

Aalborg Universitet

Ground-Assisted Federated Learning in LEO Satellite Constellations

Razmi, Nasrin; Matthiesen, Bho; Dekorsy, Armin; Popovski, Petar

Published in:
I E E E Wireless Communications Letters

DOI (link to publication from Publisher):
10.1109/LWC.2022.3141120

Creative Commons License
CC BY 4.0

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Razmi, N., Matthiesen, B., Dekorsy, A., & Popovski, P. (2022). Ground-Assisted Federated Learning in LEO
Satellite Constellations. I E E E Wireless Communications Letters, 11(4), 717-721.
https://doi.org/10.1109/LWC.2022.3141120

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 03, 2024

https://doi.org/10.1109/LWC.2022.3141120
https://vbn.aau.dk/en/publications/badf71af-aabd-4a7a-ae8e-86f424afd98b
https://doi.org/10.1109/LWC.2022.3141120

IEEE WIRELESS COMMUNICATIONS LETTERS, VOL. 11, NO. 4, APRIL 2022 717

Ground-Assisted Federated Learning in LEO Satellite Constellations
Nasrin Razmi , Graduate Student Member, IEEE, Bho Matthiesen , Member, IEEE,

Armin Dekorsy , Senior Member, IEEE, and Petar Popovski , Fellow, IEEE

Abstract—In Low Earth Orbit (LEO) mega constellations,
there are relevant use cases, such as inference based on satellite
imaging, in which a large number of satellites collaboratively
train a machine learning model without sharing their local
datasets. To address this problem, we propose a new set of
algorithms based on Federated learning (FL), including a novel
asynchronous FL procedure based on FedAvg that exhibits better
robustness against heterogeneous scenarios than the state-of-
the-art. Extensive numerical evaluations based on MNIST and
CIFAR-10 datasets highlight the fast convergence speed and
excellent asymptotic test accuracy of the proposed method.

Index Terms—Satellite communication, low earth orbit (LEO),
federated optimization.

I. INTRODUCTION

CONSTELLATIONS of small satellites flying in
Low Earth Orbit (LEO) are a cost-efficient and versatile

alternative to traditional big satellites in medium Earth
and geostationary orbits. Several of these constellations are
currently deployed with the goal of providing ubiquitous
connectivity and low latency Internet service [1]. Their inte-
gration into terrestrial mobile networks is an active research
area, covering various use cases such as Earth observation
missions [2]–[6]. Presumably, machine learning (ML) will
become an essential tool to manage these constellations and
utilize their sensor measurements [7]–[9].

The traditional approach to ML is to aggregate all data
in a central location and then solve the learning problem.
Considering the vast amounts of data necessary to train deep
neural networks [10], this involves high transmission costs and
delays. Moreover, considering the emergence of variety of pri-
vate owners of small satellites, it might be prohibited to share
the data due to privacy or data ownership concerns. The obvi-
ous solution to this dilemma is to train locally and aggregate
the derived model parameters only. This is achieved by solv-
ing the ML problem collaboratively and only sharing updated
model parameters. The distributed ML paradigm taking data
heterogeneity and limited connectivity into account is known
as federated learning (FL) [11], [12]. Applying distributed ML
to satellite constellations is only natural when considering the

Manuscript received December 15, 2021; accepted January 4, 2022. Date
of publication January 7, 2022; date of current version April 11, 2022. This
work was supported in part by the German Research Foundation (DFG)
through Germany’s Excellence Strategy (EXC 2077 at University of Bremen,
University Allowance). The associate editor coordinating the review of this
article and approving it for publication was G. Zheng. (Corresponding author:
Bho Matthiesen.)

Nasrin Razmi, Bho Matthiesen, and Armin Dekorsy are with the
Gauss-Olbers Center and the Department of Communications Engineering,
University of Bremen, 28359 Bremen, Germany (e-mail: razmi@ant.uni-
bremen.de; matthiesen@ant.uni-bremen.de; dekorsy@ant.uni-bremen.de).

Petar Popovski is with the Department of Electronic Systems, Aalborg
University, 9100 Aalborg, Denmark, and also with the Department
of Communications Engineering, University of Bremen, 28359 Bremen,
Germany (e-mail: petarp@es.aau.dk).

Digital Object Identifier 10.1109/LWC.2022.3141120

general trend towards edge computing [13]. For example, in
ESA’s PhiSat-1 mission, raw Earth observation (EO) data is
pre-processed using deep ML models on the satellites and
only relevant information is transmitted to the ground [8], [9].
Since the raw data remains on the satellites, improving the
employed ML models based on new observations requires
on-board re-training.

A core assumption of the general FL setting is intermittent
and unpredictable participation of the clients, i.e., the satel-
lites in the considered scenario. In order to cope with that,
asynchronous algorithms have been proposed recently [14].
However, the distinctive feature of the LEO learning scenario
is the predictable availability of clients combined with very
long periods between visits to the same ground station (GS).
In this letter, we investigate how this predictive availabil-
ity impacts the FL scenario when the training process is
orchestrated by a GS and propose a novel asynchronous
algorithm. We conclusively show that our approach leads to
superior training performance when compared to state-of-the-
art FL algorithms. In particular, our key contributions are
that we 1) define the LEO FL scenario and identify core
challenges compared to conventional FL; 2) propose an algo-
rithmic framework and communication protocol for satellite
FL; 3) adapt FedAvg [12] and FedAsync [14] to this sce-
nario and propose a novel asynchronous variant of FedAvg that
is particularly well suited for ground-assisted FL in satellite
constellations; and 4) numerically evaluate the discussed algo-
rithms to verify our theoretical considerations. These results
show that the proposed asynchronous FL algorithm has higher
robustness against heterogeneous scenarios than FedAsync.

II. SYSTEM MODEL AND BACKGROUND ON FL

Consider a LEO constellation of K satellites in L orbital
planes. In an Earth-centered inertial coordinate system, satellite
k, k ∈ K = {1, . . . ,K}, has trajectory rk (t) and the GS,
although fixed in a constant location on Earth, has trajectory
rg (t). A ground to satellite link is feasible if satellite k is
visible from the GS at a minimum elevation angle αe , i.e.,
π
2 −∠(rg (t), rk (t)− rg (t)) ≥ αe . In general, only a subset
of satellites is connected to the GS at once and the time between
contacts is much longer than the actual online time.

Satellite k collects data from its on-board instruments and
stores it in a dataset Dk . Due to different orbits and orbital
positions, the datasets of two distinct satellites are disjunct and
possibly non-IID. After the data collection phase, the satellites
collaboratively solve an optimization problem of the form

min
θ∈Rd

1

n

∑

x∈D
f (x ; θ) = min

θ∈Rd

∑

k∈K

nk
n

∑

x∈Dk

1

nk
f (x ; θ) (1)

with the goal of training a machine learning model, where
D =

⋃
k∈KDk ⊂ Rm , nk = |Dk |, and n =

∑
k∈K nk .

The objective 1
n

∑
x∈D f (x ; θ) is an empirical loss function

defined by the training task, where f (x ; θ) is the training loss

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-3486-1672
https://orcid.org/0000-0002-4582-3938
https://orcid.org/0000-0002-5790-1470
https://orcid.org/0000-0001-6195-4797

718 IEEE WIRELESS COMMUNICATIONS LETTERS, VOL. 11, NO. 4, APRIL 2022

Algorithm 1 Worker SGD Procedure

1: Receive (θ i , i) from the PS
2: θ

i,0
k
← θ i , j ← 0

3: while stopping criterion not met do
4: D̃k ← Randomly shuffle Dk
5: B ← Partition D̃k into minibatches of size B
6: for each batch B ∈B do
7: θ

τ,j+1
k

← θ
i,j
k
− η∇θ g

θ i
(B; θ i,j

k
) � cf. (2)

8: j ← j + 1
9: end for

10: end while
11: Push (θ

i,j
k

, i) to the PS

for a data point x ∈ D and model parameters θ with dimension
d. This process is orchestrated by the GS and performed itera-
tively without sharing datasets between satellites. We assume
that the satellites have very limited computational resources
available for the solution of (1). Hence, we consider the case
where the satellites work on (1) between visits to the GS and
use the contact time to do an exchange of model parameters θ .

A. Federated Learning Background

Solving the ML training problem (1) distributedly under
the assumptions of intermittent connectivity, heterogeneous
datasets, and without sharing local raw data is known as FL.
The most widely employed approach to this problem is the
FedAvg algorithm [12]. A parameter server (PS) manages the
learning process and keeps a global version of the current
model parameters θ i to be learned. In each global iteration i,
the “epoch”, the PS selects a subset Si of available workers to
participate in the next round. It transmits the current version
of the global model to the selected workers and then waits for
all of them to return their results.

The workers perform one or multiple iterations of minibatch
stochastic gradient descent (SGD) over their local dataset. In
particular, in each local epoch the local dataset is partitioned
in �nk

B � random batches B ∈ B of size B = |B| and, for
each minibatch, a SGD step is performed with learning rate
η [10], [12]. The loss function is based on (1) and defined as

gθ ′(B; θ) = |B|−1
∑

x∈B
f (x ; θ) + g̃θ ′(B; θ) (2)

where g̃ is an optional regularization term [15]. Upon termi-
nation, the updated local model parameters are transmitted to
the PS. The whole procedure is given in Algorithm 1.

After receiving results from all scheduled workers, the PS
aggregates the results into a new version of the global model

θ i+1 =
∑

k∈Si

nk∑
k∈Si nk

θ ik , (3)

where θ ik are the local model parameters of worker k, and
θ i+1 is the new set of global model parameters. After this
aggregation step, the PS starts the next epoch.

This is known as synchronous FL and can lead to slow con-
vergence speed if the PS has to wait for stragglers. One way
to address this problem is to incorporate client updates when-
ever they arrive in an asynchronous fashion. Such an algorithm
was first published in [14] under the name FedAsync and is
shown to outperform FedAvg in some cases. While the client
operation in FedAsync is as in Algorithm 1, the PS operates
differently and periodically assigns computing tasks to some

workers by transmitting the current version of the global model
parameters along with the epoch. Client updates are incorpo-
rated asynchronously as they arrive. In particular, the update
from client k in epoch i is incorporated as

θ i+1 = (1− α)θ i + αθ ik (4)

where the mixing factor α ∈ (0, 1) determines how much
weight is given to incoming client updates. This factor is deter-
mined as α = α′ · s(i − τk), where α′ is a fixed base weight,
i is the current epoch, τ is the epoch the worker received the
global model, and s(i) ∈ (0, 1] is a problem-specific stale-
ness function that may be used to reduce the weight given to
updates based on older version of the global model. The ratio-
nale behind this is that such updates are likely to introduce an
error into the solution as the global model parameters have
already advanced further towards the solution.

III. FEDERATED LEARNING ON SATELLITES

The FL algorithms discussed in Section II-A were designed
under the premise that device availability is driven by a random
process and that parallel communication is possible without
significant delay. However, the satellite scenario is fundamen-
tally different in several aspects: the number of workers is a
few magnitudes smaller than in terrestrial applications, devices
are always available for computation tasks, but communication
is only possible during a small and highly predictable time
window. In addition, at each time instant only a very small
fraction of workers is within range of communication.

While this scenario is best addressed by an asynchronous
FL algorithm, we also consider the synchronous FedAvg algo-
rithm as baseline. We first outline the communication protocol,
define the satellite operation, and discuss the application of
FedAvg and FedAsync to the satellite scenario. In the next
section, we design a novel asynchronous algorithm that lever-
ages the predictable connectivity of satellite communications
to implement FedAvg without unnecessary delays.

A. Communication Protocol and Satellite Operation

Communication is implemented in a client server protocol,
where all connections are initiated by the satellite. Whenever
the satellite is not working on a communication task, it tries
to contact the GS. Hence, communication is either initiated
when the GS comes within communication range or directly
upon completion of a communication task. Upon connection,
satellite k transmits a local model parameter update θ ik if one
is available and was not previously sent, where i denotes the
current global epoch. Then, the GS updates the global model
parameters (θ i , θ ik) �→ θ i+1 and decides whether satellite k
should continue computation. If true, the GS transmits the
updated global parameter vector to satellite k and terminates
the connection. Otherwise, the connection is terminated and
the satellite does not reestablish connection during this pass.

The computation task on the satellite is described in
Algorithm 1. To avoid large deviations from the global model due
to asynchronous operation and long delays between GS contacts,
L2-regularization on the model parameters is employed [15],
i.e., the regularization term in (2) is chosen as

g̃θ ′(B; θ) =
λ

2

∥∥θ − θ ′
∥∥2
2 (5)

with parameter λ. The stopping criterion in line 3 is a fixed
number of iterations that should be chosen such that the
computation is finished before the GS is visited again.

RAZMI et al.: GROUND-ASSISTED FEDERATED LEARNING IN LEO SATELLITE CONSTELLATIONS 719

Algorithm 2 Synchronous Ground Station Operation
(FedAvg)

1: Initialize epoch i = 0, model θ1, wall time t
2: while stopping criterion not met do
3: i ← i + 1
4: Si = SCHEDULE(t) � Predictive scheduling of workers
5: Initialize Ri = Si , θ i+1 = 0
6: while Si ∪Ri �= ∅ do
7: Wait for any satellite. Upon connection to satellite k:
8: if k ∈ Si then
9: Transmit θ i to satellite k

10: Si ← Si\{k}
11: else if k ∈ Ri then
12: Receive model update θ ik from satellite k
13: θ i+1 ← θ i+1 +

nk
n θ ik

14: Ri ← Ri\{k}
15: end if
16: if Si ∪Ri �= ∅ then
17: Terminate connection to satellite k
18: end if
19: end while
20: end while

B. Synchronous Ground Station Operation

We start the discussion of GS operation by adapting FedAvg
to the satellite scenario. Recall that the FedAvg server selects, in
epoch i, a subset Si of workers to perform updates on the current
model θ i and then waits for the arrival of all scheduled results
before updating the model according to (3). A naïve adaption of
this algorithm to the satellite scenario is given in Algorithm 2.
The main loop runs until convergence is determined in line 2 by
any of the usual criteria, e.g., number of epochs, elapsed wall
time, or early stopping [10, Sec. 7.8]. Workers for the new epoch
are selected by the function SCHEDULE and stored in Si and
Ri . The next version of the global model is initialized in line 5.
The role Si and Ri becomes apparent in the following lines:
Si contains the scheduled workers that have yet to receive the
current global model parameters, while Ri holds the workers
that have not yet returned their model update. Accordingly,
the inner loop in lines 6–19 runs until both sets are empty. In
line 7, the GS waits for any satellite to connect. If it is in Si ,
the current global model is sent, the satellite is removed from
Si and the connection is terminated. If not in Si but in Ri , the
GS expects that the satellite transmitted a local model update
that is incorporated in the new version of the global model
parameters in line 13. Then, the satellite is removed from Ri
and the algorithm returns to line 7.

The key difference to vanilla FedAvg is that the communi-
cation is asynchronous to allow scheduling of satellites not
simultaneously visible to the GS, while the update is still
computed synchronously. An important observation is that the
work loop in lines 6–19 is blocking, i.e., it waits for all sched-
uled satellites to connect twice to the GS before starting a
new epoch. Assuming the satellite does not finish computa-
tion within a single pass, this implies that one epoch takes at
least one orbital period on average. However, with multiple
satellites scheduled, this time increases.

From an optimization theoretic perspective, Algorithm 2 is
equivalent to FedProx [15], a FedAvg variant that uses the
regularization in (5). Convergence follows from [15, Th. 4].

C. Asynchronous Ground Station Operation

In contrast to Algorithm 2, asynchronous FL operation
allows the satellites to work on different versions of the global

Algorithm 3 Asynchronous Ground Station Operation

1: Initialize epoch i = 0, model θ0, wall time t
2: loop
3: Wait for any satellite. Upon connection to satellite k:
4: if received model update (θτk , τ) then
5: i ← i + 1
6: θ i ← SERVERUPDATE(i , τ, θ i−1, θτk)
7: if stopping criterion is met then
8: Exit loop: Go to line 15
9: end if

10: end if
11: if SCHEDULE(k , t) then
12: Transmit (θ i , i) to satellite k
13: end if
14: Terminate connection to satellite k
15: end loop

model, leading to reduced delay. Algorithm 3 outlines the
operation of the GS. In line 3, it waits for a satellite to connect.
Communication is assumed as non-blocking, i.e., communica-
tion delay is hidden from Algorithm 3. If a model update
was received, the epoch is advanced in line 5 and the global
model is updated based on its current version and the received
update. If the satellite is scheduled for further computation, the
new global model is transmitted in line 12. The connection is
terminated in line 14.

1) FedAsync: Implementation of the SERVERUPDATE and
SCHEDULE procedures in Algorithm 3 depends on the FL
scheme and the communication scenario. In case of FedAsync
(cf. Section II-A), SERVERUPDATE first computes the mix-
ing factor α based on a staleness function s(i − τk) and
then returns (4). As no client update can be fresher than one
orbital period, we propose to use a hinged staleness function
following the definition in [14, Sec. 5.2]. In particular, let
s(i − τk) = s̃(ti − tτk) where tj is the time epoch j was
processed at the GS and

s̃(t) =

{
1 if t ≤ (1 + ε)To,max

(1 + a(t − (1 + ε)To,max))
−1 otherwise

(6)
for some small ε ≥ 0, a positive constant a, and To,max

being the maximum orbital period within the constellation.
The scheduler can easily calculate the value of s(·) at the
next pass of a given satellite. Hence, it is possible to conserve
energy and computational resources by setting SCHEDULE(k,
t) to false if the weight α will be below a certain threshold.

IV. UNROLLED FEDERATED AVERAGING ALGORITHM

Synchronous FL procedures applied to ground-assisted
satellite in-constellation learning suffer from high latencies.
This can be alleviated by asynchronous FL procedures like
FedAsync. However, under full client participation and ade-
quately chosen hyperparameters, FedAvg has stronger con-
vergence properties than FedAsync. Hence, it is desirable to
implement FedAvg in an asynchronous way. Leveraging on the
predictable connectivity of satellites, this is indeed possible.

First, consider a near-polar Walker Delta Pattern
Constellation [16] with single orbital shell and a GS
located at the North Pole. This is a symmetrical scenario
where every satellite visits the GS exactly once per orbital
period. Moreover, the sequence of connecting satellites
to the GS is constant, i.e., if the satellites are ordered
such that, within some interval [t , t + To] with To being

720 IEEE WIRELESS COMMUNICATIONS LETTERS, VOL. 11, NO. 4, APRIL 2022

the orbital period, the sequence of satellite contacts is
1 → 2 → 3 → · · · → K , then this sequence is repeated in
every following orbital period.

In this case, the FedAvg update rule in (3) with full
client participation can be implemented incrementally with-
out requiring synchronicity in the update phase. In particular,
suppose satellite k visits the GS at time ti1 (with epoch i1) and
again at ti2 = ti1 + To . Then, the client update θ i2k is based
on θ i1+1 and can be incorporated in the global model as

θ i2+1 = θ i2 − αk (θ
i1
k − θ i2k), (7)

where the weight αk = nk
n accounts for different dataset sizes.

There are exactly K updates in each orbital period and, due to
the periodicity of the satellite-GS contact order, the resulting
model after a multiple of K epochs should be close to that from
Algorithm 2. More generally, consider a constellation where
the revisit period of each satellite with respect to an arbitrarily
located (but fixed) GS is approaching the same value. Then,
the proposed procedure in Algorithm 3 with SERVERUPDATE
function as in (7) converges as established in [17, Sec. 2].

Finally, consider a constellation with multiple orbital shells.
The assumption about equal revisit rates usually does not hold
in this case. Following the discussion in [17] this does not
prevent convergence but might result in a biased solution.
However, this is also the case for many other state-of-the-art
FL algorithms, including the methods presented here. Indeed,
the numerical results in the next section will show that this
effect is much less pronounced in this algorithm than in the
asynchronous baseline FedAsync.

V. EMPIRICAL RESULTS

We numerically evaluate the performance of the proposed
algorithms in terms of the test accuracy on the MNIST [18]
and CIFAR-10 [19] datasets. For MNIST, we train a logis-
tic regression model with 7850 trainable parameters [15].
The expected accuracy of centralized training is around 89%.
For CIFAR, we train a ResNet-18 that can achieve an accu-
racy of slightly above 90% when trained centrally [20]. The
training dataset is distributed randomly over all workers with
equal local dataset sizes. Each satellite operates according to
Algorithm 1 with η = 0.1 and λ = 0, where a single pass
over the local dataset is done in batches of size 10 between
GS contacts. We rely on the FedML framework [21] for our
FL implementation. In the results (Algorithm 2), we refer to 2
as “FedAvg,” to the asynchronous baseline in Section III-C1 as
“FedAsync,” and to the algorithm in Section IV as “FedSat.”
The staleness function for FedAsync, if used, has parame-
ters ε = 0.01 and a = 5(1 + ε)To,max, where, by Kepler’s
third law, To,max ≈ 127min . The mixing parameter α for
FedAsync was fine-tuned for each experiment individually.

A satellite constellation with two orbital shells at alti-
tudes 500 km and 2000 km, respectively, containing five
satellites each is considered. Both are Walker Delta con-
stellations [16] with inclination angle of 80◦ and five
orbital planes. They are shifted such that the minimum
difference in right ascension of the ascending node (RAAN)
between shells is 36◦. The minimum elevation angle αe is
10◦. For the non-IID cases, half of the available classes are
distributed to the 500km orbital shell and the other half to that
at 2000 km.

Fig. 1. Top-1 accuracy for a GS in Bremen with Non-IID MNIST data.

Fig. 2. Top-1 accuracy for a GS in Bremen with Non-IID CIFAR data.

Fig. 3. Top-1 accuracy for a GS at the North Pole with IID CIFAR data.
FedAsync with α = 0.3 and without staleness function.

First, consider the case where the GS is located in Bremen,
Germany, and the data has non-IID distribution. This sce-
nario poses considerable challenges to the algorithms due to
non-uniform device participation and heterogeneous datasets.
Figures 1 and 2 display the test accuracy for MNIST and
CIFAR, respectively. FedAvg exhibits almost instantaneous
convergence for MNIST after a delay of 2To,max, which
is due to the simple model. Instead, in the CIFAR experi-
ment, the accuracy resembles a step function with very slow
convergence. This clearly shows the inadequacy of FedAvg,
and synchronous algorithms in general, in ground-assisted
satellite learning. In both experiments, FedAsync exhibits
faster convergence than FedAvg but shows inferior training
performance. Interestingly, the staleness function proposed
in (6) is necessary for stable convergence for MNIST but
has negative impact on CIFAR training. The mixing factor
α′ is set to 0.5 and 0.1 for MNIST and CIFAR, respectively,
and the learning rate η for FedAsync is 0.01. The proposed
FedSat algorithm shows superior training performance, both
in convergence speed and final test accuracy.

Next, we consider a homogeneous scenario with IID data
distribution and GS at the North Pole. The accuracy results are
shown in Fig. 3. The FedAvg behavior is as before, but with

RAZMI et al.: GROUND-ASSISTED FEDERATED LEARNING IN LEO SATELLITE CONSTELLATIONS 721

Fig. 4. Top-1 accuracy for a GS in Bremen with IID CIFAR data. FedAsync
with α = 0.3 and without staleness function.

Fig. 5. Top-1 accuracy for uniform client sampling with IID and Non-IID
CIFAR data. FedAsync without staleness function.

shorter time periods between updates. This is because the con-
stellation revolves around the GS. Among the asynchronous
algorithms, FedAsync has a minor edge over FedSat. However,
this requires fine-tuning of the additional hyperparameter α,
which has optimal value 0.3 in this case. Finally, Fig. 4 dis-
plays results for the same data distribution as before, but for a
GS in Bremen. This introduces non-uniform device participa-
tion into the previous experiment and could be considered the
middle ground between both experiments. The core observa-
tion to be made is that FedAsync now performs strictly worse
than FedSat. We conclude from this that the proposed method
exhibits considerably higher robustness against heterogeneity,
which is an important property for the scenario at hand.

In conclusion, these experiments verify our theoretical con-
siderations. We have observed that a naïve implementation
of FedAvg [12] leads to tremendous delays and that the
state-of-the-art in asynchronous FL algorithms, i.e., FedAsync,
struggles to deal with the inherent heterogeneity of the satel-
lite learning scenario. We conjecture that this is not only the
case for satellite constellations but also for general FL sce-
narios with heterogeneity. This is supported by an additional
simulation in the Fig. 5. Instead, the proposed algorithm shows
excellent performance in all experiments.1

VI. CONCLUSION

We have considered FL in LEO constellations where
satellites collaboratively train a ML model without sharing
their local datasets. Unique challenges compared to terres-
trial networks were identified and addressed by adapting
FedAvg and FedAsync to this setting. We have demonstrated
how to unroll FedAvg by exploiting the deterministic worker
availability and, effectively, convert it from a synchronous to

1The oscillatory behavior of FedAsync in Fig. 5 for non-IID data could
not be avoided by tuning α and η. Careful selection of a staleness function
and a decaying learning rate might help to dampen this behavior. However,
the general trend is apparent and supports our conclusions.

an asynchronous learning algorithm without sacrificing train-
ing performance. This reduces the training time of FedAvg
by several hours and leads to an algorithm that outperforms
FedAsync both in convergence time and test accuracy. The
proposed algorithm also has less hyperparameters to tune than
FedAsync.

In this initial work, several topics were left open for
future work, including proper scheduling of workers, multiple
data exchanges during a single GS pass, and employing
multiple GS. These approaches could lead to considerably
faster training.

ACKNOWLEDGMENT

This work was supported by the North-German
Supercomputing Alliances.

REFERENCES

[1] I. del Portillo, B. G. Cameron, and E. F. Crawley, “A technical compar-
ison of three low earth orbit satellite constellation systems to provide
global broadband,” Acta Astronaut., vol. 159, pp. 123–135, Jun. 2019.

[2] I. Leyva-Mayorga et al., “LEO small-satellite constellations for 5G and
beyond-5G communications,” IEEE Access, vol. 8, pp. 184955–184964,
2020.

[3] Y. Qian, “Integrated terrestrial-satellite communication networks and
services,” IEEE Wireless Commun., vol. 27, no. 6, pp. 2–3, Dec. 2020.

[4] O. Kodheli et al., “Satellite communications in the new space era: A sur-
vey and future challenges,” IEEE Commun. Surveys Tuts., vol. 23, no. 1,
pp. 70–109, 1st Quart., 2021.

[5] B. Di, L. Song, Y. Li, and H. V. Poor, “Ultra-dense LEO: Integration of
satellite access networks into 5G and beyond,” IEEE Wireless Commun.,
vol. 26, no. 2, pp. 62–69, Apr. 2019.

[6] Z. Lin, M. Lin, T. de Cola, J.-B. Wang, W.-P. Zhu, and J. Cheng,
“Supporting IoT with rate-splitting multiple access in satellite and
aerial-integrated networks,” IEEE Internet Things J., vol. 8, no. 14,
pp. 11123–11134, Jul. 2021.

[7] M. A. Vazquez et al., “Machine learning for satellite communications
operations,” IEEE Commun. Mag., vol. 59, no. 2, pp. 22–27, Feb. 2021.

[8] G. Giuffrida et al., “CloudScout: A deep neural network for on-board
cloud detection on hyperspectral images,” Remote Sens., vol. 12, no. 14,
p. 2205, Jul. 2020.

[9] G. Mateo-Garcia et al., “Towards global flood mapping onboard low cost
satellites with machine learning,” Sci. Rep., vol. 11, p. 7249, Mar. 2021.

[10] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[11] J. Konečný, H. B. McMahan, and D. Ramage, “Federated optimization:
Distributed optimization beyond the datacenter,” in Proc. 8th NIPS
Workshop Optim. Mach. Learn. (OPT), Dec. 2015.

[12] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. 20th Int. Conf. Artif. Intell. Statist. (AISTATS), vol. 54,
Apr. 2017.

[13] X. Wang, Y. Han, V. C. M. Leung, D. Niyato, X. Yan, and X. Chen,
“Convergence of edge computing and deep learning: A comprehensive
survey,” IEEE Commun. Surveys Tuts., vol. 22, no. 2, pp. 869–904, 2nd
Quart., 2020.

[14] C. Xie, O. Koyejo, and I. Gupta, “Asynchronous federated optimization,”
in Proc. Annu. Workshop Optim. Mach. Learn. (OPT), Dec. 2020.

[15] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” in Proc. Mach.
Learn. Syst. (MLSys), Austin, TX, USA, Mar. 2020, pp. 429–450.

[16] J. G. Walker, “Satellite constellations,” J. Brit. Interplanet. Soc., vol. 37,
pp. 559–571, Dec. 1984.

[17] A. Nedić, D. Bertsekas, and V. Borkar, “Distributed asynchronous incre-
mental subgradient methods,” in Studies in Computational Mathematics,
vol. 8. Amsterdam, The Netherlands: Elsevier, 2001, pp. 381–407.

[18] Y. LeCun, C. Cortes, and C. J. C. Burges. “The MNIST Database
of Handwritten Digits.” Accessed: Dec. 15, 2021. [Online]. Available:
http://yann.lecun.com/exdb/mnist/

[19] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Dept. Comput. Sci., Univ. Toronto, Toronto, ON, USA, Rep. R-2009,
2009.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” Microsoft Res., Redmond, WA, USA, Rep., 2015. [Online].
Available: https://arxiv.org/abs/1512.03385

[21] C. He et al., “FedML: A research library and benchmark for federated
machine learning,” 2020, arXiv:2007.13518.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

