
OSC when illuminated from the PH1000 anode side than that from the AgNW cathode side
(3.88% vs. 3.23%) further confirms the above significant finding. This work demonstrates
that PI/AgNW is a promising and desirable TCE in the realization of high performance,
low-cost, and large-scale flexible OSCs.
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