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A General Method for Calibrating Stochastic Radio
Channel Models With Kernels

Ayush Bharti , Member, IEEE, François-Xavier Briol , and Troels Pedersen

Abstract— Calibrating stochastic radio channel models to new
measurement data is challenging when the likelihood func-
tion is intractable. The standard approach to this problem
involves sophisticated algorithms for extraction and clustering
of multipath components, following which point estimates of
the model parameters can be obtained using specialized esti-
mators. We propose a likelihood-free calibration method using
approximate Bayesian computation. The method is based on
the maximum mean discrepancy, which is a notion of distance
between probability distributions. Our method not only by-
passes the need to implement any high-resolution or clustering
algorithm but is also automatic in that it does not require
any additional input or manual preprocessing from the user.
It also has the advantage of returning an entire posterior
distribution on the value of the parameters, rather than a simple
point estimate. We evaluate the performance of the proposed
method by fitting two different stochastic channel models, namely
the Saleh–Valenzuela model and the propagation graph model,
to both simulated and measured data. The proposed method is
able to estimate the parameters of both the models accurately
in simulations, as well as when applied to 60 GHz indoor
measurement data.

Index Terms— Approximate Bayesian computation (ABC),
calibration, kernel methods, likelihood-free inference, machine
learning, maximum mean discrepancy (MMD), radio channel
modeling.

I. INTRODUCTION

STOCHASTIC channel models are used to simulate the
behavior of the radio channel in order to test the per-

formance of communication and localization systems. Often
models are flexible enough to be applied to different scenar-
ios, provided that their parameters can be adjusted accord-
ingly. Adjustment of the model parameters based on data
collected from measurement campaigns is called calibra-
tion (or inference). Calibration is usually challenging since
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most state-of-the-art stochastic radio channel models have
intractable likelihood functions. This renders usual inference
techniques such as maximum likelihood estimation or standard
Bayesian inference inapplicable.

Instead of solving the whole calibration problem at once,
it is widespread practice (e.g., [1]–[9]) to split the task into
intermediate steps as outlined in Fig. 1(a). The first step
involves resolving the multipath components, i.e., estimating
path parameters including delays, directions, and complex
gains. This task can be carried out using high-resolution
algorithms such as MUSIC, space alternating generalized
expectation-maximization (SAGE), and RiMAX, see [10,
Ch. 5] for an overview. The second step is clustering of
the extracted multipath components in the case of cluster-
based models. Clustering is either performed manually, as
in [2], or using automated algorithms such as [11]–[13].
In a final step, the model parameters are estimated from the
extracted and clustered multipath components.

Despite being widely applied, the multistep approach suffers
from a range of issues, owing to the composite nature of
the methodology. In particular, high-resolution and clustering
methods, despite being very useful in analyzing and under-
standing the radio channel, are problematic when it comes to
model calibration. These methods require implementation of
sophisticated and specialized algorithms at each step, which
involves a number of heuristic choices and settings which
might be conflicting. An emblematic example is an assumption
of “well separated” paths while extracting multipath compo-
nents. The high-resolution methods are prone to estimation
artifacts, especially if paths are not “well separated.” However,
this conflicts with the inherent assumption in the clustering
step that multipaths arrive “close” to each other. Consequently,
even though the performance of high-resolution and clustering
algorithms is thoroughly investigated in isolation, the accuracy
of the applied multistep calibration techniques is unknown.
Moreover, the calibration technique needs to be tailored to
the particular model at hand. While attempting to calibrate
and compare different ultrawideband models using a large
database, Greenstein et al. [14] noted that “the problem in
doing so is that there is no simple, clear and established
method for extracting cluster model parameters from measured
data”. As a result, they were unable to fit the cluster model
to their calibration data.

Calibration methods that bypass the need to resolve the
multipath components have been recently proposed. They
have been used to calibrate the Turin model [1], the
Saleh–Valenzuela (S–V) model [2] and the polarized propa-
gation graph (PG) model [15]. These calibration methods rely
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Fig. 1. Methodologies for calibration of stochastic radio channel models. (a) State-of-the-art methodology based on multipath extraction and clustering. (b)
Proposed method based on generic summaries (here exemplified by log-temporal moments) and ABC.

either on a Monte Carlo approximation of the likelihood [16],
[17], the method of moments [18], [19], or a summary-based
likelihood-free inference framework [20]–[23] such as approx-
imate Bayesian computation (ABC). First developed in the
field of population genetics in 1997, ABC has since become
a popular method for calibrating models with intractable
likelihoods in various fields, see [24] for an overview. The
main drawback of the calibration methods [17]–[19] is their
reliance on equations that explicitly link the moments of the
summaries with the model parameters, or in the case of [16],
on the model-specific point process. These methods should,
therefore, be rederived for each new model. We encounter this
to be a nontrivial task, and it may not even be possible for
the more elaborate channel models. Similar problems exist in
[20]–[22] where a low-dimensional vector of statistics should
be redesigned or trained using an autoencoder [23] for the
channel model at hand, which is not always trivial and may
not generalize to other models. Moreover, summarizing the
data leads to information loss that can hamper the accuracy of
the parameter estimates.

The aim of the present contribution is to propose a general
method which can be applied to stochastic channel models
of very different mathematical structure. This will be done
without the need for specializing summaries, or extraction
and clustering of multipaths. To achieve this, we follow the
proposed calibration methodology depicted in Fig. 1(b). First,
we map the channel measurements into easily computable

log temporal moments. These moments are then used for
calibration in an ABC framework, where we use the maximum
mean discrepancy (MMD) [25] to compare the distribution
of simulated and measured data. The MMD has previously
been used for frequentist inference in [26] and [27], and in a
Bayesian sense in [28]. Specific ABC methods using kernels
include [29]–[32], and the MMD has also been used to train
generative adversarial networks in [33]–[35]. These articles
have shown MMD to be a powerful way to represent either
datasets or distributions, and, as a result, calibrate complex
models. They have acted as inspiration for our work, but
our algorithm specializes in the approach to the problem of
calibrating stochastic channel models. Our calibration method
is automatic since it can be applied to different models without
the need for further pre- or post- processing. Additionally,
the method is able to account for model misspecification,
which occurs when the model is not able to represent the data
for any parameter setting.

The rest of this article is organized as follows. Section II
presents the model calibration problem. Section III gives an
overview of the MMD, and Section IV describes the proposed
kernel-based ABC method. We demonstrate the method’s
generality by calibrating the seminal S–V model, which is
a clustered multipath model, and the PG model, which is
based on a different principle, using exactly the same data
and procedure. Indeed, no other method able to do this is
available in the open literature. In Section V, the performance
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is evaluated on simulated data and in Section VI on data from
a 60 GHz indoor measurement campaign. We find that the
S–V model is misspecified for the considered measurements,
and hence fails to replicate its characteristics. Discussion
and concluding remarks are given in Sections VII and VIII,
respectively.

II. STOCHASTIC CHANNEL MODEL CALIBRATION

Consider the transfer function measurement of a linear,
time-invariant radio channel in a single-input, single-output
(SISO) setup using a vector network analyzer (VNA). The
transfer function is measured at Ns equidistant frequency
points in the bandwidth B , resulting in a frequency separation
of � f = B/(Ns − 1). The measured complex signal at the nth

frequency point, Yn , is modeled as

Yn = Hn + Wn, n = 0, 1, . . . , Ns − 1 (1)

where Hn is the transfer function sampled at the nth frequency
and Wn is the complex measurement noise. The additive noise
samples are assumed independent and identically distributed
(iid) at each frequency point, and are usually modeled as zero-
mean circular symmetric complex Gaussian variables with
variance σ 2

W . The time-domain signal, y(t), is obtained by
taking the discrete-frequency, continuous-time inverse Fourier
transform of Yn as

y(t) = 1

Ns

Ns −1∑
n=0

Yn exp( j2πn� f t) (2)

periodic with a period of tmax = 1/� f . Multiple realizations
of the channel can be obtained by repeating the measurements
Nobs times, yielding an Nobs × Ns complex data matrix Y. The
data can be thought of as iid realizations from some unknown
distribution, �, which is the true state of nature.

A stochastic model can be seen as a parametric family of
distributions {�θ } with a p-dimensional parameter vector θ

defined on some Euclidean space.1 In the case of generative
models such as the stochastic channel models, it is straightfor-
ward to simulate realizations of Y from the model, even though
the distribution �θ is unknown. Calibration then amounts to
finding the θ for which the model output fits the observed
data Y well, or in other words, to find the θ such that �θ

is “closest” to �. Standard calibration techniques involve the
likelihood function of the model given Y. For iid realizations,
the likelihood function, denoted as p(Y|θ), is the product of
the probability density or mass function of �θ evaluated at
each of the data points in Y.

For most stochastic radio channel models, p(Y|θ) is either
intractable or cannot be approximated within reasonable com-
putation time. Intractability here refers to the inability to
numerically evaluate the likelihood function for a given value
of θ . For intractable likelihood, the posterior, p(θ |Y), also
becomes intractable as it is proportional to p(Y|θ)p(θ), where

1The restriction to parameters in �p is only needed in the adjustment
method described in Section IV-B. The remaining part of the method can
be used for more general parameter spaces, e.g., discrete, complex, or subsets
of �p . In this case, the adjustment algorithm should be modified to either
accommodate or ignore such parameters.

Fig. 2. Given a kernel k, the distributions � and � are mapped to their kernel
mean embeddings μ� and μ� using 3. The MMD is obtained by computing
the distance between μ� and μ� in the function space Hk , as expressed in
5. This figure is inspired by Muandet et al. [36].

p(θ) is the prior assumed on the parameters. An intractable
likelihood prevents maximum likelihood estimation of θ as
well as Bayesian inference via sampling of the posterior. This
is the case for stochastic multipath models, such as the Turin
and the S–V model, which were constructed with the ease of
simulation in mind.

Since stochastic channel models are easy to simulate from
given an arbitrary θ value, likelihood-free inference is pos-
sible by comparing simulated datasets to the observed data.
Therefore, we need a method to compute distances between
the datasets which is challenging as the datasets are high-
dimensional, and may have possibly different sizes. We tackle
this problem using distance metrics based on kernels, in par-
ticular, the MMD.

III. MMD BETWEEN PROBABILITY DISTRIBUTIONS

We now introduce the MMD which is a notion of distance
between arbitrary probability distributions � and � or datasets.
We aim to use MMD as a similarity measure within an ABC
framework to compare simulated and observed datasets. Note
that we can identify any dataset {x1, . . . , xn} to an empirical
distribution (1/n)

∑n
i=1 δxi where δxi denotes a distribution

with mass one at xi and 0 otherwise. We restrict our discussion
to distributions defined on �d . This section will provide further
details on constructing the MMD [25], [36].

A. Kernels and the MMD

The MMD consists of first mapping the distributions to
a function space Hk , then using the distance in that space
to compare the mapped distributions. See Fig. 2 for an
illustration. The mapping enables the use of distance defined
on Hk .

The spaces of functions to which we will map distribu-
tions are called reproducing kernel Hilbert space (RKHS).
We denote the RKHS with Hk , and �·, ·�Hk and � · �Hk

for its inner product and norm, respectively. Associated with
each RKHS, there exists a symmetric and positive definite
function k : �d × �d → � called a reproducing kernel [37].
This function satisfies two properties: 1) for all f ∈ Hk ,
f (x) = � f, k(x, ·)�Hk (called the reproducing property) and
2) k(x, ·) ∈ Hk for all x ∈ �d .

It is straightforward to map probability distribution � to Hk

through what is called a kernel mean embedding defined as

μ�(·) = �X∼�[k(X, ·)] =
∫
�d

k(x, ·)�(dx) (3)
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under mild regularity conditions satisfied for all kernels in this
article, see [25, Lemma 3]. Here, �[·] denotes the expectation
with respect to the random variable and probability distribution
given in subscript. Note that, μ� ∈ Hk . In the case where the
probability distribution � has a probability density function
p, the integral in (3) can be written in the more widespread
form

∫
�d k(x, ·)p(x)dx. Alternatively, when � is an empirical

distribution corresponding to a dataset, then the kernel mean
embedding is given by (1/NX )

∑NX
i=1 k(xi , x).

The MMD between probability distributions � and �

embedded in Hk is defined as the supremum taken over the
mean of all functions in the unit ball in an RKHS, i.e., [36]

MMDk[�,�] = sup
� f �Hk ≤1

|�X∼�[ f (X)] − �X∼�[ f (X)]|. (4)

As the name suggests, the MMD is the maximum distance
between means of (unit norm) functions computed with respect
to the distributions � and �. As shown in [25], the MMD in
(4) can equivalently be expressed as

MMDk[�,�] = ��X∼�[k(X, ·)] − �Y∼�[k(Y, ·)]�Hk

= �μ� − μ��Hk . (5)

This gives an alternative interpretation of the MMD as the
distance between mean embeddings in Hk as Fig. 2 illustrates.

A third expression for the MMD appears upon expanding
the squared norm in (5) and using the reproducing property
of k which yields an expression in terms of k as

MMD2
k[�,�] = �X,Y∼�[k(X, Y )] − 2�X∼�,Y∼�[k(X, Y )]

+�X,Y∼�[k(X, Y )]. (6)

The latter expression is computationally more appealing than
the two former as it only calls for computation of expectations
of the kernel. Thus, computation of the supremum in (4) is not
required to compute the MMD. As discussed in Section III-C,
the expression (6) forms the basis for estimation of the MMD
from data.

B. Selecting a Kernel

The choice of kernel defines the RKHS and thus the proper-
ties of its distance, the MMD. In addition to being reproducing,
it is a great advantage if the kernel is characteristic [38],
[39]. This implies that the kernel mean embedding is an
injective mapping, meaning that each distribution is mapped to
a unique function. Thus, in the case of characteristic kernels,
the kernel mean embedding captures all the information about
the distribution. As a result, MMDk[�,�] = �μ�−μ��Hk = 0
if and only if � = �. In this case, the MMD is capable
of comparing infinitely many moments of two probability
distributions without ever having to compute these moments
explicitly. Consequently, the MMD is able to distinguish
probability distributions even when these coincide in finite
number of moments. This gives a great advantage over meth-
ods based on a comparison of finitely many moments which
are potentially blind to differences between distributions.

A very popular characteristic reproducing kernel is the
squared-exponential (or Gaussian) kernel, defined as

kSE(x, x	) = exp

(
−�x − x	�2

2

l2

)
(7)

Fig. 3. MMD between a N (μ1, σ
2
1 ) distribution with μ1 = 0 and σ1 = 1

and a N (μ2, σ
2
2 ) varying parameters μ2 and σ2. Plots are shown for two

different values of the lengthscale l.

for x, x	 ∈ �d . Here, �·�2 is the Euclidean norm and l > 0 is a
parameter called the lengthscale of the kernel. The norm inside
the exponent can be chosen based on the specific data and
application. For additional examples of characteristic kernels,
see [38], [39].

We now give a simple example comparing Gaussian distri-
butions, in which case the MMD can be derived analytically.

Example: Let � = N (μ1, σ
2
1 ) and � = N (μ2, σ

2
2 ) be

two Gaussian distributions on �. For the squared-exponential
kernel in (7), the MMD takes the form (see [40, Appendix C])

MMD2
kSE

[�,�] = l

l+2
√

2σ1

+ l

l+2
√

2σ2

− 2l

l+√
2σ1+

√
2σ2

× exp

(
− (μ1 − μ2)

2

l2 + 2σ 2
1 + 2σ 2

2

)
. (8)

It is apparent from (8) that the MMD is zero if and only if
μ1 = μ2 and σ1 = σ2 (as guaranteed by using a characteristic
kernel). Fig. 3 illustrates how the MMD increases as the
parameters of these distributions increasingly differ. Varying
the lengthscale, l, of the kernel scales the overall MMD curve,
but does not affect the point at which the MMD is minimized.
The overall behavior of the curves does not vary significantly
on changing the lengthscale by an order of the magnitude.

C. MMD Between Datasets

Unlike in the previous example, it is, in most realistic cases,
not feasible to analytically calculate (6). Moreover, numerical
integration is problematic, as the dimension of X and Y may be
large and � or � unavailable. Fortunately, it is straightforward
to estimate the MMD if it is an empirical distribution, such as
in the case of datasets.

Imagine that we do not have access to � and �, but that
we instead have two datasets consisting of realizations from
these distributions. More precisely, suppose we have access

to X = {x1, . . . , xNX } iid∼ � and Y = {y1, . . . , yNY } iid∼ �.
Then, an unbiased empirical estimate of MMD2

k[�,�] can be
obtained as [25]

̂MMD
2

k[X, Y] =
∑

i �=i 	 k(xi , xi 	)

NX (NX − 1)
− 2

∑NY
j=1

∑NX
i=1 k(xi , y j)

NY NX

+
∑

j �= j 	 k(y j , y j 	)

NY (NY − 1)
. (9)
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Note that NX and NY are permitted to differ, i.e., the two
datasets are not limited to be of the same size. To use this
estimator with the kernel in (7), the lengthscale should be
specified. Following [25], the lengthscale can be set based on
the dataset X using the median heuristic:

l = √
med/2 (10)

where med denotes the median of the set of squared two-norm
distances �xi − x j�2

2 for all pairs of distinct data points in X.
This setting of l scales the kernel with the spread of the data
and is robust to outliers.

Concentration bounds for MMD, such as [26,
Lemma 1] or [36, Theorem 3.4], imply that with high
probability∣∣̂MMD

2

k[X, Y] − MMD2
k[�,�]∣∣ ≤ C

(
1

NX
+ 1

NY

)
(11)

for some C > 0. This tells us that the accuracy of the estimate
converges linearly in both NX and NY . The computational cost
of computing this estimate is O(N2

X + N2
Y ) due to the need

to compute double sums in both NX and NY . In order to best
balance computational cost and accuracy, NX and NY should
be chosen to be commensurate. These two results on accuracy
and computational cost can be used to determine how to make
default choices for the parameters of our ABC algorithm.

D. Kernels for Radio Channel Measurements

In order to use the MMD for calibrating stochastic radio
channel models, we need a kernel defined on the space of
transfer function measurements: kY : Y × Y → �. Given
such a kernel, we could then estimate the MMD between a
measured dataset Y and a dataset Ysim simulated from the
model.

A significant challenge with this approach is that, in the
context of stochastic radio channel models, Y is usually a
high-dimensional space. This is especially the case for large
bandwidth measurements where Ns can be in the order of
thousands. Such high-dimensional problems are challenging
for kernel methods based on default kernels such as the
squared-exponential kernel [41]. These kernels indeed suffer
from the curse-of-dimensionality, a phenomenon implying that
the distance between points increases exponentially with the
dimension of the space.

To tackle this issue, there exist kernels specialized
to certain time-series or functional data models in the
literature [42]–[47]. These use specific properties of the type
of data in order to avoid the curse-of-dimensionality. In this
article, we contribute to this literature and construct a ker-
nel specifically tailored to transfer function measurements.
We base the kernel on the temporal moments of y(t), defined
as

m(i) =
∫ tmax

0
t i |y(t)|2dt, i = 0, 1, 2, . . . , I. (12)

The integral in (12) is easy to compute numerically. The
temporal moments can be seen as an expansion of |y(t)|2
into the basis of monomials. Since the monomials form a
complete basis for finite energy time-limited signals [48],

no information is lost compared to |y(t)|2 if I → ∞. Referring
to [49], [50], the first few moments are well modeled by a
log-normal distribution. Thus, taking the entry-wise logarithm
z(i) = ln m(0) brings the moments to the same scale and
gives an approximately Gaussian vector z = [z(0), . . . , z(I−1)].
Multiple channel realizations yield Z = (z1, z2, . . . , zNobs).

Define the mapping AI : Y → �I from Y to the
I -dimensional space of log temporal moments. We propose
to construct a kernel kY for transfer function data as

kY(y, y	) := kSE(AI (y), AI (y	)), for all y, y	 ∈ Y (13)

where kSE denotes the squared-exponential kernel in dimension
I . We note that this is the composition of a reproducing kernel
and a map, and thus according to [51, Lemma 4.3] is a repro-
ducing kernel on Y . We also note that the MMD with kernel
kY computed on the original data can be obtained through the
MMD with kernel kSE on the log temporal moments. Similarly,
the empirical estimators of these quantities are also identical,
that is,

̂MMD
2

kY [Y, Ysim] = ̂MMD
2

kSE
[Z, X] (14)

where X is the simulated log temporal moments dataset.
In practice, we will have to limit ourselves to a finite I for

computational reasons. This, however, is not a problem since
we can expect the signal energy to be concentrated on the
lowest moments. In fact, taking I to be small also allows us
to bypass issues with the curse-of-dimensionality.

From a theoretical viewpoint, since the squared-exponential
kernel is characteristic, we should be able to recover any
distribution on the space of log temporal moments. However,
since the mapping AI leads to loss of information when I is
finite, kY will not be characteristic on Y , and we may not
be able to uniquely identify the distribution on |y(t)|2. This
however is not an issue for the considered channel models,
as will be shown in Section V.

IV. PROPOSED KERNEL-BASED ABC METHOD

ABC methods rely on simulation from the model to approx-
imate the posterior, and can be used to estimate θ such
that the model fits to the observed data Y. Let ρ(·, ·) be
some notion of distance between datasets. The basic form
of ABC, called rejection ABC, proceeds by sampling M
parameter values from p(θ) and generating the corresponding
simulated data Ysim from the model. The values of θ for which
ρ(Y, Ysim) is less than some predefined threshold �, form a
sample from the approximate posterior distribution, p̃(θ |Y) =
p(θ |ρ(Y, Ysim) < �). The tolerance threshold impacts the
degree of approximation in ABC methods. Setting � = 0
would lead to exact Bayesian inference, however, achieving
equality for continuous-valued data is not possible. Hence, �
should be small but nonzero in order to be computationally
feasible.

We now propose an ABC method based on the MMD
as the distance metric to calibrate stochastic radio channel
models. We employ the Population Monte Carlo (PMC) ABC
method [52] to iteratively refine our approximation of the
ABC posterior. At the end of each iteration, we perform
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Fig. 4. Diagram depicting steps in the proposed kernel-based ABC algorithm with regression adjustment described in Algorithm 2. The block “Rejection
based on MMD” corresponds to Section IV-A, “Regression adjustment” corresponds to Section IV-B, and “Sample from importance distribution” corresponds
to Section IV-C. Here, the term “Data” can be either obtained from physical measurements or as in Section V by simulation.

local-linear regression adjustment [53] to further improve
the posterior approximation. The complete algorithm is
depicted in Fig. 4 and outlined in Algorithm 2.2 Individual
steps of this PMC-ABC algorithm will be highlighted in
Sections IV-A–IV-C. In Section IV-D, we describe how to
detect and account for model misspecification in the algorithm.

A. Rejection Based on MMD

The proposed ABC method uses the MMD between datasets
as a rejection criteria. Instead of setting the threshold � in
terms of the distance, we specify the proportion of accepted
samples, i.e., � = M�/M where M� is the number of parameter
samples accepted out of M . This is particularly convenient as
it avoids the need to manually find a threshold, which may
lead to unknown run-time of the algorithm.

The method computes ̂MMD
2

kSE
[X, Z], where X =

(x1, . . . , xNsim ) is the simulated log temporal moments dataset,
as this is identical to estimating the MMD between Y and
Ysim (see 14). First, M independent parameter samples � =
(θ1, . . . , θ M ) are drawn from the prior p(θ). For each θ i ,
the log temporal moments dataset, Xi ∼ �θ i , is simulated. The
simulated datasets are gathered in X = (X1, . . . , XM ). The
̂MMD

2

kSE
[Xi , Z] is computed for each i using (9), setting the

lengthscale of kSE as per (10). The parameter samples resulting
in the M� smallest MMD values are then accepted.

In principle, the MMD could be computed between the
samples of the temporal moments instead of their logarithm.
However, the magnitudes of the different temporal moments
may vary strongly and using a single lengthscale may lead to
poor performance. Using a log transformation helps mitigate
this issue. Alternatively, the lengthscale should be defined for
each dimension of θ .

B. Regression Adjustment

As proposed in [53], it is possible improve the posterior
approximation by adjusting the accepted samples using a
model of the relationship between a low-dimensional vector
of statistics and the parameter vector. Let s be a vector of
summary statistics of X such that s = S(X) for a function

2The source code is available at: https://github.com/bharti-ayush/Kernel-
based-ABC

S(·). Similarly, the observed summary statistics are denoted
sobs = S(Z). We begin by fitting a function, g, between the
accepted parameters �∗ = (θ∗

1, . . . , θ
∗
M�

) and the correspond-
ing statistics S∗ = (s1, . . . , sM�

) as [24, Ch. 3]

θ i = g(si) + ε, i = 1, . . . , M� (15)

where g(s) is the conditional expectation of θ given s, and
ε is the residual. Here, θ should belong to a subset of
�p. Considering that the log of the temporal moments are
well modeled by a Gaussian distribution, we take sobs to
be the vector consisting of the sample means and sample
covariances of the elements of z, similar to [22]. In total, sobs

consists of (I 2 + 3I )/2 elements for I temporal moments.
The statistics s is computed in the same manner for X. Note
that s and sobs are normalized by an estimate of their median
absolute deviation to account for the difference in magnitude
of the statistics. In case the prior distributions are bounded,
a logit transformation is applied to the parameters before the
adjustment.

For simplicity reasons, we assume g to be linear as in [53]
and adjust the accepted parameters as

θ̃ i = θ∗
i − (si − sobs)

�β̂, i = 1, . . . , M� (16)

where β̂ is the solution to the weighted least-squares problem

arg min
α,β

M�∑
i=1

[θ∗
i − α − (si − sobs)

�β]2W
( ̂MMD

2

kSE
[Xi ,Z]). (17)

The weighting function W applies weights to each θ i based
on the estimated MMD value. This guarantees that parameters
which yield simulated log moments “closer to” Z are weighted
more heavily. We take W to be the Epanechnikov function,
W(δ) = 1 − (δ/δmax)

2 for |δ| ≤ δmax and zero otherwise,
as proposed in [53]. Here, δmax is the maximum estimated
MMD associated with the accepted parameters. Note that
choosing a constant regression function, i.e., β = 0, and
assigning equal weights to all θ i ’s results in the basic rejection
ABC algorithm. The regression adjustment therefore gives the
adjusted parameter values �̃ = (θ̃1, . . . , θ̃ M�

).

C. Importance Sampling Using PMC

As a means to explore the posterior distribution over the
parameter space efficiently, we employ a sequential Monte
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Algorithm 1 ABC With MMD and Regression Adjustment
Input: Parameter values �, corresponding simu-
lated data X , observed Z & number of accepted
samples M� .

Compute ̂MMD
2

kSE
(Xi , Z) for all datasets Xi ∈ X using 9.

Accept the M� parameters with the smallest MMD distance
and denote these �∗ = (θ∗

1, . . . , θ
∗
M�

).
Compute S∗ and sobs = S(Z), then solve the optimization
problem in (17) with �∗, S∗, and sobs to get β̂.
Adjust �∗ using (16) to obtain �̃.

Output: Adjusted samples �̃ from the Rejection-ABC
posterior.

Carlo technique called PMC [20], [22], [52]. In PMC, the cur-
rent parameter values �̃ are used to generate a new set of
parameters for the next iteration of the algorithm through
importance sampling. This is a two-step procedure: 1) sample
from the current parameters based on their importance weights
and 2) perturb the sampled parameter values using a proposal
density.

The set of parameters in the initial iteration, �̃(1) =
(θ̃

(1)

1 , . . . , θ̃
(1)

M�
), are assigned equal weights. The next set of

parameters is obtained by drawing M values from �̃(1) and
perturbing these according to a probability distribution, called
proposal. For simplicity, we perturb independently in each
dimension using a Gaussian distribution, and reject values
outside the prior range. Thus, the proposal reads

ϕ(θ; θ̃,�) = �(θ ∈ R)e− 1
2 (θ−θ̃)��−1(θ−θ̃) (18)

where � is an indicator function, R ⊂ �p is the prior
range, and � is a diagonal matrix with variances σ 2

j > 0
corresponding to parameter θ j along the diagonal. We set the
diagonal elements of � to twice the empirical variance of the
adjusted parameter samples. This is denoted as � = 2V̂ar(�̃).

The set of M parameter values at iteration t , �(t), is then
used to simulate X (t) from the model for MMD computation
and regression adjustment (i.e., Algorithm 1). In subsequent
iterations, weights are assigned as

w
(t)
j ∝ p

(
θ

(t)
j

)/ M�∑
i=1

w
(t−1)
i ϕ

(
θ

(t)
j ; θ̃

(t−1)

i ,�(t−1)
)

(19)

j = 1, . . . , M� . The adjusted parameter values after iteration
T are taken as samples from the approximate posterior distri-
bution. Point estimates of θ , such as the approximate posterior
mean

θ̂
(T ) = 1

M�

M�∑
i=1

θ̃
(T )

i (20)

are straightforward to compute from the samples.

D. Handling Model Misspecification

We have now completed the description of Algorithm 2.
However, the framework of ABC relies on the implicit assump-
tion that there exist parameter values in the prior support
that yield simulated data “close” to the measured data. This

Algorithm 2 PMC-ABC With MMD
Input: Prior p(θ), model �θ , observed data Z, M� , M
and T .

Initialize t = 1, draw �(1) iid∼ p(θ) and simulate X (1) using
the parameters in �(1).
Apply Algorithm 1 on {X (1),�(1)} to obtain �̃(1).
Set w

(1)
j = 1 for j = 1, . . . , M� , and set �(1) = 2V̂ar

(
�̃(1)

)
.

for t = 2, . . . , T do
Compute q j = w

(t−1)
j /

∑M�

i=1 w
(t−1)
i for j = 1, . . . , M� .

for i = 1, . . . , M do
Sample θ∗

i from �̃(t−1) s.t. θ̃
(t−1)

j is selected with prob
q j .
Generate θ

(t)
i ∼ ϕ

(·; θ∗
i ,�

(t−1)
)
.

Simulate X(t)
i from the model with parameter θ

(t)
i .

end for
Apply Algorithm 1 on {X (t),�(t)} to obtain �̃(t).
Set w

(t)
j using (19) for j = 1, . . . , M� .

Set �(t) = 2V̂ar
(
�̃(t)

)
.

end for
Output: Samples

(
θ̃

(T )

1 , . . . , θ̃
(T )

M�

)
from the PMC-ABC

posterior.

Fig. 5. Local linear regression adjustment of parameter θ inspired from [54].
First, the regression model is fit based on accepted parameter and statistic
values. Then, the parameters are adjusted based on the fit model, which can
move them outside the prior range if (si − sobs) is large.

assumption may not always hold if the model parameters
cannot be set in any way to reproduce the data well. In this
case, we say that the model is misspecified for the data.
Misspecification can be detected and accounted for in the
algorithm as explained in this section.

Consider a univariate parameter θ in the range [θmin, θmax]
resulting in a univariate statistic s in [smin, smax] simulated
from the model. If the observed statistic sobs /∈ [smin, smax],
then the model is likely to be misspecified. This is a challenge
since under model misspecification, the local-linear regression
adjustment has been shown to concentrate posterior mass on
a completely different value than the rejection ABC [55].
In fact for parameters with bounded support, the regression
adjustment moves the parameter samples outside the prior
range as illustrated in Fig. 5. Hence, if sobs lies outside the
range of statistics that the model can simulate, then there is
no guarantee that the adjusted samples of θ will lie inside the
prior range.
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We check for model misspecification by observing whether
each element of sobs lies within the range of corresponding
statistics simulated from the model using �(1). If any element
of sobs lies outside the range of values simulated from the
model, then the model is deemed misspecified. In such a case,
we replace sobs by an alternative term, s̆obs, computed from the
model instead of the data using the parameter

θ̆ = arg max
θ

f (θ; �∗) (21)

where f (θ; �∗) is the kernel density estimate computed from
the samples �∗, and θ̆ is the parameter corresponding to the
mode of f (θ; �∗). Another choice for θ̆ could be the posterior
mean of rejection ABC [55]. However, we found the mean
estimate to be unstable, especially in the initial iterations of
the algorithm. Hence, in the case of model misspecification,
we set sobs = s̆obs in each iteration of the PMC-ABC algorithm,
thus ensuring that the adjustment does not lead to parameter
samples outside the prior range.

V. SIMULATION EXPERIMENTS

We test the performance of the proposed calibration method
on two different channel models, namely the S–V and the
PG model. We chose models which differ significantly in
their mathematical structure to highlight the generality of our
approach. We first study in depth the advantages and draw-
backs of our algorithm on simulated data. Then, in Section VI,
we calibrate these models to data from an indoor measurement
campaign [56].

For ease of comparison, we use the same measurement
settings as in [56] for both simulations and measurements,
i.e., B = 4 GHz, Ns = 801, and tmax = 200 ns. We map the
channel measurements to the first I = 4 temporal moments.
In each iteration of the ABC algorithm, M = 2000 parameter
samples are generated, out of which M� = 100 are accepted
to estimate the posterior distribution.

A. Application to the Saleh-Valenzuela Model
The seminal S–V model [2] is widely used as it is easy to

simulate from, but is notoriously difficult to calibrate due to
its structure. Even though the model can be analyzed using
the theory of spatial point processes [57], [58] and moments
derived [59], its likelihood function is unavailable. Recent
discussions of the physical interpretation of the S–V model,
also outlining some difficulties with the model calibration,
is given in [60]–[62]. These difficulties have inspired the use
of many different heuristic calibration methods, as outlined in
the introduction.

In the S–V model, the multipath components are assumed
to arrive in clusters. The arrival time of the clusters and
that of the rays within the clusters are modeled as 1-D
homogeneous Poisson point processes with arrival rates �
and λ, respectively. The gains of the multipath components are
modeled as iid zero-mean complex Gaussian random variables
with conditional variance that depends on three parameters; the
average power of the first arriving multipath component Q, and
the cluster and ray power decay constants �, γ , respectively.

Fig. 6. Boxplots of the estimated MMD2 between Xtrue (Nobs = 1000) and
X	 as a function of Nsim computed by repeating the experiment 100 times
for each value of Nsim. X	 is generated from θ 	 = [2 × 10−8, 6 ×
107, 108, 2 × 10−8, 10−9, 5 × 10−10]� and Xtrue from θ true = [5 × 10−8, 2 ×
107, 109, 10−8, 2 × 10−9, 10−9]�. The dashed green line corresponds to the
value of the MMD2 being approximated. Since this value is not available in
closed-form, it is approximated by using Nsim = 104.

We refer the readers to [2] and [57] for a detailed description of
the model. Including the noise variance, the parameter vector
becomes θ = [Q,�, λ, �, γ, σ 2

W ]�.
We begin by finding a reasonable value of Nsim. Here we

rely on simulations as the distribution of the MMD estimates
is unknown for finite Nsim. To that end, we generate pseudo-
observed log moments, Xtrue, with Nobs = 1000 realizations
from the model by setting θ to a “true” value. Using another
value of the parameter vector, say θ 	, we simulate X	 from the
model with varying Nsim and compute the estimated MMD
between X	 and Xtrue. This process is repeated 100 times
to create boxplots as shown in Fig. 6. Although the MMD
estimate gets more accurate as Nsim increases, the improve-
ment however is small. Choosing a higher Nsim improves the
MMD estimate, but increases the run-time of the algorithm
significantly (since the computational cost is quadratic in Nsim,
and simulating from the model can also be slow). Therefore,
we set Nsim = 100 as a reasonable compromise considering
the tradeoff between accuracy and computational cost.

We first verify that the MMD computed from the temporal
moments reacts to changes in the S–V model parameters.
To that end, we generate simulated datasets by varying one
parameter uniformly in the prior support while keeping the
others fixed to their true value. As can be seen from Fig. 7,
the estimated MMD values increase as each of the parame-
ters move away from their true value, and the minimum is
(approximately) achieved when both the datasets are generated
from approximately the same parameters. The MMD reacts
to changes in all the parameters, albeit more for some than
others, as can be seen from the different scales of the y-axis.
We, therefore, conclude that the distribution of the first four
log temporal moments is informative about the S–V model
parameters.

We now use the proposed method to calibrate the S–V
model using Xtrue. We assume uninformative (flat) priors in the
range given in Table I for all the parameters to ensure that their
marginal posteriors are unaffected by any prior beliefs. The
prior ranges were set according to the measurement settings as
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Fig. 7. Estimated MMD2 values plotted against parameters of the S–V model.
The parameters are uniformly sampled 200 times from the prior range one at
a time, keeping the others fixed to the true values denoted by the dark green
lines. See Table I for the prior ranges.

done in [20]. The plots indicating convergence of the algorithm
and the marginal posterior distributions for T = 10 iterations
are shown in Fig. 8. The approximate posterior samples
concentrate around the true value for all the parameters. The
algorithm converges rather quickly and the posteriors taper
as the iterations proceed. In principle, the iterations could
be stopped after four or five iterations, but we let it run
till T = 10 for clarity. The algorithm gives a reasonable
estimate for the parameters even in the first iteration. The
proposed method is able to estimate � accurately as well,
unlike in [20] where some post-processing was required to
estimate �.

B. Application to the PG Model

As our second example, we demonstrate the performance
of our proposed method on the PG model. The PG model was
first introduced in [63], and since then has been applied to
a wide range of scenarios in [64]–[67]. Recently, it has been
extended to account for polarization in [68], [15], and [69].
Although the model is easy to simulate from, its likelihood
function is unknown. A method of moments-based estimator
was applied to calibrate the model in [15], but the moments’
equations were based on approximation and it required man-
ually fixing one of the parameters.

The PG model [63] represents the radio channel as a
directed graph with the transmitters, receivers and scatterers as
vertices. Edges model the wave propagation between the ver-
tices. Edges are defined randomly depending on the probability
of visibility, Pvis. Other parameters of the model include the
number of scatterers, Nscat, and the reflection gain, g, resulting
in the parameter vector θ = [g, Nscat, Pvis, σ

2
W ]�. Note that

Nscat is assumed to be real-valued during the regression
adjustment, following which, its adjusted samples are rounded
off to the nearest integer. We used the antenna positions and
room geometry for the model according to the measurement
conditions given in [56]. Hence, Nobs = Nsim = 625 for the
PG model. For each call of the model, the scatterer positions
are drawn uniformly across the room, and all 625 realizations
are generated based on those positions.

Fig. 8. Violin plots of ABC posterior samples of S–V model parameters as a
function of PMC iterations. Note that a violin plot is similar to a box plot with
the addition of a rotated kernel density plot on each side. The dark green lines
denote the true parameter values θ true = [5 × 10−8, 2 × 107, 109, 10−8, 2 ×
10−9, 10−9]�.

We again use uniform priors for the parameters (see Table I)
and apply T = 10 iterations of the proposed method to cali-
brate the PG model to the pseudo-observed dataset generated
from θ true. To prevent biased results due to a particular con-
figuration of the scatterers, we generate the pseudo-observed
data by combining data from four different calls of the model
using θ true. From Fig. 11, we observe that the algorithm
converges very quickly, and gives posteriors which are highly
concentrated around the true value for Pvis, Nscat , and σ 2

W . The
approximate posterior for g starts off very wide and then gets
narrower as the iterations proceed. The method is, therefore,
able to accurately calibrate the PG model.

To assess how the performance of the proposed algorithm
is affected by the presence of noise, we now repeat this
simulation experiment for different noise levels. We fix g =
0.6, Pvis = 0.5, Nscat = 15 and vary σ 2

W from 10−10 to 10−6.
The signal-to-noise ratio (SNR) is defined as

SNR = 10 log10

(
m̄0 B

/
σ 2

W

) [dB] (22)

where m̄0 is the sample mean of the zeroth temporal moment
computed by setting σ 2

W = 0 in the PG model. The resulting
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TABLE I

PARAMETER ESTIMATES OBTAINED FOR MEASURED DATA. THE
STANDARD DEVIATION OF THE APPROXIMATE POSTERIOR

SAMPLES IS GIVEN IN PARENTHESIS

Fig. 9. APDPs simulated from the PG model for different SNR levels.

averaged power delay profile (APDP) is shown in Fig. 9.
We run T = 10 iterations of the algorithm for each of the
SNR values. The prior for σ 2

W is adjusted according to the true
value in each run of the algorithm. The violin plots of the
approximate posterior after the tenth iteration in each case is
shown in Fig. 10.

We observe that the noise variance σ 2
W is estimated

extremely accurately at each SNR level. The estimation accu-
racy for Pvis and Nscat seems to suffer only at the lowest
SNR level. Reducing the SNR impacts the estimation accuracy
of g the most, with its approximate posterior converging
to the prior as SNR decreases. This is expected as the
higher the noise variance, the less visible the slope of the
power delay profile which is determined by g. In conclusion,
the algorithm performs well at SNR values encountered in
measurements.

VI. APPLICATION TO MEASURED DATA

We now attempt to fit both the S–V and the PG mod-
els to millimeter-wave radio channel measurements obtained

Fig. 10. Violin plots of ABC posterior samples of PG model parameters
after T = 10 iterations for different SNR levels. The APDP corresponding to
each SNR is shown in Fig. 9.

from [56]. The measurements of the channel transfer func-
tion were performed in the bandwidth 58–62 GHz with a
VNA, using Ns = 801 equally spaced frequency points.
The bandwidth of B = 4 GHz means the frequency sep-
aration was � f = 5 MHz and tmax = 200 ns. We use
measurements taken in a small conference room of dimen-
sion 3 × 4 × 3 m3 in a nonline-of-sight scenario. At both
transmitter and receiver sides, 5×5 antenna arrays were used.
Although the antenna elements used in the measurement were
dual polarized, we focus on the vertical-vertical polarization
since both the models are unipolarized. This gives Nobs =
5 × 5 × 5 × 5 = 625. We keep the settings M = 2000
and M� = 100 of the algorithm same as in the simulation
experiments.

A. Calibrating the Saleh-Valenzuela Model
Upon applying Algorithm 2 to the measured data, regression

adjustment yielded parameter samples outside the prior range.
This indicated that the model is misspecified. That is indeed
evident from Fig. 12 where we plot elements of the vector s,
namely the mean and variance of z0 and z1, obtained from the
measurements and the S–V model. The simulated summaries
correspond to 2000 parameter values drawn from the prior.
We observe that varying the parameters of the S–V model in
the prior range generated mean values that overlap the mean
value from the measurements. However, the variance values
from the S–V model do not capture the value observed in the
measurements. That is, there exists no such θ in the prior range
that leads to s “close” to sobs in terms of the variance of the
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Fig. 11. Violin plots of ABC posterior samples of PG model parameters
as a function of PMC iterations. A violin plot is similar to a box plot
with the addition of a rotated kernel density plot on each side. θ true =
[0.6, 15, 0.5, 10−9]� is denoted by the dark green dashed line.

Fig. 12. Mean (left) of z0 versus z1 simulated from the S–V model, along
with the corresponding observed summary computed from the measured data
(red). The mean and variance of z0 is unitless, while that of z1 is [log s]
and [(log s)2], respectively. The observed summary lies in the point cloud
generated by the model. In contrast, the S–V model is not able to replicate the
higher moments of the data, as seen from the variance plot (right), indicating
model misspecification. Each of the 2000 simulated summaries correspond to
one parameter drawn from the prior.

temporal moments. Hence, the model is misspecified for this
data and so we obtain sobs from the model as per Section IV-D.

The posteriors obtained from the measured data are shown
in Fig. 13 for T = 15 iterations. The marginal approximate
posteriors for λ, �, and σ 2

W are highly concentrated. Posteriors
for � and σ 2

W appear to converge from the second iteration
itself, indicating that these parameters affect the MMD the
most. The posterior for λ becomes narrow and converges
after the first few iterations. The posteriors for Q, �, and γ

Fig. 13. Violin plots of ABC posterior samples of S–V model parameters
as a function of PMC iterations for measured data.

take around eight or nine iterations to converge to a different
location in the prior range than where they began from, unlike
the simulation experiment. This is potentially due to the model
being misspecified for the data, and so parameters that affect
the distribution of the log temporal moments the most converge
first. The approximate estimates after 15 iterations are reported
in Table I. Considering that the regression adjustment in the
first few iterations are done based on a coarse estimate of
sobs from the model, the algorithm seems to work very well.
The estimate of � is high, indicating the arrival of around
17 clusters on an average, while that of λ is quite low. The
model is therefore forced to the case with many clusters having
very few multipath components each, thus approaching the
“unclustered” Turin model with constant rate.

The misspecification of the S–V model for the measured
data is not surprising, as the measurement conditions are not
replicated in the model. The virtual array measurements are
from a single array position in the room, hence the same
clusters are observed in each transmit-receive antenna pair.
On the other hand, each realization out of the S–V model is
an independent realization from the underlying point process.
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Fig. 14. Violin plots of the ABC posterior samples of PG model parameters
as a function of PMC iterations for measured data.

As a result, we hardly see any variance in the log temporal
moments of the data, which is not achieved in the S–V model
for any configuration of the parameters.

B. Calibrating the PG Model
The results obtained on the calibration of the PG model on

measured data after T = 10 iterations are shown in Fig. 14.
In this case, the model is not misspecified for the considered
data. The approximate marginal posterior distributions for all
the parameters start off wide and then seem to converge
after around four or five iterations. The posteriors are also
quite concentrated for all the four parameters, especially Pvis

and σ 2
W . Overall, the results are similar to what is observed

in the simulation experiment. See Table I for approximate
estimates of the parameters after T = 10 iterations. The
estimates are very similar to the ones reported in [22] where
the polarized PG model was calibrated on data from the
same measurement campaign. The estimate of Pvis is almost
one, indicating that nearly all scatterers are connected. The
estimates of g and Pvis are consistent with the values reported
from measurements [15] in other in-room scenarios for the
PG model. Moreover, these values are close to those used in
simulations with the PG model in [63] and [70].

C. Model Validation

Although the proposed method easily calibrates both the
S–V and the PG models to measured data, there is no
guarantee that the fit models replicate the data well. This
effect is of course not specific to the proposed method but
pertains to any calibration method. Thus, an extra step, termed

model validation, should be performed where predictions of
the calibrated models are compared to the data, and possibly
other datasets not used in the calibration process. Performing a
full model validation is out of the scope of this article, as our
focus is on the calibration method itself. Instead, as a final
step we check how well the two calibrated models fit the input
dataset.

To this end, we simulate 625 channel realizations from both
models with parameters set according to Table I. We compare
the outputs from the models to the measured data in terms of
the APDP and the empirical cumulative distribution function
(cdf) of root mean square (rms) delay spread τrms, mean delay
τ̄ , and received power P0 computed per channel realization,
according to

P0 = m0, τ̄ = m1

m0
, and τrms =

√
m2

m0
−

(
m1

m0

)2

. (23)

It appears from Fig. 15 that both the models are able to fit
the APDP of the measurements well. The slope is captured
well by both the models, along with the noise floor, although
the S–V model slightly underestimates it. The S–V model,
however, is not able to replicate the peaks in the APDP of
the measurements, while the PG model represents the initial
peaks better. This effect is to be expected for the particular
settings of the S–V model with many clusters and very few
within-cluster components. The peaks from the S–V model are
averaged out since the channel realizations are independent.
This is unlike the PG model where positions of the antennas
in the virtual array are included, thus simulating correlated
channel realizations.

Even though the APDPs are similar, the two models yields
very different empirical cdf’s of τrms, τ̄ , and P0 as reported
in Fig. 15. The PG model captures the behavior of the cdf’s
very well, while the S–V model clearly fails to do so, espe-
cially for the mean delay and the received power. The means
of the rms delay spread from both the models are fairly close
to the measured data, but the spread differs for the S–V model.
As noticed theoretically in [61] and [62], multipath models can
yield temporal moments with similar means while differing
vastly in variance. Indeed, for a stochastic multipath model,
the covariance structure of the temporal moments depends on
both first- and second-order properties of the underlying point
process [71].

The misspecification of the S–V model arises from disre-
garding the dependencies between the measurements obtained
from different antennas in the array. This in turn leads to the
discrepancy in the variance of the log temporal moments as
observed in Fig. 12. Thus, to alleviate the misspecification,
the array structure should be incorporated in the model, as is
done inherently in the PG model. This could be a contributing
reason why other authors [72] have found fully stochastic
models inadequate and instead recommended using geometry-
based and fully deterministic approaches for millimeter-wave
data. Irrespective of the cause, such misspecifications can be
detected by the proposed method, thereby assisting in the
modeling process.
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Fig. 15. S–V and PG model fit to the measured data in terms of the APDP
and empirical cdf’s for rms delay spread, mean delay, and received power.
Note that the first multipath component of the S–V model arrives at t = 0 as
in [2].

VII. DISCUSSION

The proposed method makes certain choices such as the
number of temporal moments to use. We found that using
the I = 4 temporal moments, (m0, m1, m2, and m3), gives
accurate estimates with narrow posteriors after the first couple
of iterations itself, while slight degradation in the performance
is observed with I = 3 moments m0, m1, and m2. Although the
method permits the use of arbitrarily many moments, we did
not see significant improvements in performance when includ-
ing more than four moments. Although the temporal moments
seem adequate for calibration, the channel measurements could
in principle be summarized into other statistics as long as they
are informative about the model parameters.

Other choices for the method include the prior distribution
and the settings of the ABC algorithm. We used uninfor-
mative priors to demonstrate the accuracy of the method
based on data alone. However, including informative priors
would speed up the convergence of the algorithm. For a
reasonable approximation to the posterior distribution from
samples, we suggest setting M� = 100 or more. Depending
on the computational budget, � can be set around 5% or less.
Our chosen settings seem to work well for both the models and
hence, they can be a good starting point for initial experiments.
We do not provide a stopping criterion for the algorithm,
but instead encourage monitoring the posterior distributions
for convergence, as the number of iterations required may
vary across different parameters and models. Potentially a
stopping criterion could be implemented where the iterations
are stopped if the point estimate changes less than some
tolerance over iterations.

To calibrate a new channel model using our method, we sug-
gest the following sequence of steps. Start by setting up
priors for the model parameters based on available knowledge.
Taking J = 4 temporal moments as a starting point, perform
the simulation study of computing the MMD2 by varying one
parameter at a time as done in Fig. 7. This experiment is
informative in qualifying the required number of temporal
moments. If the MMD is clearly impacted by varying the
parameters, apply the method to calibrate the new model
with the proposed settings of M and M� . If not, then adjust
the number of temporal moments J and repeat the process.
Finally, monitor the posterior distributions for convergence and
terminate the algorithm accordingly.

As the MMD compares infinitely many summaries of the
two datasets, it works better than comparing only the low-order
moments such as the means and covariances of the temporal
moments as in [19], [20], and [22]. When choosing a charac-
teristic kernel, the MMD also guarantees that distributions are
uniquely identified by these moments, unlike the case when
comparing a finite number of moments. The MMD is a strong
notion of distance in the sense that recovery of the true para-
meter value is guaranteed as the number of data points grows.
The MMD also leads to robust estimators; i.e., estimators
which will return reasonable estimates even in the presence
of outliers in the data or mild model misspecification [26],
[27]. The median heuristic is a reasonable choice for balancing
robustness and efficiency as discussed in [26]. The choice of
the kernel is not as impactful as the choice of the lengthscale,
and the proposed squared-exponential kernel seems to work
well.

The proposed method is computationally lightweight and
can be run on standard laptops with reasonable run-time. In the
experiments, the algorithm ran on a Lenovo ThinkPad with an
Intel Core i7 processor having 24 GB RAM. This gave a run-
time of 5.5 hours for the PG model and around 2 days for the
S–V model for ten iterations of the algorithm. In our tests,
the computation time is dominated by the particular model
evaluation time, while computation of temporal moments
and the MMD is negligible. Thus, the computational cost
depends heavily on the specific model and its implementation.
Furthermore, the run-time is impacted by specific settings
of some parameters, e.g., � and λ in S–V model and Nscat

in PG model. For higher “true” values of these parameters,
the model, and in turn, the calibration algorithm, takes consid-
erably longer time to run. An obvious way to reduce the run-
time is to run the algorithm on hardware with more processing
power or by making parallel calls to the model during each
iteration.

The proposed method relies solely on the ability to simulate
from the model being calibrated, and not on the tractability
of the likelihood or moment functions. Moreover, the method
does not depend on the particular mathematical construction of
the model, which enables the calibration of very different mod-
els using the same procedure. This presents the opportunity to
compare and select the best fitting model for a given dataset.
Additionally, the proposed method inherently estimates the
uncertainty of the fit parameters, which is lacking in the
state-of-the-art calibration approaches. In contrast to the rather
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complex state-of-the-art calibration methods, the proposed
method is simple to implement in R, MATLAB or Python
and requires very few settings such as M and M� . This has the
clear advantage that results obtained from the method are easy
to reproduce. Moreover, the method can detect and calibrate
misspecified models as well. This is usually ignored or treated
heuristically in standard algorithms.

The proposed method can be used for a broad class of
models where the likelihood is not known or difficult to
compute. This is a great advantage in the model development
as models can potentially be calibrated before their derivation
is finalized. If the model is deemed worthy of further study,
effort may be devoted to derive its likelihood function. The
proposed method may also be used in cases where such
a likelihood is in fact available, or available up to some
intractable normalization constant. In such cases, the ABC
approach may, however, be less effective than methods based
on the likelihood. In those cases, other distances could be
used; see for example Stein discrepancies for cases where the
likelihood is unnormalized [73]. Similarly, if factorization of
the likelihood is possible and some factors can be evaluated,
more efficient inference methods than ABC may be derived
relying e.g., on message passing techniques. Such methods
rely extensively on the particular models and the structure of
their likelihoods. Thus, the gain in efficiency comes at a cost
in the form of a loss in generality compared to the proposed
ABC method. Finally, we remark that distance metrics such as
the Wasserstein or the Hellinger distance could potentially be
used instead of the MMD. However, future studies are required
to assess their applicability for calibrating stochastic channel
models.

VIII. CONCLUSION

The proposed ABC method based on MMD is able to
accurately calibrate wideband radio models of very different
mathematical structure. The proposed method relies on com-
puting temporal moments of the received signal, and thereby
circumvents the need for multipath extraction or clustering.
As a result, the method is automatic as no pre- or post-
processing of the data and estimates are required. We find
that the method is able to fit models to both simulated and
measured data. This work opens possibilities of developing
similar methods for calibrating directional and time-dependent
channel models. Potentially, MMD could be used for other
problems in propagation and communication studies that
involve comparing datasets.
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