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Detecting DNS hijacking by using NetFlow data

Martin Fejrskov
Technology, IP Network and Core
Telenor A/S
Aalborg, Denmark
mfea@telenor.dk

Abstract—DNS hijacking represents a security threat to users
because it enables bypassing existing DNS security measures.
Several malware families exploit this by changing the client DNS
configuration to point to a malicious DNS resolver. Following the
assumption that users will never actively choose to use a resolver
that is not well-known, our paper introduces the idea of detecting
client-based DNS hijacking by classifying public resolvers based
on whether they are well-known or not. Furthermore, we propose
to use NetFlow-based features to classify a resolver as well-known
or malicious. By characterizing and manually labelling the 405
resolvers seen in four weeks of NetFlow data from a national
ISP, we show that classification of both well-known and malicious
servers can be made with an AUROC of 0.85.

Index Terms—NetFlow, IPFix, DNS, hijacking, malware

I. INTRODUCTION

The integrity protection offered by Domain Name System
(DNS) security measures, such as DNS-over-TLS and DNSSec,
can be completely circumvented by changing the configuration
of DNS clients to use malicious DNS resolvers instead of
trustworthy resolvers. DNSSec can be circumvented because it
is the role of the DNS resolver, not the DNS client, to perform
DNSSec validation. This approach has therefore historically
been used by several malware families such as DNSChanger,
DNSUnlocker, Koobface and others for diverse purposes such
as pushing adware, redirecting to phishing or malware web
pages, etc. [1] [2] [3]. Although these malware families target
Windows machines, taking control of home routers in order to
use DHCP to extend the malicious DNS configuration to all
devices in a household is also an approach used in practise for
example by the GhostDNS malware or in on-premises attacks
(4] [5] [6].

The DHCP based approach limits the malware detection
options, as typical IoT devices and home routers do not support
host-based detection mechanisms such as anti-virus software
available for mainstream operating systems. As an alternative
to host-based detection, network-based detection mechanisms
that work by passively inspecting the payload of the DNS
traffic between the home router and 3rd party resolvers could
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be deployed by an Internet Service Provider (ISP) [7]. This
is, however, not legal to implement in the European Union for
privacy reasons [8]. For purposes of malware detection, ISPs
are only allowed to process data found in customer traffic, if
the data is already processed for transmission purposes (such
as the information found in NetFlow records), and only if the
data is anonymized before processing [9]. NetFlow records are
emitted by routers, and typically contain information about the
flows observed on a particular router interface, such as times-
tamp, source/destination IP address, TCP/UDP source/destina-
tion ports and similar flow-level information. An anonymized
NetFlow based approach is therefore a legally viable option,
and this detection approach will therefore be pursued in our

paper.
A. Research question 1

Although many papers analyse the maliciousness of the
DNS traffic itself (such as DNS traffic used in DDoS attacks),
including some that are based on NetFlow level information
[10] [11] [12], we are not aware of any work that only uses
NetFlow level features to assess whether a resolver performs
record manipulation with either benign or malicious intent.
Determining maliciousness solely based on NetFlow features
could present a simpler (and therefore more desirable) option
to an ISP, as the ISP would then not need to rely on procuring
additional threat intelligence for resolver labelling. This obser-
vation provides the base for the first research question (RQ)
examined in this paper:

RQI: Can public resolvers be correctly classified as either
malicious or non-malicious using ISP-level NetFlow data?

It is important to make the distinction between manipulation
performed with benign (e.g. desired or regulatory) intent or
malicious intent. There are many desired, benign or regulatory
reasons for performing record manipulation (such as captive
portals, parental control, ad removal, censorship, load balancing
etc.), as well as many reasons for performing manipulation
with malicious intent (malware infection, credential stealing,
adware pushing, etc.). Furthermore, a single, specific record
containing the IP address of an advertisement hosts could be
manipulated differently with different intent. This distinction
is illustrated in Figure 1. In this paper, all malicious resolvers
are considered to be manipulating, but not all manipulating
resolvers to be malicious, and to limit the scope of the paper,
RQ1 will focus on public resolvers with malicious intent. In this



paper it is assumed that all malicious resolvers are public, as
the malicious actor would otherwise need to explicitly disallow
any non-infected clients, which does not seem like a viable
approach.

Manipulating

Public resolvers

Fig. 1. Venn diagram showing the relation between manipulating resolvers,
well-known resolvers, public resolvers, etc.

B. Research question 2

Whether a resolver is malicious or not is a property that
describes the resolver itself. It does not describe if the user
deliberately chose the resolver or if the resolver was chosen
for the user by malware. Most users do not know or care
about which resolver they use, and as a result, they use the
default resolver assigned by equipment manufacturers or ISPs.
For this paper it is assumed that if a user (or equipment
manufacturer) should actively choose which resolver to use, the
user will choose a well-known resolver operator. Well-known
resolvers are defined as all DNS resolvers that are known
(through an associated web page or similar) to be run by a
publicly known organisation, no matter the amount of filtering
or censoring applied for benign/desirable/regulatory purposes’.
This implies that all well-known resolvers are benign, but not
that all benign servers are well-known, as illustrated in Figure
1. This assumption and definition provides the base for the
second research question examined in this paper:

RQ2: Can public resolvers be correctly classified as either
well-known or not using ISP-level NetFlow data?

C. Contributions

RQ1 and RQ2 classify resolvers in one of four classes,
depending on whether they are considered well-known or not,
and if they are considered malicious or not. Following the
arguments presented above, all public, malicious resolvers will

IExamples include resolvers run by ISPs, resolvers run as an auxiliary service
by organisations such as Google, Cisco, Baidu and Yandex, resolvers run by
anti-virus vendors as part of their security service such as Avast and Norton,
resolvers run by VPN providers such as NordVPN and PrivateInternetAccess,
resolvers run by organisations with the purpose of avoiding filtering/censorship,
such as TurboDNS and SmartDNS, resolvers run specifically to implement
some kind of filtering such as Gamban for banning of gambling, and resolvers
run by equipment manufacturers such as Dlink. Examples of non-well-known
include home routers that are unintentionally configured to allow DNS resolu-
tion/forwarding and resolvers deployed on Azure/M247/Amazon infrastructure
(with no public ownership information).

be a subset of the manipulating and non-well-known resolvers.
This resolver categorization can potentially be used in firewalls
by ISPs to black/white-list resolver IPs on behalf of a group of
consenting users, or the categorization can be combined with
user-specific NetFlow records to discover and notify consenting
users of a potential malware infection.

The contributions of the paper are therefore twofold: First,
we introduce the concept of using whether a resolver is well-
known or not for classification. Second, we show how accu-
rately NetFlow data can be used to identify well-known and/or
malicious resolvers.

This remainder of the paper is organized as follows: Section
II describes the method used to answer the research questions.
Section III shows the result of applying the method, and the
results are discussed in Section IV. Section V describes related
work and Section VI concludes the paper.

II. METHOD

To answer the research questions posed in the introduction,
we apply the following four steps, which are described in
further details in this section. First, the IP addresses of the
DNS servers that are considered public resolvers are identified,
and the NetFlow records related to any other IP addresses are
discarded. Second, a number of features are extracted from
the remaining NetFlow records and auxiliary features such as
the DNS PTR records of the resolver IP addresses are added.
The third step is to establish a set of labels that are used as
ground truth for supervised machine learning. The fourth step
is to apply machine learning to show if the classification is
feasible, thereby answering the research questions posed in the
introduction.

A. Identifying public resolvers

Some DNS servers assume the role of both public resolver
and authoritative servers, and for the purpose of this paper,
these are considered public resolvers and their authoritative role
is ignored. An IP address is considered to host a public resolver
if all of the following three criteria are satisfied.

First, NetFlow data relating to port 53 or 853 must show
unidirectional TCP or UDP traffic flows both to and from the
IP address. Due to sampling, it is not a requirement that the
unidirectional flows are related. TCP traffic must contain more
than 54 bytes. The purpose of these criteria is to eliminate traffic
related to port scans, TCP connections/handshakes with no
DNS payload, DDoS amplification attacks and other irregular
or irrelevant use cases.

Second, a DNS A-type query is issued towards the IP
address using both DNS and DNS-over-TLS for a domain name
under our control, where the valid response and authoritative
servers are therefore known. The response must contain a
syntactically valid no-error response record that contains an
IP address. The purpose of this is to eliminate private resolvers
and authoritative-only servers.

Third, the Recursion Available flag is considered, as author-
itative servers and non-public resolvers are expected to set this
flag to False. If the Recursion Available flag is set to True, the



server is considered a resolver no matter if the IP address in
the response is correct or incorrect. However, if the Recursion
Available flag is set to False, the IP address in the response must
be correct for the server to be considered a resolver. This is done
in order to eliminate a number of authoritative-only servers
that respond non-authoritatively to queries (for example with
an IP address hosting a web page with a “This page does not
exist” banner instead of providing an NXDOMAIN response)
and to avoid eliminating resolvers that answer with the correct
response record, but try to evade detection by setting the RA
flag to false.

B. Features used to characterize public resolvers

The features chosen to characterize the public resolvers are
listed in Table I. Two features warrant further elaboration in
the following paragraphs.

ResolverPrefix: During a preliminary data analysis, we
found several servers (both benign and malicious) within the
same prefix. To exploit this as a feature, we choose to use a
/24 prefix as a more narrow feature than the more traditional
measures such as geographical location or BGP AS number.

PtrCategory: Many benign DNS resolvers have a valid PTR
record indicating the role as DNS server. Similarly, many ISPs
create a default PTR record for all their customers, that contains
the IP address itself. To exploit the PTR record as a feature,
the PtrCategory of a server is set to "DNS” if the PTR record
contains the words ”dns”, ns[1-4]”, ’ns0[1-2]”, “resolver” or
starts with ’ns.”. The PtrCategory is set to "IP” if the record
contains four numbers separated by ”.”. The PtrCategory is
”NoPTR” when no PTR record exists, and “Uncategorized”
if none of the above applies.

Some features are for various reasons intentionally not used
to describe DNS resolvers, such as

o features directly or indirectly controllable by the mali-
cious actor. This includes many NetFlow features such
as packet/byte counts, query source port number and
TCP vs. UDP. It also includes features found by actively
probing the DNS resolver, whether the resolver is also
an authoritative server, or whether there are any services
available on other TCP/UDP ports on the resolver server.

o features unavailable due to anonymization requirements,
such as an mxtoolbox.com lookup of the client IP address.
Mxtoolbox.com provides information about whether a
particular IP address is listed in popular public/commercial
threat intelligence databases.

« features unavailable due to the use of a high sampling
rate when creating NetFlow records. This includes features
that require that several related flows are all observed in
NetFlow records, such as if a flow towards a resolver
is preceded by a DNS query towards the ISP’s default
DNS resolvers, or if a certain sequence of flows is always
observed towards certain resolvers.

C. Features used to label public resolvers

Table II lists the labels used as ground truth. Three features
warrant further elaboration below.

AdResponse: The purpose of some benign DNS resolvers is
to remove advertisements. To identify these, the AdResponse
feature denotes if an A record query for 6 popular ad hosts?
return IPs owned by Doubleclick/Google, as identified by a
PTR record ending in ”1e100.net.”. If the IP contained in any
A record is listed on any of the blacklists on mxtoolbox.com
(a web page that queries the blacklists of multiple blacklist
vendors), the AdResponse feature is set to “malicious”. If
some A records are correct, and some are incorrect (but not
blacklisted), the AdResponse feature is set to “inconsistent”.

UpdateResponse: Malicious DNS resolvers could block
access to the update servers of anti-virus products, operating
systems or similar, in order to avoid that any updates to these
products would trigger a malware detection or detection of a
choice of malicious resolver. To identify such resolvers, the
same approach as for the AdResponse is used for 8 domains?.

Webreference: This feature indicates the result of a manually
performed search for all of the IPs identified as resolvers IP and
their associated PTR record using Google, the Whois database
and various publicly available lists of resolvers IPs. A resolver
is classified as Benign if it satisfies the criteria for a well-
known resolver as defined in Section I, as Malicious if the
search indicates that the IP belongs to a malicious resolver, and
as Unknown if the search did not provide any further insight.

The approach for the AdResponse and UpdateResponse fea-
tures are inspired by Kiihrer et al. [13]. Although they include
more feature categories (without disclosing the exact domains
used), we consider AdResponse and UpdateResponse the most
relevant to our paper. The specific choice of domain names are
based on the market prevalence of the related companies, the
company’s documentation about which domains are used for
the purposes, and the prevalence of the domains as observed
in Telenor Denmark’s DNS resolvers.

The features AdResponse, UpdateResponse, Blacklisted and
Webreference are combined into two binary labels, called
Wellknown and Malicious, as elaborated in Table II. The use of
the combination of the Blacklisted and Webreference features to
construct the Malicious feature is necessary as known resolvers
such as CloudFlare’s 1.1.1.1 and several DNS resolvers related
to VPN services can be found on multiple blacklists. This
could be caused by the VPN DNS service being located on
the same IP/prefix as the VPN outlet, if any VPN customers
are exhibiting malicious behaviour.

D. Algorithm

The features outlined above are both categorical and numer-
ical in nature, and data is labelled and binary, which suggest
that a supervised classification algorithm within the class of
decision trees such as Random Forest (RF) or Gradient Boosted
Trees (GBT) should be the most appropriate. The Area Under

2ad.doubleclick.net, www.google-analytics.com, googlesyndica-
tion.com,  googleads.g.doubleclick.net,  tpc.googlesyndication.com  and
pagead2.googlesyndication.com

3sadownload.mcafee.com, ncc.avast.com, ds.kaspersky.com,
dc1.ksn.kaspersky-labs.com, dci.sophosupd.com, liveupdate.symantec.com,
ctldl.windowsupdate.com and download.windowsupdate.com.



Source Name Description Value type
ResolverPrefix The /24 prefix of the resolver Integer
ClientCount Number of unique client /24 IP prefixes seen in NetFlow records related to the resolver. Integer

NetFlow DayCount Number of days in which traffic from/to the resolver is observed Integer
RecordCount The logio count of NetFlow records related to the resolver Integer
RecordCountPerClient | The logio count of NetFlow records related to the resolver divided by the number of clients | Integer

Auxillary PtrCategory The category of the resolver’s PTR record. Feature values: DNS/ IP/ NoPTR/ Uncategorized | Categorical
Qname True if an A record with the resolver’s IP observed by the ISPs own DNS resolvers Boolean

TABLE T
Feature overview. The following features are used to describe each public resolver. The IP address of the resolver identifies the resolver, but is not used as a
feature, and is therefore omitted from this list.

Source Name Description Value type
AdResponse Indicates if the resolver answered with the correct IP address for a number of advertisement hosts. | Categorical
Resolver probing Feayure vz_ilues: Correct/Incorrect/Inc_onsistent/Malicious ‘ _ ]
UpdateResponse | Indicates if the resolver answered with the correct IP address for domains hosting software Categorical
updates. Feature values: Correct/Incorrect/Inconsistent/Malicious
Auxillary Blacklisted Indicates if the resolver IP is listed on a blacklist according to a lookup on mxtoolbox.com Boolean
(excluding the SpamHaus PBL that simply lists IPs assigned to broadband customers)
Webreference Indicates if the resolver is referenced on a website. Feature values: Benign/Unknown/Malicious Categorical
Inferred Weuk.nown Indicates 1f Webreferenc§ is Benign or not. Label for RQ?. ‘ ] Boolean
Malicious Indicates if either Blacklisted has value True (and Webreference is not Benign), Webreference has Boolean
value Malicious, or AdResponse or UpdateResponse has value Malicious. Label for RQI.

TABLE 1T
Label overview. Input from four different features are combined to form the labels used as ground truth for each research question.

Receiver Operating Characteristic (AUROC) is used as hyper-
parameter optimization metric through a 5-fold cross-validation
using all combinations of three hyper-parameters: Tree depth (5,
10, 15, 20, 30), maximum number of bins (discretize continuous
features) (10, 50, 100, 150) and number of trees (10, 20, 30,
40). 80% of the resolvers are used for model training and cross-
validation, 20% of are used for test/prediction/evaluation.

The number of indices for the categorical ResolverPrefix
feature will probably be close to the number of observed
resolvers. To avoid such a large number of indices, and to avoid
the large number of feature columns created by a one-hot-
encoding, the prefix is converted to its integer representation
and considered as a continuous feature instead. As a continuous
feature, the ResolverPrefix feature will be binned, making it
more likely that numerically close prefixes will be classified
similarly by the model. This seems like a reasonable approach
given that organisations are typically allocated larger IP prefixes
than individual /24 prefixes.

ITI. RESULTS

This section describes the results of applying the method
described in Section II. In subsection III-A, a description
is provided of the data used, as well as how the data is
characterized in terms of the features and labels introduced in
Section II. In subsection III-B, the results of applying machine
learning algorithms to predict labels are presented. The results
are discussed in Section IV.

A. Data characteristics

The primary data source used in this paper is four weeks of
NetFlow data collected from 2021-11-25 to 2021-12-22 with a
sample rate of 1:1024 at the Border Gateway Protocol (BGP)
Autonomous System (AS) border routers of Telenor Denmark.

Telenor Denmark is a national ISP in Europe with 1.5M mobile
and 100k broadband subscriptions.

For legal end ethical reasons, the client (Telenor customer)
IP is anonymized to a /24 prefix in each NetFlow record
before any further processing. IP address truncation is chosen
as anonymization technique, as this is the only technique that
does not allow for re-identification of a host [14]. Features and
labels are extracted at least every 5 days during the collection
period. After this process all NetFlow records (including the
anonymized client IP) are discarded for that time period. There-
fore, the resulting dataset used for analysis in this paper does
not depend on storing any Personal Identifiable Information
(PID) relating to the clients. As the resolver IPs could potentially
belong to subscribers at other ISPs, the dataset used will only
be retained for the duration of the writing of this paper. We
find these measures sufficient to reduce privacy risks to a
satisfactory level.

The criteria listed in Section II-A for identifying public
resolvers in actual use by Telenor customers are satisfied by
405 IP addresses during the data collection period. Of the 405
resolvers, 62 have the label Malicious set to True, and 259
have the label Wellknown set to True. As expected from the
model introduced in I, none of the resolvers have both labels
set to True. We will therefore for the ease of reference refer to
the resolvers as being either malicious, wellknown or unknown
(when both the malicious and well-known label is set to False).
Of the 62 malicious resolvers, 5, 2 and 25 are categorized as
Malicious in the AdResponse, UpdateResponse or Webrefer-
ence features, respectively. 35 of the 62 are categorized as True
in the Blacklist feature.

Figures 2-6 illustrate the number of resolvers that are tagged
with which label for each of the features used to describe the
resolvers (as described in Table I).
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130 resolver IPs were not observed in Telenor’s DNS resolver response records.
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Fig. 6. Histogram showing the count of DNS resolver IP addresses that
are observed in a certain number of days. As an example, approximately 20
different DNS resolvers IPs are observed for a total of exactly 3 days during
the data collection period.

B. Label prediction

As outlined in Section II, both the Malicious and Wellknown
labels are predicted by either a Random Forest or Gradient
Boosted Tree algorithm. The results in this paper are found
using the implementation provided by PySpark.

The set of hyperparameters with the highest AUROC for each
label and each algorithm are listed in Table III. Unless noted
otherwise, the rest of this paper only presents details relating
to the best model found for each label, which is an RF based
model for the Wellknown label and a GBT based model for the
Malicious label.

The ROC curves can be found in Figures 7 and 8. These
show the True Positive Rate and False Positive Rate at various
probability threshold settings.

A confusion matrix for each of the models can be found
in Tables IV and V. The confusion matrix for the Wellknown
label shows the absolute number of resolvers in the test set that
were predicted to have label Wellknown set true or false, as
compared to the curated label. Both matrices are created using



Label Algo Best model
AUROC | MaxDepth | MaxBins | NumTrees
Wellknown RF 0.85 5 50 10
GBT | 0.77 5 100 N/A
Malicious RF 0.83 5 100 30
GBT | 0.85 5 100 N/A
TABLE IIT

Hyperparameters yielding the best AUROC for each label and algorithm.

ROC curve for prediction of label Wellknown

PR

FPR

Fig. 7. ROC curve for the prediction of the label Wellknown.

a probability threshold of 0.5, as this threshold is among the set
of threshold values that provide a high F-score. The accuracy
(TgiiTNN) represented by the two matrices is 0.74 and 0.87.
The feature importances for each of the models can be found
in Table VI. This quantifies the importance of a particular

feature as an average across all trees in the model [15].

ROC curve for prediction of label Malicious

TPR

FPR

Fig. 8. ROC curve for the prediction of the label Malicious.

Predicted True | Predicted False
Labelled False 15 16
Labelled True 51 8
TABLE IV

Confusion matrix for the prediction of the label Wellknown.

Predicted True | Predicted False
Labelled False | 4 58
Labelled True 6 5
TABLE V

Confusion matrix for the prediction of the label Malicious.

Feature Wellknown label | Malicious label
ResolverPrefix 0.18 0.47
ClientCount 0.07 0.06
DayCount 0.17 0.09
RecordCount 0.24 0.10
RecordCountPerClient | 0.15 0.13
PtrCategory 0.19 0.13
Qname 0.01 0.02
TABLE VI

Feature importances.

IV. DISCUSSION

The exclusion of authoritative-only servers based on the
Recursion Available flag did not increase the accuracy of the
model as much as expected. Running the model training without
considering the RA flag yields an AUROC of 0.84 and 0.82
(instead of 0.85) based on 455 servers instead of 405 servers.
As the RA value returned by a malicious resolver can be
controlled by the malicious actor, it might be a better option
not to consider this flag at all.

Although benign use cases exist for responding with incor-
rect or no IP address for a lookup for an ad domain (as indicated
by the AdResponse feature), we can think of no benign use case
for responding with incorrect or no IP address for a lookup for a
software update domain (as indicated by the UpdateResponse
feature). It is therefore tempting to consider such values of
the UpdateResponse feature as an indication of a malicious
resolver. However, experiments show that this will also label
known benign servers as malicious, such as some of the servers
owned by Neustar and Norton. Therefore, we consider it the
best approach only to label resolvers as malicious if they answer
any query with an IP that is known to be malicious.

Figures 2-6 reveal both expected and unexpected observa-
tions about the labels assigned to resolvers. Figures 2 and 3
show, as expected, that servers with much traffic and many
clients are typically not malicious. However, they also reveal
a surprising amount of low-volume resolvers, for example
resolvers with less than 10 clients or less than 1000 NetFlow
records. Further investigation of the low-volume servers reveal
that they seem very diverse and hard to characterize in general
terms. Figure 4 shows that only a fraction of DNS resolvers
have a PTR record that indicates that the host is a DNS resolver.
DNS resolvers without such a PTR record are typically hosted
on cloud infrastructure, where the PTR record indicates the IP
address of the host and/or the cloud providers name instead.
Conversely, Figure 5 shows that the IP address of well-known
servers are typically represented in an A record that is served
by Telenor’s default resolvers. This is surprising, as a DNS
lookup is not a typical precursor to the use of a DNS resolver,
as a resolver is typically configured in a device using the IP



address of the resolver (except for DoH and DoT resolver
configurations).

The number of days within the 4 week dataset where traffic
is observed for a given resolver is illustrated in Figure 6. An
interesting observation about this graph is that although the
total number of resolvers increased, the overall shape of the
histogram did not change much no matter how many weeks of
data were used for the graph. This could indicate that the data
collection period used for characterization could be reduced to
much less than the 4 weeks used in this paper.

The AUROC values and the confusion matrices indicate
that labels can indeed be predicted based on NetFlow data,
although we do not consider the AUROC values high enough
for operational/production use. During the data analysis we
observed that the AUROC values of 0.85 can vary depending
on the specific sampling in the training/test data split. This
variance is not systematically analyzed, however, the reported
value of approximately 0.85 seems to appear often, but values
as low as 0.80 and as high as 0.87 have also been observed.

Neither label is well balanced (259 well-known resolvers
and 62 malicious resolvers from a total of 405 resolvers) and
therefore the class imbalance problem needs to be considered.
For this purpose we repeated the model training with under-
sampling, and results indicated that this yielded slightly lower
AUROC values (in the range of 0.78 to 0.82) for both labels
and both algorithms. It seems reasonable to assume that this
is caused by the relatively small dataset available for training.
It could therefore be interesting to repeat the experiment on
an even larger dataset, preferably with a larger fraction of
malicious resolvers.

The feature importances listed in Table VI show that most
features contribute to the model. The Qname feature, indicating
if the ISP’s resolvers have seen the public resolvers IP address
in a DNS response record, is the least significant feature, also
when training with undersampling. This is surprising given
that Figure 5 indicates that most well-known resolvers have
Qname=True, and most malicious resolvers have Qname=False.
We have no credible explanation for this discrepancy.

V. RELATED WORK

The general topic of DNS hijacking can be be split into 4
different subtopics, where the hijacking is implemented by ma-
nipulating response records in (1) resolvers and forwarders, (2)
middleboxes such as firewalls, (3) authoritative name servers, or
(4) by manipulating the DNS resolver IP address configuration
on client devices to direct DNS traffic to malicious resolvers
[16]. As outlined in the introduction, the focus of our paper is
restricted to malicious resolvers in the client hijacking use case
and the passive collection of NetFlow data. The related work is
described in this section and the properties highlighted above
are summarized in Table VIIL.

Two papers focus specifically on the use case of changing
the DNS resolver IP. Dagon et al. call this use case a corruption
of the dns resolution path and discuss the various options
for detecting the use case [17]. The authors inspect DNS
records obtained passively at a local campus gateway, and by

Related Work
Aspect 7,17 18,19 13,20 | 21,22,23,24 | 25 16,26
Client hijack v
Passive approach v v v v
NetFlow data v
Maliciousness v v v
TABLE VII

Notable related work and aspects in focus.

establishing a set of name servers and request open resolvers
to query these name servers. Trevisan et al. passively analyzes
DNS responses and compare individual responses to detect any
manipulated answers [7]. Interestingly, the techniques used by
the two papers mentioned above can be used for the use case
of detecting all the DNS hijacking use cases mentioned above,
not only for detecting malicious DNS resolver IP changes.

Several studies quantify the number of open and/or malicious
resolvers through an Internet-wide, active probing for open
resolvers [18] [19] [13]. Most recently, Park et al. concluded
that about 3 million open resolvers exist, and show that more
than 26k open resolvers return an incorrect and malicious IP
address reported to serve malware, phishing attempts etc. [20].

Some papers measure which resolvers are used by introduc-
ing observer-controlled authoritative servers and zones. These
are combined with advertisement campaigns [22], visits to self-
owned websites [23] or a large number of remotely controlled
clients in various world regions that send DNS requests [24].
Approaches relying on data from browsers or the installation
of specific apps will not capture any traffic from unsupported
device types, such as IoT devices, home routers etc., which is
central to our paper.

Other papers focus on inspecting DNS data obtained by
passively mirroring DNS traffic at the application layer at
a non-authoritative point in the DNS chain. This includes
dump of DNS flows at application layer at an ISP [7], at
a LAN gateway [26], at a campus gateway [17] and using
DNS data from the Farsight database [16]. It should be noted
that the Farsight database is built upon voluntary participation
by resolver owners, and so it is unlikely that queries towards
intentionally malicious resolvers would be represented in this
database.

Finally, use of data from clients collected in the Open
Observatory of Network Interference (OONI) database is used
by Radu et al. [21], and passively mirroring DNS traffic at the
network/transport layer through NetFlow at a national ISP is
used by Fejrskov et al. [25]. Their focus is, however, on the
use of major/well-known 3rd party resolvers, not on the more
rarely used, potentially malicious resolvers.

The maliciousness of DNS responses are evaluated using
various techniques, such as by use of open threat intelligence
[20] [17], by probing HTTP/POP3/ IMAP/SMTP services on
the resolved IPs [13] [26], by detecting differences in responses
for similar queries [7] and by detecting NS record changes [16].

Of the papers mentioned above, only Dagon et al. and
Trevisan et al. focus on the use case of changing the DNS
resolver IP [17] [7]. Interestingly, the techniques used by the



two papers can be used for detecting all the DNS hijacking
use cases mentioned initially in this section, not only for
detecting malicious DNS resolver IP changes. As mentioned
above, these papers inspect DNS data to achieve their results
and are therefore fundamentally different from our paper.

VI. CONCLUSION

This paper investigates if it is possible to classify public
resolvers as malicious and/or well-known using features derived
from NetFlow data. Our suggested NetFlow based approach
comes with a number of advantages compared to existing
methods: i) it is legal to be deployed by ISPs in the EU, ii) it
does not rely on excessive Internet-wide scanning, iii) it does
not rely on features that are controllable by a malicious actor.

Using Random Forest and Gradient-Boosted Trees on 7
different NetFlow-related features we show that it is indeed
possible to classify a resolver as well-known or malicious
with an AUROC of 0.85 (around 0.80 using undersampling).
This shows that NetFlow features can indeed contribute to
the classification, although the value is not high enough for
a NetFlow-only approach to be considered for operational use.
It may be possible to create a better model if a larger data set
is used, especially if the dataset has a better balance between
malicious and benign resolvers.

In our paper, active probing of resolvers is intentionally only
used for labelling / model training purposes, not as features,
as the purpose is to investigate the value of a NetFlow-only
approach. To increase the accuracy of the classification, we
consider a hybrid approach adding such features as the most
interesting approach for future work.
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