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Self-Healing Secure Blockchain Framework
in Microgrids

Suman Rath, Graduate Student Member, IEEE, Lam Duc Nguyen, Member, IEEE,
Subham Sahoo, Senior Member, IEEE and Petar Popovski, Fellow, IEEE

Abstract—Blockchain has recently been depicted as a secure
protocol for information exchange in cyber-physical microgrids.
However, it is still found vulnerable to consensus manipulation
attacks. These stealth attacks are often difficult to detect as
they use kernel-level access to mask their actions. In this paper,
we firstly build a trusted and secured peer-to-peer network
mechanism for physical DC microgrids’ validation of transactions
over Distributed Ledger. Secondly, we leverage from a physics-
informed approach for detecting malware-infected nodes and
then recovering from stealth attacks using a self-healing recovery
scheme augmented into the microgrid Blockchain network. This
scheme allows compromised nodes to adapt to a reconstructed
trustworthy signal in a multi-hop manner using corresponding
measurements from the reliable nodes in the network. Ad-
ditionally, recognizing the possible threat of denial-of-service
attacks and random time delays (where information sharing via
communication channels is blocked), we also integrate a model-
free predictive controller with the proposed system that can
locally reconstruct an expected version of the attacked/delayed
signals. This supplements the capabilities of Blockchain, enabling
it to detect and mitigate consensus manipulation attempts, and
network latencies.

Index Terms—Blockchain, Microgrids, Cybersecurity, Self-
Healing Mechanism.

I. INTRODUCTION

RECENT attempts to develop more efficient DC microgrid
systems can be attributed to their inherent cyber-physical

capabilities that allow the smooth integration of renewable
energy sources (RESs), multiple electronic devices (loads) and
a variety of storage devices in both, the autonomous as well as
the grid-connected mode of operation. Such systems can have
three different types of control structures - centralized, dis-
tributed, and decentralized. The distributed control framework
is generally preferred over the other control structures as it is
resilient to single-point failures, thus enabling more reliability
and better scalability [1]. Moreover, distributed control struc-
tures have a higher degree of tolerance to unavoidable cyber
issues like network latency, packet losses, and communication
link failures. However, these control structures can not be
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considered fully reliable as the distributed framework can
only enable partial information availability (limited to neigh-
boring units), which in turn, makes the microgrid vulnerable
to unauthorized manipulation of sensors and actuators [1].
Since cyber-physical DC microgrids are integral components
of mission-critical systems (e.g., electric aircraft, hospitals,
military bases, etc.), it is essential to protect them from
adversarial cyber attacks.

Networked microgrids, which may function either in the
independent mode or in collaboration with the rest of the
network, can complicate the distribution system’s operation.
Conventionally, through supervisory control and data acquisi-
tion (SCADA), microgrids are often controlled in a central-
ized manner [2]. In particular, the network data is gathered,
recorded, and then processed at a centralized server. Consid-
ering the rapidly growing size and speed of the measurement
data, collecting and processing such a wide-range network in
real-time at a single server leads to overload for the central-
ized node and a single point of failure problem. Centralized
networks would also be vulnerable to single-point attacks as
hackers would only need to target the central host computer
server to compromise the entire network, as this is the single
point that issues control commands to all the other nodes [3].
In contrast, attacking a distributed network is more challenging
for attackers, especially for the power grid that is distributed
over a geographically wide-range area. Hence, the computation
and the trust are distributed over the network, which can be
useful for achieving a more secure power network.

In this regard, as the energy sector needs significant time
reduction for the management of economic transactions and
the possibility of getting rid of third-party authorities [4], the
concept of transactive energy has appeared as one of the
most interesting technologies since the 2017 Gartner Hype
cycle [5]. There is a need to switch from a centralized en-
ergy system with intermediary components to a decentralized
system that can detach the related financial transactions from
the centralized energy control unit. For example, the authors
in [6] introduced an approach using Blockchain technology
for handling loss allocation and a timing mechanism for
transacting intended energy exchanges and losses.

A type of Distributed Ledger Technology (DLT) known as
Blockchain consists of blocks, which are lists of data items that
are constantly growing. Transactions of all kinds, including
those involving money, energy, transportation, data, logic, and
even programs, can be recorded in blocks. Blocks are tied
together in chronological order, timestamped, unchangeable,
and verifiable. Every DLT node keeps a copy of the ledger,



2

and any changes to the blocks’ content or order are quickly
detected by a check of the authenticity of the blocks. Among
the concerned untrusted parties, Blockchain encourages im-
mutable and transparent information sharing [7]. DLTs are
viewed as a crucial enabler for trustworthy and dependable
distributed observation systems in addition to their function in
financial transactions. DLTs’ authentication procedure depends
on network consensus across numerous nodes. Blockchain
technology is a noteworthy invention that can be applied in
various microgrid domains.

Recently, Blockchain has become more popular in the
integration with microgrids. There are several prominent appli-
cations of Blockchain technologies in microgrids, e.g., peer-to-
peer energy trading [8], energy exchange [9], electric vehicle
charging [10]. Besides, several start-ups and companies have
applied Blockchain technologies in microgrids system for
managing and sharing energy as well as building innovative
products, e.g., the energy market of PowerLedger [11], a de-
centralized data exchange platform for energy sector GridSin-
gularity [12]. More applications of Blockchain in microgrids
can be found in [13]. The authors in [14] have discussed a
Blockchain-based scheme for secure energy transactions. In
conventional Blockchain-based schemes, the trustworthiness
of each block is decided through a consensus-based mecha-
nism where the majority of nodes in the system must agree
on its validity. Such schemes are often vulnerable to 51%
attacks [15]. In general, 51% attacks refer to an attack strategy
where the hacker can access the system’s internal mining
capabilities and use this access to mine compromised blocks.
Further, this access is also used to manipulate the consensus-
based validation strategy by forcing individual nodes to stop
the confirmation of authentic blocks and make them validate
fabricated blocks generated by the attacker itself. 51% attacks
can be executed using stealthy, kernel-level malware like
rootkits [16].

Although the Blockchain1 is being used in many power
electronic applications, it is also essential to evaluate whether
Blockchain could be a feasible tool for exchanging volt-
age/frequency control signals in the microgrid test sys-
tem. This evaluation is essential because, even though the
Blockchain is an essential tool for cyber-secure control, the
time delay created as a consequence of mining new blocks may
have a detrimental effect on microgrid stability [17]. Mahmud
et al. in [18] have proposed the use of Blockchain for control
in microgrids with distributed energy resources and presented
results showing that the proposed framework can perform well
even under time delays. However, the current studies have not
addressed how to prevent stealth & hijacking attacks in their
proposed control mechanism.

The conventional control framework in cyber-physical mi-
crogrids critically relies on a centralized database and com-
munication channels, both of which are vulnerable to ad-
versaries to manipulate the system operation. An effective
solution for countermeasures is the detection and mitigation

1Throughout this article, the words DLT and Blockchain will be used
interchangeably. Blockchains are a particular sort of DLT where each node
keeps a copy of the ledger, and chains of blocks are made up of digital pieces
of information called transactions.

of such threats. However, mitigation techniques may be vul-
nerable to adversarial attacks designed with knowledge of
the system dynamics (e.g., adversarial attacks on learning-
based anomaly detectors, reward poisoning attacks against
reinforcement learning, etc.). Hence, a significantly better
approach is the prevention of these threats in the first stage
itself. Since the DLT technology offers great potential due to
its advanced data protection and attack prevention capabilities
based on the natural security strength of the cryptographic
system and consensus mechanism [19], we propose to augment
these salient features of the DLT into the dynamic physical
properties of microgrids to enhance its resiliency against
cyber-attacks (along with physics-informed attack detection
metrics to identify any type of consensus-manipulating attack
vector that tries to inject false data into the network). To
recover from such attacks upon detection, we introduce a self-
healing recovery mechanism for Blockchain-based microgrids
that: i) provides a transparency and immutability microgrids
system; ii) addresses the garbage-in garbage-out problem of
the current Blockchain-based systems.

To summarize the key features, the contributions of this
paper are as follows:

• Firstly, we formulate a general model of a DLT-based
transactive DC microgrid system, including infrastructure
and security mechanisms.

• Secondly, we evaluate the response of the general
Blockchain model to stealth attacks and propose the
addition of new physics-informed detection metrics based
on the secondary control dynamics of each node to
identify such attacks and alleviate the detection accuracy
of DLT.

• Finally, we also present a self-healing recovery mech-
anism in the form of a reconstructed signal to com-
pensate for any compromised data/signal at any node.
This recovery mechanism is independent of the phys-
ical topology of multiple converters, and will always
provide system resiliency, provided at least one node
in the network is trustworthy. The presented strategy
is resilient against several attack variants and potential
network issues including FDIA, denial-of-service (DoS),
and random communication delays.

The remainder of this paper is organized as follows.
In Section II, we introduce the background knowledge of
DLTs/Blockchain and the integration of Blockchain into mi-
crogrids. Section III highlights the operating principles and se-
curity issues in cyber-physical microgrids. Section IV presents
the Blockchain-based strategy adopted for cyber-secure con-
trol in the DC microgrid. The effectiveness and robustness
of the proposed strategy to illustrate its resilient behavior
under different attack scenarios and physical topologies of
microgrids are presented in Section V. Experimental results
demonstrating the robustness of the proposed self-healing
strategy are presented in Section VI. Finally, Section VII
presents the conclusion of the paper.
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II. BACKGROUND KNOWLEDGE

A. DLTs/Blockchain Concept

A Distributed Ledger Technology (DLT) system provides
a distributed, tamper-proof ledger that is spread throughout
a network of interacting nodes, which share a common ini-
tial block of data known as the genesis block [20]. When
publishing data to the ledger, each node adds data formatted
in the form of transactions in a block that also contains
a pointer to its preceding block. This produces a chain of
blocks, or ”Blockchain,” referred to as the Blockchain. To
receive a reward, a block that is generated by a particular
node often needs to solve a mathematical crypto-puzzle [21]
and provide the result as evidence of its effort. Mining is the
name of this process. The network’s overall computing or
mining power changes the crypto-level puzzles of difficulty.
Since every DLT node in the network maintains a copy of
all committed transactions in the ledger, every transaction
recorded in the distributed ledger is practically unchangeable
[22]. Additionally, the integrity of the data blocks in the DLTs
is ensured by cryptographic methods, including hash functions,
asymmetric encryption algorithms, and digital signatures. As
a result, the DLTs can guarantee transaction non-repudiation.
Each transaction is also timestamped historically and given
a unique ID, allowing each user to be assigned to it. The
life cycle of a transaction in DLT-based networks is explained
in detail in Fig. 1. Blockchain clients, e.g., physical devices
and home alliances, generate or collect data, and transform
it into Blockchain transaction format. The transactions are
subsequently put into blocks, which are validated by peers via
the mining process. In the distributed ledger, the transactions
are finally immutably recorded and accessible to clients. After
the transactions are recorded in the distributed ledger, they can
be queried by clients.

B. Cyber Attacks on Microgrids

Blockchain is regarded as a typical distributed data storage
system and encompasses a number of other technologies as
well, including decentralization, distributed consensus proce-
dures, and cryptography. Blockchain has been studied in both
research and applications due to the benefit of creating safe,
dependable, and decentralized autonomous ecosystems for a
variety of scenarios [23]. Blockchain is suited for applications
involving the security protection of cyber-physical systems
(CPSs) because it is a novel and fundamental technical feature.

Recent cyber attacks against critical physical systems, for
example, the attacks on the Ukrainian power grid in 2015-
2016, have motivated multiple studies on security and privacy
aspects for cyber-physical systems, particularly the power grid
[24]. The work in [25] demonstrated that false data injection
(FDI) could inject data measurements to induce error in the
operation of the power system. A malicious attacker can also
affect forecast systems, which are used to plan the operation
and activities of power systems by exploiting vulnerabilities of
artificial intelligence models [26]. In general, FDI attacks need
to gather information about the current state of the system or
the models used for making decisions, for example, the state of
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Fig. 1. Schematic of a DLT-based system.

the system, topology structure, or machine learning prediction
models [27].

Besides, the attacker also exploits the lack of security
mechanisms of embedded IoT sensors [16] to affect the
operation of power grid systems. The target of adversaries
could be embedded sensors such as environmental sensors,
smart meters, appliances, or end-user systems to affect the
power systems. The authors in [28] introduced a novel form of
attack named manipulation of demand via IoT and documented
that if an attacker compromised thousands of nodes, they
could cause various problems to the power grid, including line
failures, frequency instabilities, increased operating costs. In
another aspect, the adversaries can compromise IoT devices
responsible for communicating or exchanging data and pay-
ments with other power systems by changing their bids [29].
In the scope of this work, we propose to augment the physical
properties, dynamics, and principles of microgrid operation
into Blockchain-based attack detection and mitigation.

III. CYBER-PHYSICAL MICROGRIDS

A. Operating Principle

A single-line diagram depicting a cyber-physical DC micro-
grid network with N = 4 sources and corresponding DC/DC
buck converters is shown in Fig. 2. Each source with the
corresponding converter is called an agent. Further, the agents
are connected to each other via transmission lines. Besides
the physical interconnections, the agents are also connected to
one another through a communication network that aids in the
exchange of information between themselves. The information
received from the communication network is fed as input to
the local controller associated with each agent. As shown
in Fig. 2, the local control framework consists of voltage
and current controllers for the management of the DC/DC
converter. Apart from that, the secondary control framework
consists of an average voltage regulator for facilitating the
regulation of global voltage, and a current regulator to achieve
proportionate load sharing through the imposition of voltage
offsets from each of the layers.

An undirected, interconnected graph of cyber elements is
shown in Fig. 2. In this graph, the nodes represent the
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agents, and are denoted by x = {x1, x2, . . . , xN}). The
nodes are connected to each other using edges through an
associated adjacency matrix, AG = [akj ] ∈ RN×N , where
the communication weight (represented by akj , i.e., from
node j to node k) is formulated as: akj > 0, if (ψk, ψj)
∈ E, where E represents an edge connecting two different
nodes, with ψk and ψj representing a local node and its
neighboring node, respectively. If the cyber link connecting ψk
and ψj is absent, akj = 0. In this framework, an agent (say
at ψk node) shares local voltage and current measurements
with its neighbors Nk = {j | (ψj , ψk) ∈ E}. The matrix
showing input and output information can be represented as
Din = diag{dink } and Dout = diag{doutk } respectively,
where, dink =

∑
j∈Nk

akj and doutk =
∑
i∈Nj

ajk. Combining
the transmitted and received information, a single Laplacian
matrix can be obtained, which is denoted by L = [lkj]. The
elements of the matrix are represented by lkj and obtained
using L = Din −AG.

As previously mentioned, the role of the cooperative control
framework is to achieve average global regulation and propor-
tional sharing of load current. To fulfill these objectives, a
reference value of the voltage setpoint is determined through
the use of two voltage correction terms, as defined below:

∆V1k(t) = KH1

P (Vdcref − V̄i(t)) +KH1

I

∫
(Vref − V̄k(t))dt

(1)

∆V2i(t) = KH2

P δk(t) +KH2

I

∫
δk(t)dt (2)

where V̄i represents the estimated average value of the voltage
at the ith agent; Vref represents the nominal value of voltage; δk
represents the current mismatch error (in (4)) for the kth agent
between the local per-unit output current and the neighbors’
per-unit output current. The output from the voltage observer
and power-sharing controller in Fig. 3 can be mathematically
depicted as:

V̄k(t) = Vk(t) +

∫ ∑
j∈Nk

akj(V̄j(t− τ)− V̄k(t− τ))dt (3)

δk(t) =
∑
j∈Nk

cakj

(
Ij(t− τ)

Imaxj

− Ik(t− τ)

Imaxk

)
(4)

where, τ is the communication delay between the kth & the
jth agent and c represents the coupling gain. Further, Ik and
Ij , Imaxk and Imaxj represent the measured and the maximum
output currents for the kth and the jth agent, respectively.

The local reference value of voltage V ∗k for the kth agent,
determined by using the two voltage correction terms as
depicted in (1)-(2) can be given by:

V ∗k (t) = Vref + ∆V1k(t) + ∆V2k(t). (5)

For a well-connected cyber graph in a networked DC
microgrid, based on the cooperative consensus algorithm, the
global control objectives can be given by:

lim
k→∞

V̄k(t) = Vref , lim
k→∞

δk(t) = 0. ∀k ∈ N (6)

TABLE I
STEALTH ATTACKS IN DC MICROGRIDS IN [1] AND [30]

Affected Counterparts Modeling

Voltage [1] WxVattack = 0

Current [30] WxIattack = 0

= = = = = = 

DG 1
Vk

= = = = = = 
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Fig. 2. Networked DC microgrid with N = 4 distributed generations (DGs)
operating with a cooperative ring-based cyber graph.

B. Cybersecurity Issues

Fig. 2 shows how malicious attackers may inject false data
into the sensors, actuators, controllers and other cyber devices
in the DC microgrid system to disrupt the objectives depicted
in (6). These attacks may also be performed in a coordinated
fashion in order to deceive microgrid system operators and
hide the actions of the attack vector by adding additional inputs
in (3)-(4), as given by:

ua(t) = Lx(t) + Wxattack (7)

where, ua is the vector representation of the manipulated
control input uak = {uV ak , uIak }. Further, xattack and x = {V̄, I}
represent the attack elements xattacki = [xVattackk , x

I
attackk

]T

and the non-compromised measurements, respectively. More-
over, the attack distribution matrix W = [wkj] represents row-
stochasticity, where its elements can be given by:

wkj =


1

Nk+1 , j ∈ Nk
1−

∑
jεNk

wkj , j = k

0, j 6∈ Nk, j 6= k

(8)

The detection strategies for both the stealth attacks (in Table
I) are provided in Table II. More details on its formulation can
be referred from [1] and [30]. As it can be seen in Table II that
since the detection strategies primarily depend on local as well
as neighboring measurements, this leaves a tactical opportunity
for an attacker to infiltrate the communicated measurements
used for the design of the detection strategies. As a result,
such consecutive intrusion may affect the detectability of these
attacks when the criteria in Table II are not met.

For more clarity, a case study is performed in a DC
microgrid system with N = 4 agents, as shown in Fig. 4
to demonstrate the performance of detection criteria for a
stealth attack on voltages and currents, respectively. In Fig.
4, after the stealth attack is initiated on currents, it can
be seen that the output currents of each agent are anyway
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Fig. 4. Performance of detection strategies in response to stealth attack on
current and voltages at t = 1-2 sec and 4 sec, respectively – the detection
strategies can further be manipulated.

shared equally. However, the detection mechanism for current
measurements suggests that DM1

2 and DM3
2 are positive,

which indicate compromised current measurements for agent
I and III. Further at t = 4 sec, a balanced set of attack
elements {-15, 0, 15, 0} V are introduced in the voltage
control input values (as shown in Fig. 4) on the basis of
the attack strategy depicted in [1]. Despite the presence of
attack elements, the voltages return back to pre-attack set
points. However, the corresponding detection metric DM1

for agents I and II immediately goes positive. Under these
circumstances, if the communicated measurements xj(t) in
(1) are manipulated by the cyber-attacker with considerable
knowledge of the detection strategy, there is a possibility that
the cyber attack alarm might be disinformed. This mandates
a secure mechanism of information exchange between each
agent so that the communicated variables used in the pro-
posed detection approach remain uncompromised. Following
an accurate scanning of the compromised measurement, the
corresponding countermeasures can be applied without any
false alarms.

IV. BLOCKCHAIN FOR SECURITY OF MICROGRIDS

In this section, we present our self-healing Blockchain-
based communication model for the cyber-physical microgrid
shown in Fig. 2. We propose a distributed DLT, where the
nodes can communicate and collaborate to identify attacked
counterpart(s) in a reliable and trustworthy manner. The DLT-
based network consists of nodes connected via the P2P model.

TABLE II
DETECTION CRITERIA FOR STEALTH ATTACKS IN TABLE I

Stealth Attack Detection Criteria for kth Agent Terminology

Voltage [1]
hk

1[
∑
jεNk

akj(∆V1j −∆V1k )]

[
∑
jεNi

akj(∆V1j + ∆V1k )] > Υ1
DMk

1

Current [30]
ck[

∑
jεNk

akj(I
j
inref

− Ikinref
)]

[
∑
jεNk

akj(I
j
inref

+ Ikinref
)] > Υ2

2 DMk
2

1 hk is a positive quantity used for ith agent.
2 ck is another positive quantity. Ikinref

represents the value of input current
reference for the kth agent.

Basically, nodes connect using a unique address and use the
gossip protocol to exchange network information such as
blocks, transactions, and addresses. In DLT-based networks,
there are specific nodes called miners responsible for extend-
ing the Blockchain by creating new blocks [31]. In the scope
of this research, each node aggregates sensor measurement
values (in its area) and analyzes them. Further, each of them
estimates the local update and exchanges signal values with
the other nodes, engages in distributed consensus procedures,
and publishes to the distributed ledger in its local memory.

A. System Model

We consider the DLT-based microgrid system with
M communication channels and N physical agents. The
system states have already been defined as xi(t) =
{Vk(t), Ik(t), DetVk(t−1), DetIk(t−1)}. The measurements
yi(t) = {Vk(t), Ik(t), DetVk(t − 1), DetIk(t − 1)} can be
measured from every agent. The microgrid is modeled as a
discrete-time linear dynamic system, as given below:

xt = Axt1 + vt (9)

yt = Hxt + wt (10)

where A ∈ R(2N−1)×(2N−1) and H ∈ RK×2N−1 represent
the state transition and the measurement matrices respectively.
Further, vt = [v1,t, ..., v2N−1,t]

T and wt = [w1,t, ..., wK,t]
T

represent the process noise and the measurement noise vectors
respectively. It is assumed that wt and vt are independent
AWGN processes, where wt ∼ N (0, σ2

wIK) and vt ∼
(0, σ2, I2N−1).

For a secure and reliable state update among DLT-based
nodes, it is essential to guarantee that the previous values
of the state estimate are not modified, the physical agent
measurement is non-anomalous, and the operation of the
DLT nodes adheres to the predefined agreements. In case
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the network is attacked, the state estimate values can be
recovered through the use of previous reliable state estimations
that also require the protection of preceding state estimation
values against tampering. On the one hand, in a DLT-based
network, malicious adversaries can obtain illegitimate access
to the system, for example, via trojan propagation, stealing
the identity of involved nodes, leading the nodes to get faulty
updates during the operation of the system. On the other
hand, as the characteristic of DLT is completely distributed,
there is no single trustworthy central entity to take control
and verify whether the other nodes are reliable and safe, e.g.,
if the involved nodes are operating as per pre-defined roles.
Hence, a distributed authentication mechanism is needed to
detect misbehaving nodes.

B. Detection Model

In a DLT-based microgrid network, even though the whole
system is fully distributed, attackers can still manipulate the
system dynamics if they can achieve control of the majority
of the individual nodes, which gives them access to more
than half of the hashing/computational power. This scenario
can be used to manipulate consensual query decisions to
introduce false data into sensors/communication links in the
system [15], [25]. In certain cases, the attackers may also
create a fork, extracting specific transactions, tampering with
them, and injecting them back as True packets. Since these
attack vectors were designed to prey on the vulnerability
of the conventional DLT framework, we integrate system-
specific knowledge into the DLT setup enabling it to recognize
violations in microgrid dynamics to identify false data disrupt-
ing the secondary controller synchronization among nodes.
The generated data from individual nodes are formatted in
Blockchain-based transactions and synchronized among them.
The detection criteria as mentioned in Table II are in the
form of mismatch error margins (represented by the metric
DMk) between parameter data (measurements) from the dis-
tributed nodes. When an attack vector stealthily manipulates
transactions, the detection metric DMk increases beyond the
threshold value Υ predefined in the smart contract, enabling
autonomous attack detection using the physics-informed attack
detection metrics in Table II. A more elaborate explanation
of the integrated setup including the self-healing process is
depicted in the next subsection.

C. Self-healing recovery

The self-healing process designed to enable recovery of
compromised nodes in the DLT-microgrid framework is part
of an integrated setup including both attack detection and mit-
igation. Any transaction performed by a node, leading to the
generation of a new block of data is broadcast to the rest of the
network through a secure sharing scheme. The network uses
the recipient node’s ability to validate transactions using digital
signatures in order to detect any malicious data in the system.
This process is carried out through the determination of events,
when an external agent attempts data alteration, leading to a
modification of the hash index associated with the detection
metrics in the corresponding block. All subsequent changes
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Fig. 5. Distributed Ledger and structure of b block at time t. Note that bt is
the block generated at time t and hash of the SHA H(.) algorithm. The block
includes a block header and body of the local state vectors in corresponding
time.

lead to further variation in the computed hash index, which
is detected by the recipient node through comparison with the
last trustworthy block received. In the event of a mismatch,
the recipient queries the rest of the nodes for verification. As
shown in Fig. 5, any hash which is declared False by the
majority of the nodes is considered to be associated with a
manipulated block of data and hence, rejected by the receiver.
Thus, the general anomaly detection framework is based upon
a mutual trust-based structure where a block is acceptable, if
and only if it satisfies the following criteria:

Na > Nr (11)

where, Na represents the number of approving nodes, and
Nr is the number of rejecting nodes. Since this framework
is vulnerable to consensus-deceiving hijacking attacks, an
additional set of detection criteria as depicted in Table II
is defined using smart contracts and utilized to detect such
deceptive attacks. Any event resulting in the violation of the
detection criterion in Table II leads to the labeling of the agent
as a misbehaving node.

Detection of a misbehaving node triggers the activation of
a self-healing strategy where:

1) firstly, the compromised transaction is canceled, stop-
ping further communication of any manipulated signal
to neighboring nodes to limit the attack propagation.

2) secondly, the malicious transaction is not recorded in
the ledger and a trustworthy version of the manipu-
lated signal is reconstructed for each compromised node
(using pseudo-anonymous values of trustworthy sensor
data stored in the irreversible ledger), to preserve system
stability. This has been shown in Fig. 6.

3) finally, this trustworthy event-driven signal is sampled
from measurements of the neighboring nodes (detailed
philosophy can be found in [32]-[33]) and previous
measurements from the same node obtained from the
ledger as per the following equations:

∆V1j (ti) = f1(∆V1k(t),∆V1j (ti−1)) (12)
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Fig. 6. Self-healing recovery scheme augmented into DLTs for microgrids
– the detection metrics in Table II initiate the reconstruction process using
trustworthy measurements from neighbors and then self-heal the system by
transmitting back the reconstructed signal IR1 (ti).

∆Idcj (ti) = f2(∆Idck(t),∆Idcj (ti−1)) (13)

where, i represents the instant at which the event occurs (also
called the triggering instant), and f(◦) represents the triggering
function as per which the reconstruction is performed. A major
role of f(◦) is to hold the input value of the signal until the
next triggering event. Hence, the recipient node is localized
with no communication inputs from the malicious node. Ulti-
mately, all the manipulated blocks are substituted with event-
driven, secure reconstructed blocks. This strategy is followed
to reconstruct the manipulated signal(s) at each compromised
node. The presence of the terms, ∆V1k(t) and ∆Idck(t) in
(12) and (13) imply that the trustworthy reconstruction of a
manipulated signal will always be possible if at least one of the
nodes (here, represented as the kth node) is reliable (i.e., not
affected by the attack). In an event where even the kth node is
infected (i.e., 100% infection), the mitigation strategy will fail
to reconstruct a trustworthy version of the signal. Hence, the
resiliency scale of the proposed self-healing recovery scheme
can be given by N − 1, with N given by the number of
converters in the system. In simple terms, the above sentence
implies that in a system comprising of N nodes, the proposed
scheme will always provide secure and resilient behavior,
even if there is only one trustworthy node to broadcast its
information to self-heal the system.

D. Mitigation of DoS attacks and time delays

A significant advantage of the proposed set of physics-based
detection metrics is their ability to also identify denial-of-
service (DoS) attacks and network latencies as they would lead
to mismatches in measurement values as well. However, the
self-healing strategy as depicted in the preceding subsection
may not be able to mitigate such network issues/attacks
as the information sharing (via communication links) would
be blocked in such cases. To mitigate these attacks a lo-
cal compensation framework is established by integrating a

(a)

(b)

(c)

Fig. 7. Performance comparison of the microgrid-Blockchain network with
and without additional fortifications as depicted in Table II. The conventional
Blockchain fails to identify controller-level manipulations and accepts the
attacker’s manipulations as true data.

prediction policy with the self-healing strategy. This supple-
mentary framework reconstructs an expected version of the
attacked signal using a model-free compensatory mechanism
as presented in [34] and depicted in Fig. 8.

In situations where DoS attacks and/or random time delays
are encountered, the predictive policy exploits the recipient
node’s access to the last trustworthy measurement received
(just before the occurrence of the event). In this case, the
measurement not received/delayed (represented as x(t − d))
can be approximated using the proposed model-free prediction
policy that uses the PI consensuability law [35] to generate
control signals in the presence of the attack vector. Since
the vector seeks to manipulate the flow of measurement
and control values in the secondary control layer, the signal
representing the error margin eV oltk (t) for the voltage control
loop is downsampled to a reduced value edownk (t) as per the
following formula:

edownk =

B−1∑
b=0

eV oltk |nD − b|.h|b| (14)

where h|b| represents an impulse response signal whose win-
dow length is B downsampling factor is D. Downsampling
essentially reduces the resolution of the input error signal by
decimating it by D samples. This ensures that the dynamic
performance of the prior is appropriately matched. A pictorial
representation of this process is shown in Fig. 9. In the figure,
the resolution of the error signal eV olt is scaled down by
downsampling it into two different signals having resolutions
of 2 and 4.
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Fig. 9. Downsampling of an error signal into decimated output signals of
lower resolution [34].

For an affirmation of the presence of the attack vector
(and/or random time delays), local control, and measure-
ment values are compared with the downsampled signal
edownk (t). Post-comparison, the proposed prediction strategy
reconstructs the expected delay compensation signals ek(tk) =
eVk (tk), eIk(tk) at the local node side on the basis of the
following condition:

ek(tk) = edownk .[11]− uk (15)

After reconstruction, the error signal is sent to the prediction
policy stage where signal reconstruction is performed again
if the attack persists for an increased time period. A similar
reconstruction is also performed in the case of large time
delays. The overall prediction criterion is provided below.

||ek(tk)|| > α||exp(−t/T )eV oltk .[11]|| (16)

where T (= KP /Ki) represents the time instant associated
with the PI control loops, and represents a tunable parameter.
If the condition defined above is satisfied, a trigger is generated
that reconstructs ek(tk) through a Sample and Hold process
with the triggering instant tk. After this, the reconstructed
signals (compensators for the expected signal) are provided
as inputs to the local secondary (voltage and current) control
loops using a set of tunable gains, k1 and k2. The inputs can
be defined as follows.

edelV (tk) = k1ek(tk) (17)

edelI (tk) = k1ek(tk) (18)

As depicted in Fig. 8, these inputs are fed back into the
secondary controller as per the following equations.

uV fk (t) = uVk (t) + edelV (tk) (19)

uIfk (t) = uIk(t) + edelI (tk) (20)

where uV fk and uIfk represent the final inputs to the secondary
control loops as shown in Fig. 8. The proposed strategy
effectively handles continued DoS attacks and large-magnitude
time delays. Additionally, the error computation framework is
used to validate the interruptions in a robust manner.

V. PERFORMANCE ANALYSIS & SIMULATION RESULTS

To demonstrate the action of the supplementary detection
metric, we validate our results on the considered system
in Fig. 2. The test system used for strategy validation is
developed in the MATLAB R2020a environment. The model
(as depicted in Fig. 2), has four converters (each of 10 kW
rating) that are connected to each other through tie-lines Ri.
The controller gains are also identical for each converter. The
system and control parameters used for the simulation can be
found in Table III. In the first case study, Fig. 7 presents the
magnitude of current signals in a DC microgrid consisting
of N = 4 agents (as shown in Fig. 2), where a malicious
hacker with controller level access executes various types of
consensus-disrupting attacks to perform: (i) hijacking, and
(ii) false data injection. To perform the hijacking attack, the
attacker activates an attack vector that impairs the iterative
update rule leading to an arbitrary behavior. This is simulated
through the swapping of a True measured signal with a new
(False) constant value, which becomes the reference for
other DGs in the system [36]. Consequently, all the DGs start
operating erroneously resulting in a biased, arbitrary solution.
To validate the replaced signal, the perpetrator interrupts the
communication between a claimant (here, an incoming block
of data) and the verifier (here, one or more nodes in the
Blockchain network) in order to change the authentication
decision. Thus, it cons the recipient into believing that a
malicious, foreign block is authentic. The mathematical model
of the hijacking attack can be formulated as

xaj (t) = (1− ζ)xj(t) + caj (21)

where, xaj represents the final local measurement value from
the neighboring nodes, and caj is an attack element. ζ is
a variable representing the presence of the attack vector
which only accepts binary values 1 (during the attack), or 0
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TABLE III
SYSTEM & CONTROL PARAMETERS OF SYSTEM IN FIG. 2

Parameter Value Parameter Value Parameter Value

R1 1.5 Ω R2 1.2 Ω R3 0.8 Ω

R4 0.3 Ω R5 0.5 Ω R6, R10 0.6 Ω

R7 0.45 Ω R8, R9 0.4 Ω Lsei 3 mH

Cdci 250 µF Idcmin
0 A Idcmax 28 A

Vdcmin
270 V Vdcmax 360 V Vref 315

Iref 0 Kv
P 5 Kv

I 100

Ki
P 2.5 Ki

I 0.05 hi 2.5

TABLE IV
SYSTEM & CONTROL PARAMETERS OF SYSTEM IN FIG. 13

Parameter Value Parameter Value Parameter Value

R1 0.2 Ω R2 0.25 Ω R3 0.32 Ω

R4 0.26 Ω R5 0.45 Ω Lsei 2 mH

Cdci 120 µF Idcmin
0 A Idcmax 10 A

Vdcmin
42 V Vdcmax 54 V Vref 48

Iref 0 Kv
P 5 Kv

I 100

Ki
P 2.5 Ki

I 0.05 hi 2.5

(otherwise). This leads to a disruption in the behavior of the
consensus theory imposing a restriction on xaj (t) that can only
update during future iterations. This results in the creation of
a random steady-state signal value for each individual node
that ceases to follow the consensus theory. To perform the
false data injection attack, the attacker activates an attack
vector that adds an additional (exogenic) signal to the general
consensus-based control update during each iteration. This
leads to the iterations converging to a feasible but manipu-
lated (False) value, where all the operational states remain
confined to their general bounds. To validate the manipulated
measurement/control signals, the attacker internally overwrites
any unfavorable decision from the verifier to mask malicious
injections into the communication channel. The mathematical
model of the FDI attack can be described as:

xaj (t) = xj(t) + caj (22)

The above-mentioned equation allows the transmitted signal
to be updated as the attacked version of the signal is still
determined based on the time-dependent term xj(t). Clearly,
the non-detection of such consensus-manipulating attacks can
have negative repercussions on the system. However, as shown
in Fig. 7, a Blockchain network fortified with the proposed
set of detection metrics in Table II can immediately recognize
the presence of attack elements in the compromised nodes
and hence, effectively negate their actions (through signal
reconstruction).

To explain the working mechanism of the proposed self-
healing strategy in Fig. 6, we have considered an adversarial
situation in the same system, where the attacker has access to
the current of agent 1. Fig. 10 shows the proposed self-healing
Blockchain-based attack detection and mitigation procedure
under this scenario. Once DM1

2 detects the presence of attack
elements in an agent I, the mitigation mechanism is immedi-
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Fig. 10. Performance of the self-healing recovery scheme in DLT-based
microgrids when the current of agent I is compromised – in 0.15 sec, the
reconstructed signal from agent I is re-transmitted back to its neighbors by
retaining the system stability.
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Fig. 12. Performance of the self-healing mechanism during DoS attack when
the data packets are lost due to injection of random noise at t = 3 sec – the
local reconstructed estimate [34] ensures steady-state convergence.
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ately triggered, which traces a trustworthy current signal from
agent 2, as shown in Fig. 10. After acquiring the trustworthy
current signal from agent 2, the signal reconstruction is per-
formed to replace the attacked I1(t) with a trustworthy event-
driven signal I1(tk). As shown in Fig. 10, after the highlighted
event-driven signal is replaced, its communication to neighbors
is resumed after the validation process from DLT in 0.15 sec.
In this way, the considered system operates normally even
under a hijacking attack on one of the agents without causing
any power interruption.

To evaluate the N − 1 resiliency scale of the proposed
self-healing strategy, we have also considered the additional
adversarial situations in Fig. 11, where the attacker has access
to 3 nodes out of 4 agents. In this scenario, we anticipate
that the only trustworthy agent III will self-heal the system by
broadcasting its trustworthy information in a step-wise manner.
When currents of agents 1, 2, and 4 are simultaneously
attacked at t = 1 sec in Fig. 11, it can be clearly seen that
the system operates normally despite heterogeneous transients
from each converter during attacks. The signal authentication
is done in a stepwise manner, which has been highlighted in
Fig. 11, where the event-driven mitigation is firstly carried out
in agents 2 & 4 and then later followed by agent 1 towards
the end. Hence, the resiliency scale of N −1 for the proposed
strategy is clearly established in a system of N converters.

As outlined in Section IV(D), the self-healing mechanism
can also be extended to DoS attacks, wherein a local recon-
structed estimate designed using physics-governed equations
can be replaced by the missing signal for a DoS attack. This
can be seen in Fig. 12, where a signal interruption can be
seen across the link between agent III and IV in the form
of 15% data packet loss. However, the downsampled estimate

[34] obtained from the local error dynamics of the primary
controllers of converter III and IV is used to compensate for
the delay and achieve steady-state convergence. As a result,
it is not dependent on the blockchain-enabled information
transmission, since the divergent secondary controller error is
substituted locally. It is worth notifying that the self-healing
mechanism allows operation under dynamic disturbances, such
as load changes (as shown in Fig. 12), and line outages as well,
which signifies the robustness of this approach.

In the final scenario, we consider the performance of the
proposed self-healing strategy in another network (shown in
Fig. 13) with different system parameters to establish that the
strategy is easily scalable to any physical network topology
with heterogeneous dynamics. This network topology is de-
veloped in the MATLAB R2020a environment and has only
three converters (each rated 5 kW). Moreover, it functions
at different operation conditions as compared to the system
utilized for the preceding case study. The system and control
parameters for this system can be found in Table IV.

From Fig. 13, it can be clearly established that the perfor-
mance of the proposed self-healing strategy remains unaltered
with respect to any physical network topology or systems
exhibiting different dynamics. This can be attributed to the
robust physics-informed detection structure in Table II, that are
independent of structural and temporal dependencies. Based on
that, it can be seen that the proposed detection and mitigation
strategy augmented into DLT provides resiliency immediately
against stealth attacks injected into agent 2 at t = 1 sec. Hence,
the security boundaries of DLT is significantly enhanced due
to the augmentation of the physics-informed detection metrics
and self-healing mitigation strategy for networked microgrids.

VI. EXPERIMENTAL RESULTS

The proposed self-healing strategy has been validated in
an experimental prototype of DC microgrid shown in Fig.
14 operating at a global voltage reference of 48 V with N
= 2 DC/DC buck converters. It should be noted that the
Spitzenberger power amplifier tied to the Imperix 2 level
AC/DC converters have been used as the DC source for both
buck converters, equally rated around 7.5 kW. A single-line
diagram of the experimental setup can be seen in Fig. 15. To
emulate the computational & communication delay equipped
with blockchain, a programmable delay blockset available
in the BoomBox (BB) is appended before the communica-
tion channel. Variable delays and signal interruptions were
programmed to emulate real-time cyber-physical operation
and robustness of the proposed self-healing mechanism. The
system and control parameters can be found in Appendix.

In Fig. 16, the performance of the proposed self-healing
mechanism is tested under various conditions. In Fig. 16(a), a
FDIA attack of magnitude 5 A on I2 is carried out. However,
due to the proposed self-healing scheme, the reconstructed
signal obtained using I1 is immediately substituted to ensure
resilience against the cyber attack. This scenario also validates
the N − 1 resiliency scale attribute of the proposed scheme,
which has also been simulated in the case study in Fig. 10.
Furthermore in Fig. 16(b) and (c), the impact of DoS attacks
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and communication & computational delay is studied. It can
be seen in Fig. 16(a) that despite the signal interruption, the
current sharing and voltage regulation errors are well-regulated
despite the dynamic transients due to the initial mismatch
in the reconstruction process. Similarly in Fig. 16(c) for a
maximum communication delay of 425 ms, the microgrid was
initially unstable since the cyber network can only guarantee
stability upto a maximum delay of 345 ms. However as soon
as the locally downsampled estimate is substituted, the error is
regulated under steady-state and dynamics instances. Hence,
the performance across the experimental case studies affirm
the durability of the proposed self-healing approach under
different operating conditions in microgrids.

VII. CONCLUSION

This paper presents a strategy to fortify DC microgrids
against potential cyber-attacks through a Blockchain-based
approach. The proposed strategy uses a consensus-based verifi-
cation technique to determine the authenticity of blocks where
the majority of the nodes must agree upon the validity of
their hash indices for them to be accepted by the recipient
node. However, this verification technique may be vulnerable
to hijacking attacks, wherein an attacker uses its system-level
access to mine malicious, new blocks and fool the recipients
into believing their authenticity. Moreover, this access can also
be used to fake the consent of the nodes for rejecting authentic
blocks or accepting fake blocks.
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FDIA attack
Load 

change

Load 

change

Load 
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Load 

change

Local 

estimate

Fig. 16. Performance of the self-healing recovery scheme in DLT-based
microgrids under: (a) FDIA attacks, (b) DoS attack, (c) communication delay
of 425 ms, which is compensated locally using the downsampled estimate
[34].

To remove this limitation, this paper combines the gen-
eral features of the Blockchain with unique physics-informed
attack detection metrics to detect these attacks and trigger
mitigation in their presence. This detection strategy is in the
form of a series of rules (threshold criteria) which, when
violated, lead to the alteration of a detection metric, signifying
attack detection. Detection of any false block in the network
leads to its immediate rejection by the recipient. It triggers the
activation of a self-healing strategy, where the lost signal/data-
point is reconstructed by obtaining previous values of the same
signal and current values of neighboring measurements (i.e.,
sensor inputs from other nodes) from the ledger. This leads
to the preservation of system stability even under adverse
scenarios, provided that at least one node in the network is
trustworthy). In addition to this, we also provide a strategy
for model-free control that is integrated with the proposed
self-healing strategy for defense against random time delays
and potential DoS attacks. This ensures that any computa-
tional delay created due to the Blockchain-based setup is also
mitigated in a robust manner. Clearly, a major limitation of
the mitigation method proposed in this paper would be its
inability to reconstruct a trustworthy version of the signal if all
nodes are attacked simultaneously during FDI attacks. Hence,
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we plan to extend this aspect as a future scope of work by
overcoming this limitation and providing full resiliency.

APPENDIX

The considered experimental prototype in Fig. 14 & 15
consists of two DC/DC buck converters rated equally for 7.5
kW. It should be noted that the controller gains are consistent
for each converter.
Plant: R1 = 0.9 Ω, R2 = 1.2 Ω
Converter: Lsei= 3 mH, Cdci = 100 µF
Controller: Vref= 48 V, KH1

P = 1.92, KH1

I = 15, KH2

P = 4.5,
KH2

I = 0.08, h = 1.5, c = 1.4, Υ1 = 0.025, Υ2 = 0.035
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