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Abstract Computer vision, together with bayesian estimation algorithms, sen-
sors and actuators are used in robotics to solve a variety of critical tasks such
as localization, obstacle avoidance, and navigation. Visual servoing uses computer
vision algorithms to guide robot movements. Classical approaches in visual servo-
ing systems relied on extracting features from images to control robot movements.
Now, state of the art computer vision systems use deep neural networks for object
recognition, detection, segmentation, and tracking. These networks and specialized
controllers play a predominant role in the design and implementation of modern
visual servoing systems due to their accuracy, flexibility, and adaptability. Recent
research in direct systems for visual servoing has created robotic systems that rely
only on the information extracted from images. Furthermore, end-to-end systems
eliminate entirely the controller by learning the control laws during training.

This paper presents a comprehensive survey on the state of the art in visual
servoing systems, discussing the latest classical methods not included in other
surveys but emphasizing the new approaches based on deep neural networks and
their applications within robotics.

Keywords Computer vision · Deep Neural Networks · Visual servoing · Robotics

1 Introduction

Robotic systems have an increasingly important role in areas such as manu-
facturing, inspection, surveillance, and health care, among others. Autonomous
robots perform a given task interacting with a static or dynamic environment us-
ing their sensors and actuators [15]. An example of the earliest industrial robots
is a robotic arm designed in the 1930s by Willard V. Pollard [144]. Later, in 1961,
the first programmable robot called Unimate [22] was created by General Motors
for the task of moving hot metal pieces and placing them in cooling liquid.
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Recent advances in sensors, actuators, control, operating systems, and commu-
nications have given robots increased capabilities to interact with their surround-
ing environment. This has been facilitated by the use of standard meta operating
systems such as the Robotic Operating System (ROS) that enables the integration
of sensors, actuators, and a variety of algorithms for localization, path planning,
and navigation. ROS has a message-passing distributed architecture that uses the
publisher-subscriber paradigm and several specialized communication protocols.

The sensors used in modern robotic systems include a large variety of types,
from video or infrared cameras to Inertial Measurement Units (IMU), LiDARs,
ultrasonic sensors, global position systems (GPS), Real-time kinematic (RTK) po-
sitioning, and radars, among others [24, 27, 30]. However, in spite of their wide use,
these sensors have limitations. For instance, GPS works for localization and navi-
gation in outdoor environments that do not require high precision but cannot be
used to navigate indoors, or on cluttered urban areas [102]. RTK is more accurate
than GPS but is more expensive and requires a special setup. Ultrasonic sensors
have a limited range of operation. LiDARs are ineffective in heavy rain or sun
reflections but have issues detecting narrow surfaces such as wind turbine blade
edges [57]. IMUs with sensor fusion provide accurate data about the orientation
and heading of a robot, but suffer from drifting [23, 199].

Video cameras provide rich information about the environment and are one of
the main sensors used in robotics. Cameras with high resolution are also cheap1,
have small size, and consume little power. These characteristics make them ideal
for resource-constrained robots that work on a relatively narrow indoor environ-
ment or in large open spaces. However, video cameras have also limitations. For
instance, they do not work well in poor lighting conditions, with motion blur, or
with specular reflections that produce noisy images [89, 104]. Due to these issues,
cheap video cameras are commonly used in robotics with other sensors, in addition
to Kalman filters and sensor fusion techniques [70, 183] .

Regarding the software and algorithmic aspects in robotics, probabilistic and
machine learning algorithms are now used extensively, due to their ability to han-
dle uncertainty and adapt to unknown environments [66, 186]. In particular, deep
learning has been one of the most successful techniques. Deep learning comprises a
variety of neural network architectures designed to solve problems in computer vi-
sion, speech recognition, and time series prediction. Deep Neural Networks (DNNs)
[66], an extension to Shallow Neural Networks (SNN), are designed with a hier-
archical structure consisting of multiple layers with thousands of connections and
weights. DNNs’ design and structure emulate how the human vision system is
organized [61].

The recent development of new DNN architectures, together with specialized
controllers, sensors, actuators and a wide variety of algorithms available for lo-
calization, path planning, obstacle avoidance, have facilitated the creation of au-
tonomous robots, capable of performing increasingly complex tasks. One of the
main applications of DNNs in robotics is in designing its visual servoing system, a
mechanism that allows a robot to move and positioning itself at a target location
using the video information from a camera. Previous surveys on visual servoing
systems such as ([32, 33, 103, 176]) described research work on the use of classical
computer vision techniques in single or dual robotic manipulators [176]. More re-

1 e.g. 5M High-Resolution Camera costs 65 dollars[1]
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cently, other surveys on unmanned aerial vehicles (UAV) [94] and computer vision
in general [8] have been published.

One of the goals of this paper is to fill the gap left by the latest surveys on
classical approaches to design visual servoing systems. To accomplish this goal, this
survey includes the most recent research work on a variety of robotic platforms
and application domains, but emphasizes the more recent DNN-based approaches
to visual servoing and its applications. Lastly, we extend the taxonomy of classical
visual servoing systems to include the new approaches, specifically end-to-end
systems, direct visual servoing, and object tracking visual servoing, describing how
these systems are included in the general definition of visual servoing systems.

The paper is organized as follows: Section 2 provides a definition of visual
servoing and describes classical systems. Section 3 introduces an extension to the
classical systems taxonomy of visual servoing systems. Section 4 describes exam-
ples of recent systems that use classical visual servoing techniques grouped by
their type and robotic platform, additionally to discussing some of the limitations
of the classical methods. Section 5 describes neural network based visual servoing
systems, including the use of DNNs and Convolutional Neural Networks (CNN),
and provides a description of recent examples of the modern architectures used in
CNNs. Section 6 shows how DNNs are integrated into visual servoing systems and
provides examples of both End-to-End and Direct visual servoing systems. Lastly,
section 7 describes the state of the art in DNN-based visual servoing grouped by
system type and robotic platform, and section 8 presents a summary and discusses
current developments and issues in visual servoing systems.

2 Visual Servoing

The concept of visual servoing was introduced in the control of robotic arms
[84]. However, this concept can be also applied in other types of robotic systems
such as ground robots, unmanned aerial and underwater vehicles that use computer
vision to guide robot movements. In this section, we introduce the concept of visual
servoing, its definition and the main categories of systems.

2.1 Visual Servoing Definition

Visual servoing can be defined in terms of the solution to an optimization
problem (e.g., [19, 32]), where the goal is to minimize an error function expressed
by the following equation:

r̂ = arg min
r
e(r, r∗) (1)

Where r̂ is the pose of the camera reached at the end of the optimization process, e
denotes the error function that measures the positioning error between the current
pose r of the camera and the desired pose r∗, ideally at the end the visual servoing
system should make r̂ = r∗ .

The error function can be defined as [21] :

e(r) = ‖s(r)− s∗‖ (2)
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as the Euclidean norm of the distance between s a vector of k visual features (e.g.
the image coordinates of points of interest or the image coordinates of the center
of an object) extracted from the image at pose r, and the set of the target features
s∗ extracted at pose r∗.

The vector s∗ is considered constant in case of a motionless target, but if the
target is moving the visual servoing system is also tracking the object.

It can be also said that in visual servoing, the pose (i.e. position and orienta-
tion) of a robotic platform, relative to a target, is controlled by using the visual
features extracted from images [94].

Visual servoing systems differ in the way vector s is designed and computed.
In the classical approaches, the features included in s are taken directly from the
image or from the 3D parameters calculated using image measurements.

2.2 Classical Visual Servoing Systems

Classical visual servoing systems differ in the type of control architecture, in
the number of video cameras used (mono, stereo, or multi-camera), and also in
how they are placed in the system. For instance, in eye-in-hand the camera is
rigidly mounted on the robotic manipulator, but in eye-to-hand, the camera that
observes the robot is mounted on the workspace [59, 84].

The classical visual servoing approaches are classified, depending on the defini-
tion of the error function adopted to regulate the system (known as task function)
[58, 166], into the following categories:

1. Image-based Visual Servoing (IBVS). In IBVS, the error is computed from a
set of visual features extracted from 2D image space and the vector s may
be, for example, point coordinates, a set of straight lines, or the contours of an
object. This method requires camera intrinsic parameters that allow converting
from image measurements expressed in pixels to features and accurate feature
matching.

2. Position-Based Visual Servoing (PBVS). In PBVS, the pose of the camera
within a reference coordinate system is used to compute s as a set of 3D
parameters. The method requires a 3D model of the scene and camera intrinsic
parameters to be known a prori. The error is computed in the Cartesian task
space from a set of 3D parameters.

3. Hybrid systems. In Hybrid visual servoing, the error function is a combination
of Cartesian and image measurements or features. This method is based on
the estimation of the camera displacement (the rotation and the scaled trans-
lation of the camera) between the current and desired views of an object. As
an example of the definition of the error function e, in [129] s contains the
coordinates of an image point, and the logarithm of its depth.

Systems that belong to the classes described in the previous taxonomy, have
been the subject of various tutorials in [32, 33, 84] and the surveys in [103] for
single arm manipulators, and [176] on dual arm manipulators. The next section
describes an extension to the classical visual servoing taxonomy to include the new
types of visual servoing systems that have been proposed in recent years.
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3 A Taxonomy for Visual Servoing Systems

New approaches in visual servoing systems have been proposed in the litera-
ture in recent years. These include approaches that rely only on the information
contained in images and systems that do not require a controller. Additionally,
target tracking methods, in which the controller aims at minimizing the tracking
errors due to the target motion, have received considerable attention. To include
these new type of systems in a unified taxonomy, we added the following classes
to the classical methods taxonomy:

1. Direct Visual Servoing. In direct visual servoing, the full image information is
used to solve a positioning task. The method does not use geometrical features
and the control laws are obtained directly by measuring the similarity between
two images. Hence, this method requires a robust similarity evaluation, to-
gether with efficient optimization algorithms [18]. In this type of VS system,
the image is considered as a whole, hence the vector s becomes the image itself
[44]: s(r) = I(r). We substitute the value of s in (2), the optimization process
then can be expressed as :

r̂ = arg min
r
‖I(r)− I∗‖ (3)

where I(r) and I∗ are respectively the image captured at the position r and
the reference image.

2. End-to-End systems. Unlike classical visual servoing systems, which may be
described as having an explicit controller module, this class includes systems
that do not have a controller. End-to-end systems may use supervised or un-
supervised machine learning approaches based on DNNs to learn the control
laws at training time [101]. The error function used in these systems may be
the mean square error between the current steering angle and the predicted
one as is described in [101].

3. Fixed and Moving Target Tracking Visual Servoing. In the fixed target tracking
case, it is assumed that the camera is moving while tracking a fixed object. In
the second case, the dynamics of the target should be estimated to keep track
of the object. In this case, the vector s∗ contains a dynamic set of features
from the target object.

4. Single and Multiple Target Tracking Visual Servoing. In single target tracking
there is only one moving target of a given class of target objects. Contrarily,
in multiple target tracking, a limited number of moving targets that belong
to the same class or that share the same features are tracked. In this case the
vector s∗ contains a dynamic set of features from the target objects. The error
function may be the mean position of the tracked objects with respect to the
center of the image.

5. Explicit and Implicit Controller Visual Servoing. The explicit controller class
includes the classical and DNN based visual servoing systems that have a feed-
back control loop containing a controller module. Implicit controller systems
do not have a controller, but the control laws are learned and embedded into
the weights and connections of the DNN.

Direct and end-to-end systems share some similarities as they are both capable
of learning control laws i.e. they both may be classified as of the implicit controller
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Fig. 1 Taxonomy of Visual Servoing systems, based on their type and applications.

type. However, direct visual servoing systems use similarity measures and particle
filters or CNNs to learn the control laws[18]. Moreover, direct servoing is mainly
used in manipulators. Contrarily, end-to-end systems rely on training a DNN to
learn the control laws using supervised or unsupervised methods but are also used
in a wide variety of robotic systems. In some end-to-end systems, the controller is
not completely eliminated, but the control commands to determine the position
of a UAV are estimated by a DNN from images taken by several cameras and sent
to a controller whose only purpose is to keep a constant speed as is suggested in
[169].

Distinctly, visual servoing systems may belong to one or more of the previous
categories. For instance, a visual servoing system with an explicit or implicit con-
troller may be used to navigate or keep track of a single target object that may
be at a fixed position or moving.

Figure 1 shows the whole taxonomy of the different types of visual servoing
systems, categorized according to the type of controller used, its purpose, and
the type of target object being tracked. Table 1 includes selected examples of
the types of visual servoing systems, according to its controller type (explicit-
Control or implicit-control, direct or end-to-end), its system type (linear or non-
linear), robotic systems type (arm, UAV, wheeled-robot or underwater vehicle),
and camera type (mono or stereo-camera).

Lastly, Table 2, contains examples of visual servoing systems grouped ac-
cording to the classes in the new taxonomy, i.e. STTVS (Single-Target Track-
ing), MTTVS (Multi-Target Tracking), FXTTVS (Fixed-Target Tracking), and
MBTTVS (Mobile-Target Tracking) visual servoing systems.
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Table 1 The four main classes in Explicit and Implicit Controller-based Visual Servoing
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Table 2 Visual Servoing Taxonomy based on Target Tacking scenarios.

References STTVS MTTVS FXTTVS MBTTVS
[73, 74, 120, 133, 149, 194] X X
[14, 134, 141] X X
[17, 164, 205] X

STTVS: Single-Target Tracking Visual Servoing
MTTVS: Multi-Target Tracking Visual Servoing
FXTTVS: Fixed-Target Tracking Visual Servoing
MBTTVS: Mobile-Target Tracking Visual Servoing

4 Classical Visual Servoing Techniques

In this section, we describe each of the classical visual servoing techniques.
Then, these classical techniques are grouped by the type of the robotic system
where they are applied and examples of most recent research work are described.
The section concludes by discussing some of the issues and limitations of the
classical techniques.

4.1 Position Based Visual Servoing

PBVS systems require a priori knowledge of the camera calibration and a
geometric model of the target, to estimate the target’s position with respect to
the camera [129]. Examples of PVBS systems are discussed in [73, 74], where
an observer-scheme based visual servoing system was introduced for application
in manipulators. Another example is discussed in [10] where a camera captures
videos and images with some noise, and an α−β−γ filter [174] is used to produce
values closer to the true spatial measurements of the robot and target.

Other PVBS systems like [35] use Extended Kalman filters (EKF) for nonlin-
ear state estimation to reduce errors in the sensor’s measurements. The usage of
extended Kalman filtering techniques is also used to improve the precision of the
estimation for end-effectors as is described in [120, 171, 197]. Some other exam-
ples using Unscented Kalman Filter techniques to estimate the pose, velocity, and
acceleration of a target object are discussed in [87, 165]. Particle-based filtering
methods are applied in pose estimation, via a 3D model-based stereo-vision, in
[113, 191].

Another approach in PVBS systems is to use stereo-vision as is described in
Anderson [13], Allen et al. [10], Bukowski et al. [29], and Rizzi et al. [160]. In
stereo vision, the images from two cameras are analyzed to note their differences
and calculate depth using disparity. An example of this approach is [71], where
a PBVS system based on stereo vision techniques is capable of estimating the
3D coordinates of any point observed in two views of the same scene applying a
triangulation process.

PVBS systems should solve the problem of keeping the object frame origin
within the field of vision. One possible solution for this is a method proposed in
[187]. However, to use this method, the depth cue of the object origin was required
to be known a priori, at both the initial and the desired poses of the camera.



Title Suppressed Due to Excessive Length 9

The majority of the PBVS systems shown previously rely on the usage of
different filters like Kalman, EKF, Unscented Kalman, or particle filter in order to
estimate the pose of the target and to deal with the different noise sources found
in real environments.

4.2 Image Based Visual Servoing

Unlike PBVS, IBVS uses only 2D image features and does not require a 3D
pose estimation of the target object. As a result, the calculations that provide the
robot control signals can be performed very quickly [176]. The IBVS method has
been widely used for positioning manipulators [194], [83], [195], Unmanned Aerial
Vehicles (UAVs) [133], and the formation control of mobile robots [193].

One of the problems of IBVS is that it requires the use of visual marks on the
observed object to identify its geometric features. To avoid this problem, in [45],
a motion-based technique is used as an input to the control system, where motion
in the image can be estimated without any a priori knowledge of the observed
scene. Another issue of IBVS is the estimation of the feature depth. To tackle this
issue, an extended 2D visual servoing scheme for depth estimation, was developed
in [48, 170].

A different approach to design IBVS systems is discussed in [38], where a
robot is moved from its initial location to the goal location, using a path plan-
ning algorithm. An optimal, collision-free path is chosen to avoid obstacles and to
maintain the safety of the robot, using constraints such as visibility, workspace,
and joint constraints. At the same time, the cost function represented by the tra-
jectory length is minimized. In this regard, a recent survey on 3D path planning
algorithms that can be used for this type of IBVS systems is presented in [202].

All previous IBVS systems were designed for a single robotic arm, but IBVS
for dual-arm manipulators have been studied in [119, 206]. Dual-arm manipula-
tors have the additional problem of requiring algorithms for coordinating their
movements.

4.3 Hybrid Visual Servoing

The hybrid visual servoing approach, known also as 2D 1/2 visual servoing,
was first introduced in [129]. This approach consists of using information available
directly at the image level jointly with the information reconstructed from two
views of a rigid object (i.e., the displacement of the camera), decoupling rotations
and translations. In an example of hybrid servoing, the work in [43] introduces
an approach where the servoing task is split into main and secondary tasks. The
main task maintains the image centered to keep the features of interest within the
field of view. The secondary task scans other positions while keeping the object
centered in the image to bring the camera to the desired pose. This technique
needs a depth estimate obtained from an offline procedure. The paper addresses
two examples by which depth estimates are extracted from the robot’s odometry,
assuming that all features are on a plane. The secondary task uses the notion of
parallax, where the features that are tracked (typically points) are chosen by an
initialization procedure applied on the first frame.
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The work in [123] presents another example of hybrid visual servoing, where
a method for station-keeping an underwater vehicle is described, using a single
onboard video camera. The proposed method takes into account the restrictive
controllability of the vehicle due to its thruster’s configuration.

Using a hardware oriented approach, [5] describes how to use an omnidirec-
tional camera in a 2.5D visual servoing scheme. This camera solves the problem
of keeping the target object within the field of view.

In [153], a hybrid visual servoing system estimates the error function in the
image space as in IBVS. This is combined with the depth information of the image
features obtained from the point cloud using Kinect sensor and given directly
as input to the interaction matrix or image Jacobian that relates image feature
velocities with the camera velocity. The method was implemented in a Gazebo
simulator with the 6 DOF UR5 mounted Kinect sensor at the end-effector link.

Another recent example of a hybrid visual servoing control in the medical
field is described in [148], where a robotic system called deTattoo consisting of
a robotic arm equipped with an RGB-D camera and a laser pointer is used for
tattoo removal. To perform this operation, a hybrid visual control was defined. The
combination of both the 3D reconstruction of the selected tattoo image provided
by the RGB-D camera, along with the updated position of each point representing
the tattoo, was used in the proposed hybrid visual servoing control.

4.4 Target Tracking Systems

The main idea behind target tracking systems is to keep the target objects at
a certain position or distance from the camera and within its field of view.

In single target tracking, the camera pose is controlled so that the estimated
center of the object appears at the center of the image. In the case of tracking
fixed objects, the camera is moved to keep it at a certain fixed distance from the
target object. In multi-target tracking systems, the camera pose is controlled so
that a limited number of moving target objects is tracked. Some of the criteria
used to control the pose of the camera in multi tracking systems is to keep the
mean position of all tracked objects in the image center the whole time or to keep
all tracked objects within the field of view of the camera.

In the rest of this section, we describe the different types of target tracking
visual servoing systems for a variety of applications.

4.4.1 Single and Moving Target Tracking Systems

An example of a system that is both single target tracking visual servoing sys-
tems (STTVS) and mobile target tracking visual servoing (MBTTVS) system is
[73], where a 6-DOF hand-eye configuration is guided using an IBVS approach to
follow a circular quasi-planar object which moves in front of a homogeneous back-
ground. The authors use an observer for estimating the object velocity making the
strong assumption that the acceleration of the target object is zero, and propose a
nonlinear controller with an observer. Based on the object motion model, the ob-
server is formulated as a nonlinear adaptive identification problem where unknown
parameters such as direction, position, center of circle, velocity are estimated.
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Since the computational workload of the controller was too large, it was not
suitable for robots that have more than three degrees-of-freedom. Later, Hashimoto
et al. [74] proposed a linearized version of the observer by neglecting the nonlinear
dynamics of the robot.

Another example of STTVS and MBTTS system with eye-in-hand camera and
a nonlinear observer approach was designed in [194]. The goal was to lock the
projection of the moving target object in 3-D space, on the image plane to a
particular position (e.g., the center), by controlling robot motion. The proposed
nonlinear observer estimates the 3-D motion of the object online, and it has been
implemented and tested on a 3-DOF robot manipulator.

A similar work reported in [120] presents an algorithm for the visual motion
estimation of the pose of a moving object of known geometry. Based on the pre-
diction capacity of the Extended Kalman Filter (EKF), this adaptive approach
can automatically tune the statistics of the state noise and the observation noise
to realize a real-time dynamic image feature selection of the moving objects that
is used for pose estimation.

Another example of a system that is both STTVS and MBTTVS system is
[133], where a nonlinear controller that stabilizes UAVs in GPS-denied environ-
ments with respect to visual targets is proposed. In this work, the visual feedback
information used for the control law was expressed in the spherical coordinate
system of only 4 points that characterizes the target object. These spherical vi-
sual features were used to estimate the translational velocity and the autonomous
positioning of the quadrotor, without the use of an IMU. The system has also the
capacity to track moving targets whose speed can exceed 2 m/s.

Lastly, the work in [149] performs object tracking and following. The system
was applied on a flying robot capable of following a variety of static and mov-
ing targets at varying distances from 1-2 m to 10-15 m. The work uses a C++
open source implementation of the OpenTLD tracker (TLD for tracking-learning-
detection [93]). This tracker does not require any previous knowledge of the tracked
object, and it can robustly track objects on the drone’s video stream by outputting
a bounding box (location, height, and width) around the tracked object along with
a confidence ratio.

4.4.2 Single and Fixed Target Tracking Systems

The work in [14] is an example of a Single and Fixed-Target Tracking Visual
Servoing (STTVS-FXTTVS) system. In this paper, the authors present two visual
servoing approaches for power line inspection with UAVs. In both approaches, the
UAV is kept within a close and safe distance to the power lines while the inspection
is performed. The first approach combines IBVS with a Linear Quadratic Servo
(LQS) technique to improve the control design of the UAV. The LQS approach
takes into account the output errors to add an integral action to the controller in
order to stabilize the quadrotor. While in the second approach, the control problem
was solved by implementing the 2-1/2-D hybrid visual servoing.

Another example of the STTVS-FXTTVS system is the work described in
[134] where a vision-based feature tracker was designed and implemented for an
autonomous helicopter. A visual control loop estimates both the position and ve-
locity of a set of features with respect to the helicopter. In real-time, the helicopter
is autonomously guided to track these features in the fixed target (in this case,
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windows in an urban environment). The system tracks only 4 points of the target,
using a visual processing rate of 20 fps.

Lastly, a real-time pose tracking system for Autonomous Underwater Vehicle
(AUV) is described in [141]. The proposed PBVS method employs a 3D marker
as a fixed object to be tracked and used for the pose estimation of the underwater
vehicle equipped with a dual-eyes camera. In this system, a 1-step Genetic Algo-
rithm (GA) is used to estimate in real-time the relative pose between the designed
3D marker and the vehicle. To test the algorithm, a Remotely Operated Vehicle
(ROV) was used that can recognize the target, estimate the relative pose of the
vehicle with respect to the fixed target and control the vehicle to bring it in the
desired pose.

4.4.3 Multi-Target Tracking Systems

The authors [205] controlled the pose of a camera based on the color of the
tracked objects as well as the mean position of the targets. An IBVS scheme was
used to perform multiple target tracking and control, based on the color of each
target. The results show that the mean position of targets was maintained in the
image center during the whole time of the UAV mission, and at the same time,
two tracked objects were maintained within the camera’s FOV (Field Of View).
Through the majority of the time, the mean error was not greater than 10 pixels.

The work reported in [164] is another example of an MTTVS system developed
for real-time detection and tracking of multiple objects in uncontrolled environ-
ments. The multi-object tracking model is designed with a multithreading archi-
tecture, where every thread corresponds to a detected motion area and integrates
motion and color tracking. For motion detection, the algorithm uses techniques
based on adaptive thresholds and on color detection using hue segmentation (HSV
color space) to solve the problem of overlapping detected motion areas.

Another example of MTTVS system is described in [17]. The work presents a
method that is able to estimate the 3-D position of a time-varying number of people
and simultaneously perform visual servoing. The visual servoing module requires
estimating an interaction matrix that maps observed image features on to robot
velocities, which in turn requires 3-D information. This is done by combining a
calibrated camera pair mounted onto the robot head with a person detector. The
resulting estimation of the motor velocities are then taken into account by the
person tracker, which is formulated as a variational Bayesian filtering [16], that
has the advantages of (i) handling a varying number of persons over time, and (ii)
efficiently dealing with disappearing/reappearing persons.

4.5 Classical Visual Servoing Issues

One of the issues that classical PBVS and IBVS have is that they may suffer
from convergence and stability problems, as reported in [31, 129]. Another limita-
tion is that PBVS requires geometric information about the target object location
and to keep the object’s features within the field of view of the camera. Further-
more, in eye-in-hand robotic systems with 6 or more degrees of freedom, where
objects are placed at static positions, IBVS systems can get trapped into local
minima. This occurs due to the existence of unrealizable image motions [37, 172].
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Moreover, in IBVS methods, the interaction matrix or image Jacobian, which re-
lates the time variation of the features to the camera velocity, depends on a priori
knowledge of the intrinsic camera parameters [168].

Hybrid systems improve PBVS and IBVS systems by not requiring camera
calibration or a 3D target model. Additionally, they have better stability properties
[129]. However, they are susceptible to image noise and require a minimum number
of point correspondences (4 to 8 or more) to estimate the projecting homography
matrix.

In spite of the progress made in the last decades on the classical approaches
to visual servoing, the computer vision methods used by these systems suffer from
a lack of adaptation to changes in the environment. Moreover, they are unable
to generalize the patterns or features that are extracted from images to similar
objects that may have different textures and be placed in different conditions of
illumination. DNNs solve these problems by learning the patterns extracted from
large training datasets of labeled images and generalizing these patterns using
efficient optimization methods and loss functions. Lastly, DNNs are also capable
of learning the control laws, opening the possibility for eliminating the controller in
a visual servoing system. In the following sections, we discuss how visual servoing
systems are applied to a variety of robotic platforms, from ground robots to UAVs
and underwater vehicles.

4.6 Classical Visual Servoing by Robotic System Type

The classical visual servoing techniques can be grouped by the type of robotic
system where they have been applied, regardless of its classification type. In this
section, we discuss the application of classical visual servoing systems in a variety
of robotic systems.

4.6.1 Ground Robots

The work in [188] is an example of the application of visual servoing and
navigation systems in ground mobile robots. The paper describes a method based
on the use of an omnidirectional vision sensor to stabilize a tractor capable of
navigating autonomously to a target position by measuring the deviations between
the vehicle’s current view and a target view of landmarks within a workspace.

Another example is [132] that presents an IBVS strategy that employs the
epipolar geometry defined by the current and desired camera views to drive a
nonholonomic mobile robot toward a desired configuration, without any knowledge
of the 3-D scene geometry.

Using a different approach, [117] proposed an adaptive image-based visual ser-
voing approach to visually guide wheeled mobile robots with a ceiling-mounted
camera. This configuration does not require that the image plane of the camera
be parallel to the motion plane of the mobile robot. In a similar type of applica-
tion, the work in [152] presents a visual servo tracking scheme that exploits the
homography-based algorithms designed for wheeled mobile robots to track a given
trajectory defined by a sequence of images previously recorded.

In a more control-centered approach, in [96] an IBVS strategy is combined with
model predictive control (MPC). This is used to stabilize a physically constrained
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mobile robot where the system’s kinematics are transformed into a symmetric
form using linear control theory. Then, an explicit exponential decaying term is
used to avoid uncontrollability, and the MPC strategy is transformed iteratively
into a constrained quadratic programming (QP) problem that is solved using a
primal-dual neural network.

4.6.2 UAVs

UAVs have multiple applications in domains such as fire fighting, traffic surveil-
lance, or communications [50, 185]. Another recent application of UAVs is in in-
spection tasks. For instance, UAVs are used in the inspection of wind turbines in
[178]. This system estimates the relative position and distance between the UAV
and the wind turbine, as well as the position of its blades. Then the Hough trans-
form algorithm is used for detection of the wind turbine tower, hub, and blades,
and a Kalman filter is used to keep the target within UAV’s field of vision.

The work cited in [149] presents a visual-based object tracking and following
system. The system was applied on a flying robot capable of following a variety of
static and moving targets at varying distances from 1-2 m to 10-15 m.

In a very different type of system, a bird-inspired IBVS scheme was proposed
in [184], for micro aerial vehicles capable of performing high-speed aerial grasping
tasks.

In [210], a quadrotor that has an on-board monocular camera and an inertial
measurement unit sensor is used to propose a new IBVS control law. Image ro-
tations and translations dynamics are used together with quadrotor dynamics to
derive a non-linear controller for the UAV.

4.7 Underwater Vehicles

In [95] a position-based visual servo control for an Autonomous Underwater
Vehicle (AUV) is presented. The pose of the AUV with respect to the target
position is obtained using a laser system consisting of two lasers that project its
beams in the image plane, while computer vision algorithms keep track of the
target position.

Visual servoing is also used in [11] to implement an underwater pipeline fol-
lowing AUV. AUV’s servoing system uses binormalized Plücker coordinates of the
pipeline borders that are detected in the image plane, as feedback information.
The control scheme proposed in this paper considered the full system dynamics to
improve stability.

5 Neural Network Based Visual Servoing Systems

This section discusses the use of neural networks and in particular of DNNs in
visual servoing systems.

In classical computer vision systems, feature descriptor methods were often
combined with other traditional machine learning algorithms [138] like Support
Vector Machines, and K-Nearest Neighbors for the problem of object recognition
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and detection [112]. Other classical methods like Adaboost and a cascade of clas-
sifiers have also been used to select a critical set of features in the problem of face
detection [192] with high success. Histograms were used for human detection in
[47] and Shallow Neural Networks (SNN) in [189] for face localization.

SNN trained with the backpropagation algorithm [110] have been used in visual
servoing as described in [150] and [151]. In these applications, SNNs were trained
to solve the problem of road following with an autonomous land vehicle. The SNNs
consisted of three layers, an input layer of size 30 x 32 containing the pixels of
a road image and an 8 x 32 range finder image connected to one hidden layer of
29 units. This layer was fully connected to a 45 neurons output layer to indicate
the 45 directions that the autonomous vehicle can take. In a subsequent work, the
architecture of the SNN [151] was changed to contain only 5 neurons in the hidden
layer and 30 neurons in the output layer.

SNNs were successfully used in the task of real-time road detection. However,
when more complex image features should be detected, SNNs did not work well.
To address this problem, recent approaches in computer vision use deep neural
networks (DNN) [12]. Contrary to SNNs, DNNs consist of a deep stack of multiple
neuron layers, where each layer is capable of learning a partial representation of the
features of an object. Applied in a visual servoing system, DNNs can, for example,
learn the complex implicit relationship between the pose displacements of a robot
and the observed variations in the global descriptors of the image, such as points,
lines, or geometric moments [196].

DNNs include a wide variety of networks such as Convolutional Neural Net-
works (CNNs) for computer vision, Long Short Term Memory (LSTM) networks
for applications in speech recognition, Recurrent Neural Networks (RNN) or Gated
Recurrent Units (GRU) [12] for time series forecasting, among others. CNNs [179]
are DNNs that were originally designed to process images. LetNet [111], the first
implementation of a CNN, was designed for handwritten and machine-printed
character recognition, but now CNNs are used in the following computer vision
tasks:

1. Image classification: The goal is to classify or predict the class of an object in
an input image [42, 105].

2. Object detection and localization: The input is an image, and the output are
bounding boxes surrounding the detected object(s)[181].

3. Object segmentation: The goal is to group pixels in a digital image into multiple
regions or segments and assign each group to a specific class [66].

4. Target tracking: The goal is to estimate the state of a target object present in
the scene from its previous state information [149, 152].

Several surveys, covering the recent advances in DNN’s architectures and its
applications in computer vision tasks, have been published in [12, 98, 116, 137,
179, 207]. In the rest of this section, we present a brief overview of CNNs. Lastly,
we describe some examples of the most recent work on CNNs for computer vision
tasks.

5.1 General Architecture of CNNs

The main purpose of this section is to introduce CNNs and their use, a more
detailed description of DNNs and CNNs can be found in [66].
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CNNs are first trained with a large dataset of images. Once they are trained, the
networks are used to perform inferences on images that have not been seen before.
The CNNs learn to extract object’s features with a deep pipeline of layers. Figure
2 shows the architecture and layers of a generic CNN for image classification.

Fig. 2 An example of CNN architecture for object detection application.

Some of the most common layers found in modern CNN architectures are:

1. Convolution: The convolution layer applies the convolution operation to the
input image, represented as a vector, using filters (kernels). The use of kernels
helps to keep the 2D spatial information. The image is scanned with these
kernels producing as output, a feature or activation map.

2. Pooling: The pooling layer is usually placed after the convolution layers. Its
goal is to perform dimensionality reduction on the number of weights used
in the layer. This is done to reduce model’s complexity and avoid overfitting.
Some of the common pooling operations are average and maximum.
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3. Fully Connected: The Fully Connected Layer (FC) is also called Dense Layer
because it connects all the neuron’s outputs of a layer to the inputs of the next
layer).

The convolutional layers in a CNN extract object’s features in a hierarchical
way, from the simple ones like lines in the first layers to more complex features
like forms in later layers. The final layer in object classification applies a softmax
function to produce as output the probability that an object belongs to one of the
training categories.

CNNs designed for object detection add other layers that produce feature maps
and apply convolution filters to detect objects with bounding boxes. The feature
maps are associated with a set of predefined bounding boxes of different dimensions
and aspect ratios. The network generates a large number of boxes that are pruned
using a technique called non-maximum suppression that retains only the most
likely ones. The output of the network is a bounding box containing a detected
object and an associated confidence value about the detection, as is shown at the
bottom of Figure 2.

5.2 Training and Inference in DNNs

The goal of training a DNN is to find the optimal set of weights and biases
that minimize a cost function. Training is done using the backpropagation algo-
rithm [162] and an optimization method, such as stochastic gradient descent or
the Adam’s algorithm [124]. Training requires a large labeled dataset and is usu-
ally performed on one or more GPUs. During training, data is passed through the
neurons in a DNN that contain nonlinear activation functions, producing outputs
that are feed to the next layer. In modern DNNs, the rectified linear unit (ReLU)
or one of its variants [64, 88, 142], is commonly used as the activation function.

To reduce simultaneously the number of images required for training and the
training time, transfer learning techniques are commonly used in DNNs. In transfer
learning, a model trained for a specific task is modified to make predictions for a
different task [66]. To implement transfer learning, the pretrained convolution and
pooling layers that are part of the first layers of a CNN are retrained with images
belonging to a new task but at a very low learning rate. At the same time, the
last layers of a CNN are substituted and trained at a faster rate [125]. The goal
is to avoid that the first layers forget the simple features learned on the original
training dataset since they will be also used in the new task.

After training, the DNN model attached to a camera performs inferences on
images that the DNN has not seen before. During inferencing, pixels from an
image are fed to the CNN and processed by the neurons of each layer, producing
a bounding box prediction around a detected object and its associated confidence
value. Modern CNN architectures are optimized for real-time execution and/or to
achieve maximum accuracy.

DNN’s have hyperparameters such as learning rate, batch size, and momentum
that affect model’s performance [66]. These hyperparameters are tuned to enhance
the model’s ability to perform correct inferences. Lastly, in visual servoing appli-
cations that require real-time response, the feedback signal from the DNN should
have ideally low latency. A wide variety of DNN architectures have been proposed
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in the literature to address these issues. The next section discusses some examples
of these new architectures.

5.3 Modern CNNs

AlexNet [105] was the first CNN that won, by a large margin, the Image Clas-
sification Challenge (ILSVRC) in 2012 [105]. Other popular CNNs used for object
classification are VGG16 [175] and GoogleNet [180]. These networks were designed
to achieve the highest accuracy in object classification, without regard to the com-
puting power needed to perform inferences in real time.

After the success of AlexNet, the next breakthrough work in DNNs was ResNet
[75]. ResNet solved the vanishing gradient problem by allowing the data generated
during training to skip one or more layers without compromising the accuracy
achieved in object recognition and detection. This feature allowed training net-
works composed of hundreds of layers without sacrificing performance. However,
one of the issues with RestNet is that it requires long training times.

The CNNs designed for computer vision systems in robotics should perform
inferences in real-time with high accuracy and at the same time, have a small size
to fit into resource constrained devices. Examples of CNNs that were designed
with these goals are Yolo [157], SqueezeNet [85] and MobileNets [80, 81, 167] but
also ShuffleNet [208] and SSD [121].

Yolo [157], a popular CNN for object detection, is capable of performing infer-
ences in real time. Yolo achieved real-time performance but at the cost of sacrific-
ing accuracy. More recent versions of Yolo like Yolov3 [159] or a similar network
called Single Shot Detector (SSD) [121] have improved the original architecture to
achieve higher accuracy without sacrificing real-time performance.

SqueezeNet [85] was one of the first small-sized models that performed well
on the ImageNet dataset. Compared to AlexNet, SqueezeNet has similar accuracy
but uses 50 times fewer parameters. While AlexNet uses five convolution layers
with large kernels, followed by two fully-connected layers, SqueezeNet has smaller
convolutional layers with 1×1 and 3×3 kernels.

More recently, other networks such as Squeeze and Excitation Networks (SENets)
were introduced in [82]. These networks include a computational unit called Squeeze-
and-Excitation (SE) block that can be integrated into other architectures such as
ResNet. SE-blocks allow weighting each channel of a convolutional block adaptively
to indicate how relevant a feature map is. The use of SE-blocks has been shown
to improve training time and accuracy. Given the success of this idea, SE-blocks
have been introduced in the latest architectures such as ShuffleNet [208]. However,
authors in [208] report that when SE blocks are integrated into ShuffleNet, the
network is significantly slower than raw ShuffleNet on mobile devices.

MobileNet is another example of an optimized network that can be used for
mobile and embedded applications. MobileNetV1 [81] replaces expensive convo-
lution layers by a cheaper depthwise separable convolution 3×3 layer followed by
a 1×1 convolutional layer. The main result of this combination is reducing the
parameters, while to reducing latency, MobileNet decreased the number of layers
used to 28. MobileNetV2 [167] uses depthwise convolutions but rearranges them in
a block called Bottleneck Residual block that consists of three convolutional lay-
ers. The first layer, called the expansion layer, is a 1x1 convolution that expands
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the number of channels in the data before going into the depthwise convolution.
The last two layers are a depthwise convolution that filters the inputs, followed
by a 1×1 pointwise convolution layer. However, the pointwise convolution in V1,
either kept the number of channels the same or doubled them, while in V2, it does
the opposite, making the number of channels smaller. The name projection layer
comes from the idea of projecting data with a large number of dimensions into a
structure with a lower number of dimensions.

The architecture of MobileNet version 3 [80] was partially obtained via a
technique called automated neural architecture search (NAS). The network uses
MnasNet-A1 [182] as an initial point and then applies the NetAdapt algorithm
[203] on top of it, which works to optimizing and shrinking the pre-trained MnasNet-
A1 until it reaches a given latency, while maintaining accuracy high. One of the
novel ideas in MobileNetV3 is the incorporation of the squeeze-and-excitation mod-
ules (SE) described previously. Another novelty is the optimization of the archi-
tecture by redesigning some of the expensive layers. For example, MobileNetV2
begins with a 3x3 convolution layer that has 32 filters, but experimentation with
the network showed that this is a relatively slow layer, since only 16 filters are suf-
ficient. In comparison with the previous versions of MobileNet that used ReLU6
as the activation function, v3 uses a version of Swish [154] called hard swish (h-

swish(x) = xRELU6(x+3)
6 ), which is computationally less expensive.

The CNNs described above were used as a baseline for other networks that
have a different number of parameters, operations, and accuracy (see Table 3).
In the table, ”MACs” means multiply-accumulate operations. This measures how
many calculations are required to perform inference on a single RGB image.

Table 3 Complexity and accuracy of known convolutional neural networks (CNNs).

Model # Parameters (Millions) # MACs (Millions) Top-5 (%)
AlexNet 1.2 860 83
VGG16 4,24 569 89.9
GoogleNet 60 650 83
ResNet-101 55 5650 94.2
ResNet-152 65 6850 94.2
ResNet-200 100 10500 95.5
SqueezeNet 2.9 66 87.7
SENet-154 138 7800 89,6
ShuffleNet 5.3 260 90
MobileNet-v1 5 750 93.3
MobileNet-v2 5,4 217 92.2
MobileNet-v3 (small) 3,47 300 91
MobileNet-v3 (large) 40 3800 93.3

A recent application of CNNs is in creating Generative Adversarial Networks
(GANs) [67]. GANs are a modeling approach for learning deep representations that
does not require an extensively annotated training data set. GANs can be used in
semi-supervised, unsupervised, and reinforcement learning tasks. The main idea
of GANs relies on training a pair of networks (Generator and Discriminator) in
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competition with each other. The generator is trained to produce new examples,
while the discriminator is trained to classify these examples as either fake (gener-
ated) or real (from the domain). The networks are placed to play a zero-sum game
where the generator tries to fool the discriminator into classifying fake data as
real. As a result, GANs can generate dynamic pictures from static ones, predict-
ing several seconds of a movie, in data augmentation, and to generate text that
describes images. Due to its predictive capabilities, GANs can be used for online
object tracking systems.

6 DNN-based Visual Servoing Systems

State-of-the-art visual servoing systems employ DNNs in their feedback control
loop. DNNs achieve high accuracy in object detection, recognition, and segmenta-
tion by adapting to changes in the environment, i.e., they are invariant to changes
in scale, position, illumination, occlusion, background, and intraclass variations.
This is due, in large part, to the usage of large training datasets, effective opti-
mization methods, overfitting avoidance techniques, and by fine-tuning its perfor-
mance with hyperparameters [66]. Furthermore, with the use of new DNN-based
techniques in end-to-end and direct servoing systems, the controller could be elim-
inated.

DNNs for supervised learning have also some disadvantages, for instance, they
require large training labeled datasets and long training times. DNNs are also gen-
erally large in size and require high processing power. Additionally, they produce
delays in the feedback loop of a visual servoing system that may cause instability.
Lastly, DNNs may suffer from adversarial attacks. In these attacks, a group of
pixels in an image is changed to confuse the network, making it classify images
incorrectly [201]. However, in the last years, a new generation of networks has
been specifically designed to tackle some of these problems. The architecture of
DNNs has been optimized without degrading its accuracy and increasing latency
[81, 85, 208]. New hardware, such as Google Coral, Intel Movidius NCS, or Nvidia
Jetson Nano, has been designed to improve DNN’s inference time. Furthermore,
the use of transfer learning techniques reduces the amount of images needed for
training and protection mechanisms in the networks have been proposed to make
them resist potential adversarial attacks [201].

In this section, we describe how DNNs are integrated in the feedback control
loop of a visual servoing system. We conclude the section describing End-to-End
and Direct Visual Servoing systems.

6.1 Visual Servoing Feedback Loop

Figure 3 shows a simplified block diagram of the feedback control loop of a
DNN-based visual servoing system. The camera takes images of the surrounding
space and feeds them to a DNN as an input matrix I(t). The DNN will extract fea-
tures from the image and produce inferences to recognize, detect, or track objects.
For instance, in the case of a DNN designed for object detection, the output of the
DNN will be a vector s(t) containing the location on the image of the bounding
box where the object of interest has been detected, together with a probability
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representing the confidence about the detection. An error signal e(t) is then cal-
culated as the difference between the location of the target position s∗(t) and the
current position and given as input to the controller. The controller will produce a
command vector u(t) of signals that is feed to the plant, representing the robot’s
actuators. These commands will be processed by the plant to move the robot to a
target position y(t).

Like most physical systems, the plant is perturbed with disturbances d such
as aerodynamic forces, affect the closed-loop system’s performance but can be
handled actively. The noise in the measurements n, produces a new system output
defined as the signal ŷ(t).

Controller Plant
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 e t *s t
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Fig. 3 Block diagram of the feedback control loop of a DNN-based visual servoing system.

6.2 End to End Systems

End-to-end visual servoing systems learn the control laws directly during train-
ing. Hence, there is no real controller module, but the control laws are implicitly
embedded into the weights and connections of a deep neural network. The idea
of these systems is to view the entire problem of mapping input images to a set
of control commands as a single indivisible task to be learned from end-to-end.
For instance, in [101] a DNN for a self-driving car is trained by feeding images of
a road and the steering commands performed by a human while driving the car.
Another example is described in [140], where a CNN takes stereo images as inputs
and produces possible steering angles for an off-road obstacle avoidance vehicle.

Other examples in self-driving cars are introduced in [26, 36] where an end-to-
end learning system is applied to obtain the proper steering angle to keep the car
on the lane.

In a different type of application, an end-to-end approach is presented in[169],
where the visuomotor representations (i.e., where sensor data is directly trans-
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formed into motor actions) of an outdoor UAV have been learned by a CNN that
computes the desired pose of a drone given a set of images. Similarly, in [25] a
CNN is trained in an end-to-end fashion to predict the heading angle of an aircraft
by using image inputs. The visual servoing system is used for autonomous landing
of the UAV in case of sensor failure.

James et al. [86] trained an end-to-end CNN and Long Short Term Memory
(LSTM) networks to execute a multi-step task for picking up a cube and dropping
it to a basket on a table. The network architecture consists of 8 convolutional
layers, each with a kernel size of 3x3, except the last one with a size of 2x2.
Dimensionality reduction is conducted at each convolutional layer by using a stride
of 2. The output of the convolutional layers is concatenated with the joint angles
and then fed into an LSTM module. Finally, the data passes through a fully
connected layer of 128 neurons before heading to the output layer. The network
generates 6 motor velocities, 3 gripper actions, and 2 auxiliary that are cube
position and the gripper position.

Other end-to-end systems employ reinforcement learning instead of supervised
learning. In reinforcement learning, the network is self-trained by a process of trial
and error, and a reward signal is generated when an action is performed correctly.
An example is [155] where a Deep Q-learning network is used in conjunction with
a Deep Actor-Critic Network to process rewards and generate discrete and contin-
uous actions to control the movement of a ground robot.

Another example of the use of reinforcement learning in end-to-end systems is
described in [108] where a robotic arm with an eye-in-hand camera is designed to
solving the reaching and grasping tasks where uncertainty is involved. The system
is trained by trial and error and does not require any previous information. The
system uses two cameras, splitting the problem into long range and short range
tasks, where each task is handled by a different controller.

In [163] a robot trained in simulation using reinforcement learning is capable
of finding target objects in real cluttered environments by learning collision-free
goal reaching policies and semantic labeling using two fully convolutional neural
networks.

6.3 Direct Visual Servoing Systems

Direct servoing is a technique that relies on the use of similarity measures to
compare the images taken at a current pose of the robot with the target image.
Direct servoing aim is to replace classical visual servoing techniques, avoiding the
use of any geometrical information about a scene.

Different approaches to creating direct visual servoing systems are described in
[18]. For instance, in [18] the author proposed to use histograms calculated from
images as similarity functions. Particle filters are then used, where the particles
have virtual camera images associated, and the best particle that minimizes the
error function is selected. A CNN is trained to learn the control laws that are used
to calculate the optimal pose of a robotic arm with 6-degrees of freedom.

Direct servoing may be also implemented without using DNNs, as is described
in [130]. In this method, two control laws are derived based on a principal analysis
decomposition of the main components of the image. Another example is described
in [91], where a quadcopter included an indoor navigation method based on an
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optical flow sensor for obstacle-dense environments. To navigate through a se-
quence of obstacles, images from a stereo camera were processed and a center
point–matching calculated to find the depth information that allowed the drone
to pass through the center of multiple gates.

In an earliest work, a photometric visual servoing method (e.g., [44]) was pro-
posed, where only pure photometric information (i.e., image intensity) was used
in the control law to minimizing the error between the current and desired images.
One of the main drawbacks of this approach is that it is sensitive to occlusions
and illumination variations, which can lead to less precise positioning results [19].

To solve this problem, in [49], the desired image is adapted to the illumination
conditions of the current image taken by the camera. The authors then calculate
the Sum of Conditional Variance (SCV) between the reference and the adapted
current image to achieve direct visual servoing.

In [145] a vector of visual features is used as a metric. The work proposed us-
ing the coefficients of a wavelet transform as the control signal inputs. A wavelet
transform is a representation of a signal by an orthonormal series of functions
called wavelets [68]. The proposed controller uses the multiple resolution coeffi-
cients representing the wavelet transform of an image in the spatial domain.

Lastly, Marchand in [131] proposed a new direct visual servoing technique
which does not consider the image itself as a whole in the spatial domain but its
transformation in the frequency domain. The Discrete Cosine Transform (DCT)
[7] is used to represent the image in the frequency domain as a sum of cosine
functions at different frequencies. As a result, the coefficients of the DCT are used
as the visual features in the visual servoing control law.

7 State of the Art in DNN-based Visual Servoing Systems

In this section, we present a comprehensive review of recent research work on
the application of DNN based visual servoing systems, classified by platform type,
i.e., UAVs, ground robots, manipulators, and underwater and surface vehicles.

7.1 UAVs

A UAV designed for wind turbine inspection is reported in [54]. The work
describes the implementation of a stereo camera system with 2 DNNs attached
that detects wind turbines in images. Stereo triangulation is used to estimate the
distance from a wind turbine to the drone. The DNN Yolov2 [158] (with ResNet50
in the feature extraction layers) was used to localize the wind turbine’s position
in the 3D world coordinate system, using epipolar-plane image analysis.

To navigate towards the center of the windmill, the bounding box parameters of
the detected windmill generated from Yolo were used to calculate the center of the
bounding box. This was used to control drone’s navigation. Camera calibration
was performed to compute its extrinsic and intrinsic parameters. The extrinsic
parameters were used to detect the camera location relative to the world reference
frame. Then the intrinsic parameters were used to transform the camera frame
coordinates to pixel coordinates.
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However, the experiments in [54] showed that the network was not able to
detect a wind turbine at a relatively long distance. This is due in part to the noise
and low image resolution (224×224) used for training. As a potential solution
to this problem, GANs could be used to improve small object detection through
narrowing the representation difference of small objects from the large ones, as
described in [115].

Other applications of DNNs in wind turbine inspection are also discussed in
[56] and [55]. In [56], WindMillNet, a DNN created by using transfer learning from
AlexNet, takes an image from the camera and outputs the probability that a wind
turbine appears in the image. When this probability reaches a threshold, the state
of the controller in the drone changes from the ”scanning state” while searching
for a wind turbine to a ”found state” where the drone navigates autonomously
forward towards the wind turbine and it stops when it reaches a safe distance.
WindMillNet architecture consisted of 22 layers including ConvNets, pooling, Re-
lUs, dropout, and fully connected layers. In this work, the last 3 layers of AlexNet
were repurposed to perform the wind turbine classification task.

In a later work [55], a DNN called WindTurbineNet was created using the
same structure as WindMillNet, but the final layers were changed to allow the
DNN recognizing four classes of objects [curtain; net; wall; wind turbine], which
were part of the lab’s experimental setup. Contrarily to [56], the images coming
from the drone’s camera were split into four equally sized segments, where each
segment was attached to a DNN that calculated the probability that it contained
a wind turbine. A servoing system made the drone navigate left or right according
to the probability value obtained by the upper two probabilities calculated by the
DNNs.

The forward velocity of the drone was made proportional to the sum of the 4
probabilities corresponding to the 4 image segments, based on the hypothesis that
the closer the drone is to the object the higher is the sum of these 4 probabilities.
Additionally, the steering angle was made proportional to the difference value
between the probability of the left and right segments.

Another example of an outdoor application of UAVs was discussed in [63] for
the problem of visual perception of forest trails. The DNN used takes a 101x101
monocular image as an input and produces three values, which are the probabilities
of three classes of movements [Turn left (TL), Go straight (GS), Turn right (TR)].
The DNN was trained using a dataset that was collected via three head-mounted
cameras. Data augmentation, particularly right/left mirroring, and mild affine
distortion were applied to the images to produce more data. To test the network,
a reactive controller was implemented to translate the network outputs to control
signals, where the forward speed is proportional to the probability of GS P(GS),
while the yaw or steering angle is proportional to the value P(TR) - P(TL), in
case it is positive the robot is steered to the right, and if it is negative the robot
is steered to the left. The network did not generalize well on images with lower
quality compared to the GoPro images.

A similar work, but for indoor corridor environments, is reported in [146]. In
this case, the flying commands are learned using a CNN called DenseNet-161,
which takes an 180x320 RGB image as input and classifies corridor images as
[left, center, right, stop]. The UAV was controlled in an open-loop fashion using 4
flight commands: Roll-Right, Pitch-Forward, Roll-Left, Stop, corresponding to the
4 classes [left, center, right, stop], respectively. The navigation method achieved
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a 77.3% success rate without collision. This work is based on imitation learning,
which aims to learn a control policy and map states to actions by observing expert
behavior. One important aspect of this approach is that it can be used in end-to-
end deep learning. However, imitation learning is also challenging to scale as it is
difficult to get expert examples to imitate every potential scenario that an agent
may encounter.

Another recent paper about autonomous navigation in an unstructured for-
est trail environment is [135]. The work presents an optimized CNN architecture
trained and tested using a patch of the unstructured environment dataset IDSIA
available at [3]. The network takes an RGB image of size 101x101 as input, and
outputs a triple vector holding the classification probability values that are trans-
lated into the path direction, whether to the left, to the right, or forward. This
network was inspired by the work done in [63], applying data augmentation during
training to improve model’s performances. However, the method fails to generalize
on data with low resolution, and the control flow was not discussed in the paper.

A similar system called Dronet is presented in [122]. Dronet is a CNN that
can safely drive a drone through the streets of a city. This network was trained
using data collected by bicycles and cars, which are integrated into the urban
environment. The network takes an input image 200x200 frame in gray-scale, and
its architecture is based on ResNet-8 (eight-layers residual network), while its last
two fully connected layers can produce separately a steering angle prediction and
collision probability that allows the drone to recognize dangerous situations and
quickly react to them while navigating.

The predicted collision probability is used in the control law to modulate the
forward velocity, so that the drone could fly at the maximum speed if the prob-
ability of collision is null and stop if the probability is 1. The predicted steering
angle is mapped to the yaw angle from the range [-1,1] to [-π2 ,π2 ].

7.2 Ground robots

DNNs have been also used extensively in stationary and mobile ground robots.
The work reported in [62] uses a MobileNet implementation of Single Shot Multi-
box Detector (SSD) architecture to keep track of a person using a ground robot.
As the target is moving, a proportional-integral (PI) control law is applied to
maintain the target in the field of vision of the robot’s camera. When a person is
detected, the position of the bounding box generated by MobileNet is compared
to a set-point bounding box position placed at the center of the image. The robot
moves to keep the camera’s forward speed and yaw rate at a specified safe distance
from the moving target object.

Using a different approach, [92] proposed a reinforcement learning method
called BADGR (Berkeley Autonomous Driving Ground Robot) that learns its
physical environment by experiencing it. This self-supervised end-to-end approach
to autonomous navigation uses image data from real-world environments to train
a neural network without needing any human supervision or simulation. BADGR
image-based neural network model is capable of predicting which sequences of
actions will lead to avoid bumpy roads and collisions. The network processes the
input images via convolutional and fully connected layers to form the initial hidden
state of a recurrent Long Short Term Memory (LSTM) unit [79]. This recurrent
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unit takes as input each of the future actions in a sequential fashion and outputs
the corresponding predicted future events. Based on these events, a planner selects
the actions corresponding to desirable outcomes, such as reaching a goal position
or avoiding undesirable events, such as bumpy terrain and collisions.

The training dataset of a predictive model consisted of observations, actions
and event labels recorded iteratively and in an online fashion while BADGR robot
navigates. BADGR deployment requires the definition of a reward function that
defines what the user wants the agent to accomplish in terms of the model’s pre-
dicted future events, for example by penalizing collisions and positively rewarding
driving towards the goal. Given the reward function, the learned predictive model,
and the current observation, BADGR can plan and execute a set of actions in a
way that the reward function is maximized until the task is completed. BADGR
was evaluated against the use of a 2D LIDAR and the use of näıve based policies,
where in the latter case, the robot navigates straight towards the goal. BADGR
registered a 92% success rate (without collision) against 60% for LIDAR and näıve
methods.

Robotics soccer is another example of computer vision applications that require
real-time vision algorithms that run with very limited computational resources.
Examples of recent robotics soccer applications include ball detection [177], soccer
player detection [9, 46], and visual navigation [114].

The ball detection in [177] uses an architecture based on three convolutional
layers and two fully connected layers corresponding to x and y coordinates of the
ball’s center. The network uses a normal distribution around the x and y values,
which can help to quantify the uncertainty of the detection. Even though this
network performed relatively well (81% x peak and 75% y peak), it could only
process a few images per second operating on low resolution images and suffers
from over-fitting.

The soccer player detection described in [46] uses two different detectors, one
based on SqueezeNet and the other on XNORNet architectures. A XNORNet
[156] is an approximation to standard CNNs where both the filters and input of
the convolutional layers are binary, which can result in 58x faster convolutional
operations and 32x memory savings.

In the case of the SqueezeNet-based detector and in order to reduce the size
of the network without reducing the network accuracy, the authors follow an it-
erative procedure in which the RELU activation function is replaced by a PReLU
activation function in the early layers. In case this approach does not increase the
network accuracy, the fire modules (Squeeze and Expand layers) in SqueezeNet are
replaced by extended fire modules where a 5x5 filter is added to the expand layer
in the fire module. Both XNORNet and SqueezeNet based detectors were tested
on a NAO robot and achieved very similar performance of around 97% detection
rate and 1ms inference time.

Similarly, the work in [114] can detect players, balls, and the orientation of the
robot inside the playing field. The classifiers were trained via an active learning-
based algorithm that automatically selects and pseudo-annotates unlabeled data.
Without using any color information, the system can work in real-time in NAO
robots.

To perform robot detection, first a grayscale image is scanned using windows
of 16x16 pixels, to find the high contrast regions, which may contain a robot.
Then, the robot detection CNN model (RobotNet) takes these greyscale regions
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as proposals and classify them into robots or non-robots. The robot’s orientation
detection module takes as input the bounding boxes coming from the robot’s de-
tection module, to detect the lower silhouette of the robot corresponding to its
feet, by using a vertical scan lines method. The main idea behind the robot’s ori-
entation pipeline is to find the lines around the robot’s feet and legs that represent
the most likely direction of the robot. For this purpose, a CNN model based on
SqueezeNet architecture classify the regions around the lines as side, front or back
regions. The ball detection pipeline takes both the high contrast regions and the
previously detected robots, in order to generate ball proposals in the grayscale
image, which then fed to a cascade of two CNNs: BoostBallNet that limits the
ball proposals to a maximum of five, and BallNet to classify the filtered proposals.
When the robot is static, the success rates of the robot detection, ball detection,
and robot’s orientation detection are of 94.90%, 97.10%, and 99.88% respectively.
When the robot is moving the robot’s orientation detection rate is of 95.52%.

7.3 Robotic arms and Manipulators

In [6], a robotic arm manipulator with a single eye-in-hand camera grabs and
holds objects such as leaves. The leaf detector is a CNN based on AlexNet ar-
chitecture. The proposed CNN consists of five convolutional layers and two fully-
connected layers, that classify two types of object leaves and their background.
To locate and grasp a leaf from a plant, the CNN was combined with Monoscopic
Depth Analysis (MDA), a visual servoing method that uses two images and trian-
gulation to deduce the position of some feature points in the image in the Cartesian
space relative to the camera.

However, this work only focused on how to bring the end-effector close to the
leaf, and although the MDA approach accurately gives the leaf position, the system
suffers from a limitation in which a leaf had to be tracked throughout all the steps
of the control algorithm. This implies that if the identification step of a leaf fails,
between camera movements, the information about the leaf position is lost, and
the procedure has to start from the beginning.

Another work described in [106] presents a robotic grasp detection system.
The robot is capable of predicting the best grasping pose of a robotic gripper
using an RGB-D (RGB data plus depth) image of the scene. The method uses two
parallel ResNet-50 CNNs, one for RGB and another for depth, to extract features
from RGB-D images to produce grasp configurations for the objects in the images,
using the Cornell grasp dataset [2]. In the grasp predictor, the last fully connected
layer of ResNet-50 is substituted by two fully connected layers with rectified linear
unit (ReLU) as activation function, and to reduce over-fitting, a dropout layer is
appended to the first fully connected layer. This system does not use a physical
robot to perform the experiments, and since the network architecture relies on two
ResNet50, this may cause difficulties when deploying on real-world grasping [41].

An example of a visual servoing system that employs transfer learning to retrain
AlexNet in performing relative camera pose estimation for a robot with 6 degrees
of freedom are presented in [20] and [21]. The network is used to move the robot
from an arbitrary initial pose to a desired pose with respect to the observed scene.

The authors replace the classical direct visual servoing system with a CNN-
based system where the network learns the relative pose between the current and
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reference images, and outputs a transformation matrix that represent the current
camera frame with respect to the reference frame. To reach a pose related to
a desired image, the CNN estimates the relative poses between the desired and
reference images, and between the current and reference images. Then from these
two transformations we can get the relative pose between the current and the
desired images. This information becomes the cost function in an optimization
equation. In this work, AlexNet was fine-tuned by training the upper layers and
keeping the lower layers responsible for image feature extraction, since these layers
perform the same task in the relative pose estimation. The last layers produced the
6DOF pose. The training data used in [20] consisted of a synthetic set of images
generated from a single image by simulation.

One of the issues with this approach is that for each new reference pose, the
network has to be trained again, and this makes it unpractical for actual industrial
settings [204].

In [128], a CNN estimates the probability of success when grasping objects
in depth images. Grasps are defined as the planar position, angle, and depth of
a gripper relative to an RGB-D sensor. The model architecture consisted of four
convolutional layers in pairs of two separated by the ReLU activation function,
followed by three fully connected layers and a separate input layer for the distance
z of the gripper from the camera.

The network takes a candidate grasp and a depth image as input, and esti-
mates the grasp robustness or probability of success, which is used to rank grasp
candidates. The performance of the grasp planning method was assessed on both
known objects and novel objects with a 93% success rate and 94% precision, and
80% success rate and 100% precision, respectively. The grasp failure cases were
mainly due to poor depth sensing in measuring thin parts of the object geometry,
and due to collisions with the object.

Another recent work where a generative approach to grasping is presented by
Morrison et al. [139]. The authors propose a Generative Grasping Convolutional
Neural Network (GG-CNN) as a visual grasp detection algorithm, which is a fully
convolutional network that maps an input depth image to a prediction of grasp
quality and pose at every pixel in real-time. The proposed network takes a gray
scale depth image (I) and generates a grasp pose for every pixel (G), consisting of
the grasp quality (Q), grasp width (W), and grasp angle (F). The output of this
network is used to compute the best grasp point to reach. The network was trained
using the Cornell Grasping Dataset and evaluated on the Jacquard dataset [4].

In the grasp detection pipeline, the GG-CNN takes a 300x300 depth map image
and produces a grasp map. The grasp quality was refined using a Gaussian filter.
The best grasp pose is determined from the maximum pixels in the filtered grasp
quality image and the rotation and width are calculated from (F) and (W) images,
respectively. The velocity signal of the end-effector was calculated by a PBVS
controller, based on the poses of the grasp and the gripper fingers. The tests were
performed with isolated objects and cluttered objects with a grasp success rate of
100% and 87%, respectively.

In a related work, the authors in [147] introduce a novel technique for trans-
ferring a deep reinforcement learning (DRL) grasping agent for gripper pose es-
timation from simulation to a real robot, in a reverse real-to-sim fashion without
fine-tuning in the real world. The approach involves a CycleGAN [211] by effec-
tively “tricking” the agent into believing it is still in the simulator. The CycleGAN
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consists of two GANs, where the architecture for both generator and discriminator
networks follows U-nets, with seven layers in the encoder and the decoder and the
output is the semantic segmentation mask. In addition, a visual servoing (VS)
grasping task is included to adjust inaccurate agent gripper pose estimations de-
rived from deep learning. The approach used the CycleGAN to adapt a real image
from the camera for its use in simulation. The training dataset consists of RGB-D
images manually collected from a real robot, as well as the same amount of simu-
lation images automatically generated using data augmentation. The pose-based
VS system was integrated to refine the grasp pose estimation previously inferred
by the DRL system, based on the segmentation mask obtained from CycleGAN
for tasks like feature extraction, object tracking, and control law encoding. The
object’s centroid and orientation are the features used in the visual servoing sys-
tem. The experiments showed that using the CycleGAN alone was not sufficient
for transferring the pose estimation policy. However, the system succeeded in po-
sitioning the gripper correctly in the x and y directions, as well as orienting the
gripper correctly, but failed in the z direction. This is because the depth image
is very noisy and lacks a clear definition of the simulated images, making the
CycleGAN less effective in adapting the depth images. However, using DRL +
CycleGAN worked well for finding an approximate pose that can be sent to the
visual servoing module.

7.4 Underwater and Surface Vehicles

The work in [118] proposed an improved recurrent neural network for un-
manned underwater vehicle (UUV) online obstacle avoidance. The proposed net-
work is a Convolutional Recurrent Neural Network (CRNN) that uses a convolu-
tions to replace the full connection between adjacent layers of the recurrent neural
network (RNN). The obstacle avoidance planning network takes as input an 81-
dimensional vector consisting of a direction vector plus 80-dimensional distance-
vector obtained from the sonar. The output of the CRNN is a two-dimensional
vector from the obstacle, which consists of the velocity and the yaw of the UUV.

During the training step, the use of a CRNN was compared to a regular RNN
and gated recurrent units (GRUs) models, in order to assess the performance of the
obstacle avoidance planner. The three models have the same architecture: an input
layer of 81 neurons corresponding to the input vector, the hidden layer consists of
one of three network structures, the middle layer has 24 neurons, and the output
layer consists of two neurons (yaw and velocity of the UUV). To avoid overfitting,
a dropout with 60% retaining was performed on the three networks resulting in
RNN1, RNN2, GRU1, GRU2, CRNN1, and CRNN2. The experiments showed that
CRNN performs better than the RNN and GRU models in terms of both MSE and
convergence, with a short training time, a simpler network structure, and better
generalization performance. In the simulation tests, the planning success rate was
88% and 96% for the RNN algorithms (RNN1 and RNN2) while 98% and 99% for
the proposed CRNN algorithms (CRNN1 and CRNN2).

Additionally, the proposed CRNN-based obstacle avoidance planner needs less
computing time, generates shorter paths, consumes less energy through the UUV
actuators, and less sensitive to noise, compared to the ACO (Ant Colony Opti-
mization) algorithm.
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A more recent work in underwater exploration by AUV is presented in [109],
where a DNN called PSPNet based on ResNet does image segmentation, enabling
the AUV to compute its position relative to the segmented elements. The DNN
was trained using synthetic images with their corresponding labels generated from
the Unreal a game engine. The DNN was implemented on an FPGA, however, the
control block of the AUV was not discussed by the authors.

Another state-of-the-art method has been introduced by [51] to solve the un-
derwater localization problem. The proposed approach estimates a cross-view and
cross-domain image matching in underwater scenarios with partially submerged
structures. A vehicle equipped with a Forward-Looking Sonar (FLS) obtains acous-
tic images in a place where there is an aerial image available. The aerial image can
be obtained by drones or satellites. Then, this aerial image is preloaded into the
vehicle or previously captured in the case of a hybrid vehicle that can navigate
in both air and underwater and can acquire both high-resolution aerial images
and underwater acoustic images when diving [53, 136]. The approach consists of
three phases: Aerial image processing, Underwater Acoustic image processing, and
matching process. In the first phase, segmentation and binarization of the aerial
images are performed with the help of a CNN. The scene is segmented, but only the
stationary structures remain in the binary image. In the second phase, a threshold
is applied to acoustic images to remove low-intensity acoustic return and reduce
noise. The last phase of image comparison uses a CNN capable of producing a
matching score to identify similar places. The first CNN responsible for the se-
mantic segmentation of the areal images is based on the U-Net architecture [161]
with a 256x256x3 color aerial image as input and a 256x256x3 segmented image as
output. The network architecture consists of five encoder layers and four decoder
layers, with the original padding being preserved to avoid cropping and finally a
softmax layer.

DeepLab [34] is another type of network which is widely used in semantic
segmentation. DeepLab achieves high performance on semantic segmentation by
combining DCNN and probability map models to improve object boundary detec-
tion segmentation extracting dense features using atrous convolution (or convolu-
tion with upsampled filters). However, the major challenge to achieve reasonable
accuracy through these deep CNN models was the high computational cost [90].
To overcome this issue, Xception [39] used more efficient model parameters and
gained robust performance without increasing capacity. MobileNets [34] introduced
an efficient convolution neural network architecture to boost the performance of se-
mantic segmentation by building low latency models for mobile vision applications,
and it was used as a backbone for DeepLab (”Mobile DeepLabv3”) in Camille et al.
[100], where the issue of multi-class indoor scene segmentation was addressed. The
network in [51] used in matching problems was inspired by the Siamese network
[40]. The network takes two 256x128x1 images as input and produces a matching
score.

Classic Image-based matching techniques proposed in the literature include
block matching [173], and Semi-Global Block Matching (SGBM) [78]. Neverthe-
less, these methods suffer from different limitations [28] (e.g., match ambiguity,
inadequacy of geometric model, and disparity sampling), and they employ cost
functions that are handcrafted, or where only a linear combination of features is
learned from data [126]. Contrarily, the Siamese network can learn the similarity
between a template image that holds a particular object of interest and a search
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image where a similar-looking object is to be found [65]. To achieve this goal, two
identical CNNs are trained with their respective template and search images to
represent random objects in an embedding and used to perform an efficient com-
parison. Cross-correlation is used to create a similarity score map, from which the
maximum value is chosen as the predicted landmark location [65].

Unmanned Surface Vehicles (USVs), or Unmanned Surface Vessels, have re-
cently attracted significant attention for their potential applications in performing
time-consuming and/or dangerous missions such as surveillance and reconnais-
sance, patrol, environmental monitoring, and inspection of marine structures [72].

The authors [200] propose to use a deep CNN to detect the obstacles and ma-
neuver safely by learning how to steer the vessel through sample data. The network
was trained to recognize dangerous collisions and change course in accordance with
the Convention of the International Regulations for Preventing Collisions at Sea
(COLREGS) which describes operations and manoeuvres to perform in situations
like crossing, head-on and overtaking. The CNN model was trained using USV ma-
neuvering vision data that was created from the European Ship Simulator game.
The algorithm showed good results, however, the authors did not describe the
details of the CNN architecture proposed.

8 Discussion

In this survey, we presented a comprehensive review of state of the art research
work on visual servoing systems. The systems we have described employ classical
methods that have not been included in other surveys, together with DNN-based
approaches. One of the goals of this survey was to review state-of-the-art on DNN-
based visual servoing systems, since this technology has become the predominant
one in computer vision, robotics and other artificial intelligence related fields.

Additionally, this paper extended the taxonomy used in classical visual servo-
ing systems to include the newest developments in this field, e.g., direct servoing,
end-to-end, and target tracking systems. In particular, end-to-end systems have
changed the traditional concept of visual servoing systems as a feedback control
loop system. Now, DNNs are capable of learning the control laws directly during
training, eliminating the controller and transforming these systems in open-loop
systems. An additional benefit of end-to-end systems is that they reduce system’s
complexity, at the cost of relying on the use of exhaustive training techniques. At
the same time, well know analytical methods like Lyapunov analysis, commonly
used in control systems to determine system’s stability can not be used in these
systems. Moreover, recent direct servoing systems eliminate the need in the classi-
cal approaches for having a priori geometrical information about the target object
space or camera calibration parameters.

The surveyed systems show that DNNs will continue playing a key role, as new
and improved DNN architectures will emerge. For instance, in [77] the concept
of capsules was proposed. These structures are aimed at better modeling hierar-
chical relationships that are invariant to the transformations commonly found in
images. Capsules will ease training and produce more accurate results in object
recognition and detection. However, to be used in visual servoing systems, these
new architectures need to be optimized in size and latency, as latency introduces
a delay that may affect the control system’s stability. Additionally, transformer
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networks, originally proposed in 2017 for natural language processing [190], are
now widely used in computer vision [52, 99, 198] and may even replace CNNs in
the near future. Transformer networks will improve the computer vision systems
used in visual servoing for robotic applications.

More importantly, depth estimation can be now performed accurately with
DNNs [209]. These networks fused with object detection models makes it possible
to create robotic systems that use only a monocular video camera to perform
visual servoing.

In spite of the current improvements in DNN architectures, there are issues that
must be addressed to implement DNN-based visual servoing systems in robotic sys-
tems. For instance, in object detection the bounding box data about the position
of a detected object has statistical variations due to UAV movement. This must be
modeled [54] to be properly filtered. Additionally, the uncertainty produced by the
inference processing should be estimated reliably. This is a challenging problem
since there are no ground truth estimations available. However, several approaches
in uncertainty estimation have been proposed to solve this problem, using for in-
stance calibration techniques [69, 76], Bayesian deep learning [127, 143] ensemble
methods [107], or dropout sampling [60, 97].

Lastly, transfer learning techniques commonly used in DNNs to reduce the
number of training images needed in object recognition and object detection, re-
quire labeled training datasets with bounding boxes. This preprocessing step may
be partially automated by using simulations and synthetic augmentation tech-
niques.
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Rennes 1 (2018)

19. Bateux, Q., Marchand, E.: Histograms-based visual servoing. IEEE Robotics
and Automation Letters 2(1), 80–87 (2016)

20. Bateux, Q., Marchand, E., Leitner, J., Chaumette, F., Corke, P.: Visual ser-
voing from deep neural networks. arXiv preprint arXiv:1705.08940 (2017)

21. Bateux, Q., Marchand, E., Leitner, J., Chaumette, F., Corke, P.: Training
deep neural networks for visual servoing. In: 2018 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 1–8. IEEE (2018)

22. Bekey, G., Yuh, J.: The status of robotics. IEEE Robotics & Automation
Magazine 15(1), 80–86 (2008)

23. Benini, A., Mancini, A., Longhi, S.: An imu/uwb/vision-based extended
kalman filter for mini-uav localization in indoor environment using 802.15. 4a
wireless sensor network. Journal of Intelligent & Robotic Systems 70(1-4),
461–476 (2013)

24. Besl, P.J.: Active optical range imaging sensors. In: Advances in machine
vision, pp. 1–63. Springer (1989)

25. Bicer, Y., Moghadam, M., Sahin, C., Eroglu, B., Üre, N.K.: Vision-based
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101. Kocić, J., Jovičić, N., Drndarević, V.: An end-to-end deep neural network for
autonomous driving designed for embedded automotive platforms. Sensors
19(9), 2064 (2019)



Title Suppressed Due to Excessive Length 39

102. Kolodziej, K.W., Hjelm, J.: Local positioning systems: LBS applications and
services. CRC press (2017)

103. Kragic, D., Christensen, H.I., et al.: Survey on visual servoing for manipula-
tion. Computational Vision and Active Perception Laboratory, Fiskartorpsv
15, 2002 (2002)

104. Krishnan, D., Fergus, R.: Dark flash photography. ACM Trans. Graph. 28(3),
96 (2009)

105. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep
convolutional neural networks. In: Advances in neural information processing
systems, pp. 1097–1105 (2012)

106. Kumra, S., Kanan, C.: Robotic grasp detection using deep convolutional neu-
ral networks. In: 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 769–776. IEEE (2017)

107. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predic-
tive uncertainty estimation using deep ensembles. In: Advances in neural
information processing systems, pp. 6402–6413 (2017)

108. Lampe, T., Riedmiller, M.: Acquiring visual servoing reaching and grasping
skills using neural reinforcement learning. In: The 2013 International Joint
Conference on Neural Networks (IJCNN), pp. 1–8 (2013). DOI 10.1109/
IJCNN.2013.6707053

109. Le Pennec, T., Jridi, M., Dezan, C., Alfalou, A., Florin, F.: Underwater ex-
ploration by auv using deep neural network implemented on fpga. In: Pattern
Recognition and Tracking XXXI, vol. 11400, p. 114000N. International Soci-
ety for Optics and Photonics (2020)

110. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard,
W., Jackel, L.D.: Backpropagation applied to handwritten zip code recogni-
tion. Neural computation 1(4), 541–551 (1989)

111. LeCun, Y., Jackel, L., Bottou, L., Cortes, C., Denker, J.S., Drucker, H.,
Guyon, I., Muller, U.A., Sackinger, E., Simard, P., et al.: Learning algorithms
for classification: A comparison on handwritten digit recognition. Neural
networks: the statistical mechanics perspective 261, 276 (1995)

112. Lee, A.: Comparing deep neural networks and traditional vision algorithms
in mobile robotics. Swarthmore University (2015)

113. Lee, J., Jeong, M.H., Lee, J., Kim, K., You, B.J.: 3d pose tracking using
particle filter with back projection-based sampling. International Journal of
Control, Automation and Systems 10(6), 1232–1239 (2012)

114. Leiva, F., Cruz, N., Bugueño, I., Ruiz-del Solar, J.: Playing soccer without
colors in the spl: a convolutional neural network approach. In: Robot World
Cup, pp. 122–134. Springer (2018)

115. Li, J., Liang, X., Wei, Y., Xu, T., Feng, J., Yan, S.: Perceptual generative
adversarial networks for small object detection. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1222–1230 (2017)

116. Li, Y., Hao, Z., Lei, H.: Survey of convolutional neural network. Journal of
Computer Applications 36(9), 2508–2515 (2016)

117. Liang, X., Wang, H., Chen, W.: Adaptive image-based visual servoing of
wheeled mobile robots with fixed camera configuration. In: 2014 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 6199–6204.
IEEE (2014)



40 Zakariae Machkour et al.

118. Lin, C., Wang, H., Yuan, J., Yu, D., Li, C.: An improved recurrent neural
network for unmanned underwater vehicle online obstacle avoidance. Ocean
Engineering 189, 106327 (2019)

119. Lippiello, V., Fontanelli, G.A., Ruggiero, F.: Image-based visual-impedance
control of a dual-arm aerial manipulator. IEEE Robotics and Automation
Letters 3(3), 1856–1863 (2018)

120. Lippiello, V., Siciliano, B., Villani, L.: Visual motion estimation of 3d objects:
an adaptive extended kalman filter approach. In: 2004 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No.
04CH37566), vol. 1, pp. 957–962. IEEE (2004)

121. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.E., Fu, C., Berg,
A.C.: SSD: single shot multibox detector. CoRR abs/1512.02325 (2015).
URL http://arxiv.org/abs/1512.02325

122. Loquercio, A., Maqueda, A.I., Del-Blanco, C.R., Scaramuzza, D.: Dronet:
Learning to fly by driving. IEEE Robotics and Automation Letters 3(2),
1088–1095 (2018)

123. Lots, J.F., Lane, D., Trucco, E.: Application of 2 1/2 d visual servoing to un-
derwater vehicle station-keeping. In: OCEANS 2000 MTS/IEEE Conference
and Exhibition. Conference Proceedings (Cat. No. 00CH37158), vol. 2, pp.
1257–1264. IEEE (2000)

124. Loy, J.: Neural Network Projects with Python: The ultimate guide to using
Python to explore the true power of neural networks through six projects.
Packt Publishing Ltd (2019)

125. Loy, J.: Neural Network Projects with Python: The ultimate guide to using
Python to explore the true power of neural networks through six projects.
Packt Publishing Ltd (2019)

126. Luo, W., Schwing, A.G., Urtasun, R.: Efficient deep learning for stereo match-
ing. In: Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 5695–5703 (2016)

127. MacKay, D.J.: A practical bayesian framework for backpropagation networks.
Neural computation 4(3), 448–472 (1992)

128. Mahler, J., Liang, J., Niyaz, S., Laskey, M., Doan, R., Liu, X., Ojea, J.A.,
Goldberg, K.: Dex-net 2.0: Deep learning to plan robust grasps with synthetic
point clouds and analytic grasp metrics. arXiv preprint arXiv:1703.09312
(2017)

129. Malis, E., Chaumette, F., Boudet, S.: 2 1/2 d visual servoing. IEEE Trans-
actions on Robotics and Automation 15(2), 238–250 (1999)

130. Marchand, E.: Subspace-based direct visual servoing. IEEE Robotics and
Automation Letters 4(3), 2699–2706 (2019)

131. Marchand, E.: Direct visual servoing in the frequency domain. IEEE Robotics
and Automation Letters 5(2), 620–627 (2020)

132. Mariottini, G.L., Oriolo, G., Prattichizzo, D.: Image-based visual servoing for
nonholonomic mobile robots using epipolar geometry. IEEE Transactions on
Robotics 23(1), 87–100 (2007)

133. Mebarki, R., Lippiello, V., Siciliano, B.: Nonlinear visual control of unmanned
aerial vehicles in gps-denied environments. IEEE Transactions on Robotics
31(4), 1004–1017 (2015)

134. Mejias, L., Campoy, P., Saripalli, S., Sukhatme, G.S.: A visual servoing ap-
proach for tracking features in urban areas using an autonomous helicopter.

http://arxiv.org/abs/1512.02325


Title Suppressed Due to Excessive Length 41

In: Proceedings 2006 IEEE International Conference on Robotics and Au-
tomation, 2006. ICRA 2006., pp. 2503–2508. IEEE (2006)

135. Menfoukh, K., Touba, M.M., Khenfri, F., Guettal, L.: Optimized convolu-
tional neural network architecture for uav navigation within unstructured
trail. In: 020 1st International Conference on Communications, Control Sys-
tems and Signal Processing (CCSSP), pp. 211–214. IEEE (2020)

136. Mercado, D., Maia, M., Diez, F.J.: Aerial-underwater systems, a new
paradigm in unmanned vehicles. Journal of Intelligent & Robotic Systems
95(1), 229–238 (2019)

137. Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., Terzopou-
los, D.: Image segmentation using deep learning: A survey. arXiv preprint
arXiv:2001.05566 (2020)

138. Mitchell, T.M., et al.: Machine learning (1997)
139. Morrison, D., Corke, P., Leitner, J.: Learning robust, real-time, reactive

robotic grasping. The International Journal of Robotics Research 39(2-3),
183–201 (2020)

140. Muller, U., Ben, J., Cosatto, E., Flepp, B., Cun, Y.L.: Off-road obstacle
avoidance through end-to-end learning. In: Advances in neural information
processing systems, pp. 739–746 (2006)

141. Myint, M., Yonemori, K., Yanou, A., Lwin, K.N., Minami, M., Ishiyama, S.:
Visual servoing for underwater vehicle using dual-eyes evolutionary real-time
pose tracking. Journal of Robotics and Mechatronics 28(4), 543–558 (2016)

142. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann
machines. In: ICML (2010)

143. Neal, R.M.: Bayesian learning for neural networks. Ph.D. thesis, University
of Toronto (1995)

144. Nocks, L.: The robot: the life story of a technology. Greenwood Publishing
Group (2007)

145. Ourak, M., Tamadazte, B., Lehmann, O., Andreff, N.: Direct visual servoing
using wavelet coefficients. IEEE/ASME Transactions on Mechatronics 24(3),
1129–1140 (2019)

146. Padhy, R.P., Verma, S., Ahmad, S., Choudhury, S.K., Sa, P.K.: Deep neu-
ral network for autonomous uav navigation in indoor corridor environments.
Procedia computer science 133, 643–650 (2018)

147. Pedersen, O.M., Misimi, E., Chaumette, F.: Grasping unknown objects by
coupling deep reinforcement learning, generative adversarial networks, and
visual servoing. In: 2020 IEEE International Conference on Robotics and
Automation (ICRA), pp. 5655–5662. IEEE (2020)

148. Penza, V., Salerno, D., Acemoglu, A., Ortiz, J., Mattos, L.S.: Hybrid visual
servoing for autonomous robotic laser tattoo removal. In: 2019 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), pp. 4461–
4466. IEEE (2019)

149. Pestana, J., Sanchez-Lopez, J.L., Campoy, P., Saripalli, S.: Vision based
gps-denied object tracking and following for unmanned aerial vehicles. In:
2013 IEEE international symposium on safety, security, and rescue robotics
(SSRR), pp. 1–6. IEEE (2013)

150. Pomerleau, D.A.: Alvinn: An autonomous land vehicle in a neural network.
In: Advances in neural information processing systems, pp. 305–313 (1989)



42 Zakariae Machkour et al.

151. Pomerleau, D.A.: Efficient training of artificial neural networks for au-
tonomous navigation. Neural computation 3(1), 88–97 (1991)

152. Qiu, Y., Li, B., Shi, W., Zhang, X.: Visual servo tracking of wheeled mobile
robots with unknown extrinsic parameters. IEEE Transactions on Industrial
Electronics 66(11), 8600–8609 (2019)

153. Raja, R., Kumar, S.: A hybrid image based visual servoing for a manipulator
using kinect. In: Proceedings of the Advances in Robotics, pp. 1–5 (2017)

154. Ramachandran, P., Zoph, B., Le, Q.V.: Searching for activation functions.
arXiv preprint arXiv:1710.05941 (2017)

155. Ramezani Dooraki, A., Lee, D.J.: An end-to-end deep reinforcement learning-
based intelligent agent capable of autonomous exploration in unknown envi-
ronments. Sensors 18(10), 3575 (2018)

156. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: Xnor-net: Imagenet
classification using binary convolutional neural networks. In: European con-
ference on computer vision, pp. 525–542. Springer (2016)

157. Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once:
Unified, real-time object detection. CoRR abs/1506.02640 (2015). URL
http://arxiv.org/abs/1506.02640

158. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 7263–
7271 (2017)

159. Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. CoRR
abs/1804.02767 (2018). URL http://arxiv.org/abs/1804.02767

160. Rizzi, A.A., Koditschek, D.E.: Preliminary experiments in spatial robot jug-
gling. In: Experimental Robotics II, pp. 282–298. Springer (1993)

161. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for
biomedical image segmentation. In: International Conference on Medical
image computing and computer-assisted intervention, pp. 234–241. Springer
(2015)

162. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by
back-propagating errors. nature 323(6088), 533–536 (1986)

163. Sadeghi, F.: Divis: Domain invariant visual servoing for collision-free goal
reaching. In: A. Bicchi, H. Kress-Gazit, S. Hutchinson (eds.) Robotics: Sci-
ence and Systems XV, University of Freiburg, Freiburg im Breisgau, Ger-
many, June 22-26, 2019 (2019). DOI 10.15607/RSS.2019.XV.055. URL
https://doi.org/10.15607/RSS.2019.XV.055

164. Said, T., Ghoniemy, S., Karam, O.: Real-time multi-object detection and
tracking for autonomous robots in uncontrolled environments. In: 2012 Sev-
enth International Conference on Computer Engineering & Systems (ICCES),
pp. 67–72. IEEE (2012)

165. Salehian, M., RayatDoost, S., Taghirad, H.: Robust unscented kalman filter
for visual servoing system. In: The 2nd International Conference on Control,
Instrumentation and Automation, pp. 1006–1011. IEEE (2011)

166. Samson, C., Espiau, B., Borgne, M.L.: Robot control: the task function ap-
proach. Oxford University Press, Inc. (1991)

167. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2:
Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp. 4510–4520 (2018)

http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1804.02767
https://doi.org/10.15607/RSS.2019.XV.055


Title Suppressed Due to Excessive Length 43

168. Santamaria-Navarro, A., Andrade-Cetto, J., Lippiello, V.: Visual servoing of
aerial manipulators. In: Aerial Robotic Manipulation, pp. 191–202. Springer
(2019)

169. Saxena, A., Pandya, H., Kumar, G., Gaud, A., Krishna, K.M.: Exploring
convolutional networks for end-to-end visual servoing. In: 2017 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 3817–3823.
IEEE (2017)

170. Schramm, F., Morel, G., Micaelli, A., Lottin, A.: Extended-2d visual servo-
ing. In: IEEE International Conference on Robotics and Automation, 2004.
Proceedings. ICRA’04. 2004, vol. 1, pp. 267–273. IEEE (2004)

171. Shademan, A., Janabi-Sharifi, F.: Sensitivity analysis of ekf and iterated ekf
pose estimation for position-based visual servoing. In: Proceedings of 2005
IEEE Conference on Control Applications, 2005. CCA 2005., pp. 755–760.
IEEE (2005)

172. Sharma, R., Hutchinson, S.: Motion perceptibility and its application to ac-
tive vision-based servo control. IEEE Transactions on Robotics and Automa-
tion 13(4), 607–617 (1997)

173. Shepard, A.J., Wang, B., Foo, T.K., Bednarz, B.P.: A block matching based
approach with multiple simultaneous templates for the real-time 2d ultra-
sound tracking of liver vessels. Medical physics 44(11), 5889–5900 (2017)

174. Simon, D.: Optimal state estimation: Kalman, H infinity, and nonlinear ap-
proaches. John Wiley & Sons (2006)

175. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

176. Smith, C., Karayiannidis, Y., Nalpantidis, L., Gratal, X., Qi, P., Dimarog-
onas, D.V., Kragic, D.: Dual arm manipulation—a survey. Robotics and
Autonomous systems 60(10), 1340–1353 (2012)

177. Speck, D., Barros, P., Weber, C., Wermter, S.: Ball localization for robocup
soccer using convolutional neural networks. In: Robot World Cup, pp. 19–30.
Springer (2016)

178. Stokkeland, M., Klausen, K., Johansen, T.A.: Autonomous visual navigation
of unmanned aerial vehicle for wind turbine inspection. In: 2015 International
Conference on Unmanned Aircraft Systems (ICUAS), pp. 998–1007. IEEE
(2015)

179. Sze, V., Chen, Y.H., Yang, T.J., Emer, J.S.: Efficient processing of deep
neural networks: A tutorial and survey. Proceedings of the IEEE 105(12),
2295–2329 (2017)

180. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan,
D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
pp. 1–9 (2015)

181. Szegedy, C., Toshev, A., Erhan, D.: Deep neural networks for object detec-
tion. In: Advances in neural information processing systems, pp. 2553–2561
(2013)

182. Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., Le,
Q.V.: Mnasnet: Platform-aware neural architecture search for mobile. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 2820–2828 (2019)

183. Thomas, C.: Sensor Fusion - Foundation and Applications. InTech (2011)



44 Zakariae Machkour et al.

184. Thomas, J., Loianno, G., Sreenath, K., Kumar, V.: Toward image based
visual servoing for aerial grasping and perching. In: 2014 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 2113–2118. IEEE
(2014)

185. Thornton, J., Grace, D., Spillard, C., Konefal, T., Tozer, T.: Broadband com-
munications from a high-altitude platform: the european helinet programme.
Electronics & Communication Engineering Journal 13(3), 138–144 (2001)

186. Thrun, S., Burgard, W., Fox, D.: Probabilistic robotics. Intelligent robotics
and autonomous agents. MIT Press (2005)

187. Thuilot, B., Martinet, P., Cordesses, L., Gallice, J.: Position based visual ser-
voing: keeping the object in the field of vision. In: Proceedings 2002 IEEE In-
ternational Conference on Robotics and Automation (Cat. No. 02CH37292),
vol. 2, pp. 1624–1629. IEEE (2002)

188. Usher, K., Ridley, P., Corke, P.: Visual servoing of a car-like vehicle-an ap-
plication of omnidirectional vision. In: 2003 IEEE International Conference
on Robotics and Automation (Cat. No. 03CH37422), vol. 3, pp. 4288–4293.
IEEE (2003)

189. Vaillant, R., Monrocq, C., Le Cun, Y.: Original approach for the localisation
of objects in images. IEE Proceedings-Vision, Image and Signal Processing
141(4), 245–250 (1994)

190. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser,  L., Polosukhin, I.: Attention is all you need. In: Advances in Neural
Information Processing Systems, pp. 5998–6008 (2017)

191. Vicente, P., Jamone, L., Bernardino, A.: Towards markerless visual servoing
of grasping tasks for humanoid robots. In: 2017 IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 3811–3816. IEEE (2017)

192. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple
features. In: Proceedings of the 2001 IEEE computer society conference on
computer vision and pattern recognition. CVPR 2001, vol. 1, pp. I–I. IEEE
(2001)

193. Wang, H., Guo, D., Liang, X., Chen, W., Hu, G., Leang, K.K.: Adaptive
vision-based leader–follower formation control of mobile robots. IEEE Trans-
actions on Industrial Electronics 64(4), 2893–2902 (2016)

194. Wang, H., Liu, Y.H., Chen, W., Wang, Z.: A new approach to dynamic eye-
in-hand visual tracking using nonlinear observers. IEEE/ASME transactions
on mechatronics 16(2), 387–394 (2010)

195. Wang, H., Yang, B., Liu, Y., Chen, W., Liang, X., Pfeifer, R.: Visual servo-
ing of soft robot manipulator in constrained environments with an adaptive
controller. IEEE/ASME Transactions on Mechatronics 22(1), 41–50 (2016)

196. Wells, G., Venaille, C., Torras, C.: Vision-based robot positioning using neu-
ral networks. Image and Vision Computing 14(10), 715–732 (1996)

197. Wilson, W.J., Hulls, C.W., Bell, G.S.: Relative end-effector control using
cartesian position based visual servoing. IEEE Transactions on Robotics and
Automation 12(5), 684–696 (1996)

198. Wu, B., Xu, C., Dai, X., Wan, A., Zhang, P., Tomizuka, M., Keutzer,
K., Vajda, P.: Visual transformers: Token-based image representation and
processing for computer vision. CoRR abs/2006.03677 (2020). URL
https://arxiv.org/abs/2006.03677

https://arxiv.org/abs/2006.03677


Title Suppressed Due to Excessive Length 45

199. Xu, C., He, J., Zhang, X., Zhou, X., Duan, S.: Towards human motion track-
ing: multi-sensory imu/toa fusion method and fundamental limits. Electron-
ics 8(2), 142 (2019)

200. Xu, Q., Zhang, C., Zhang, L.: Deep convolutional neural network based un-
manned surface vehicle maneuvering. In: 2017 Chinese Automation Congress
(CAC), pp. 878–881. IEEE (2017)

201. Yan, Z., Guo, Y., Zhang, C.: Deep defense: Training dnns with improved
adversarial robustness. arXiv preprint arXiv:1803.00404 (2018)

202. Yang, L., Qi, J., Song, D., Xiao, J., Han, J., Xia, Y.: Survey of robot 3d
path planning algorithms. Journal of Control Science and Engineering 2016
(2016)

203. Yang, T.J., Howard, A., Chen, B., Zhang, X., Go, A., Sandler, M., Sze, V.,
Adam, H.: Netadapt: Platform-aware neural network adaptation for mobile
applications. In: Proceedings of the European Conference on Computer Vi-
sion (ECCV), pp. 285–300 (2018)

204. Yu, C., Cai, Z., Pham, H., Pham, Q.C.: Siamese convolutional neural net-
work for sub-millimeter-accurate camera pose estimation and visual servoing.
arXiv preprint arXiv:1903.04713 (2019)

205. Zarudzki, M., Shin, H.S., Lee, C.H.: An image based visual servoing approach
for multi-target tracking using an quad-tilt rotor uav. In: 2017 International
Conference on Unmanned Aircraft Systems (ICUAS), pp. 781–790. IEEE
(2017)

206. Zereik, E., Sorbara, A., Casalino, G., Didot, F.: Autonomous dual-arm mobile
manipulator crew assistant for surface operations: force/vision-guided grasp-
ing. In: 2009 4th International Conference on Recent Advances in Space
Technologies, pp. 710–715. IEEE (2009)

207. Zhang, Q., Yang, L.T., Chen, Z., Li, P.: A survey on deep learning for big
data. Information Fusion 42, 146–157 (2018)

208. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 6848–6856 (2018)

209. Zhao, C., Sun, Q., Zhang, C., Tang, Y., Qian, F.: Monocular depth estimation
based on deep learning: An overview. Science China Technological Sciences
63(9), 1612–1627 (2020). DOI 10.1007/s11431-020-1582-8. URL http://dx.

doi.org/10.1007/s11431-020-1582-8

210. Zheng, D., Wang, H., Wang, J., Chen, S., Chen, W., Liang, X.: Image-based
visual servoing of a quadrotor using virtual camera approach. IEEE/ASME
Transactions on Mechatronics 22(2), 972–982 (2016)

211. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image transla-
tion using cycle-consistent adversarial networks. In: Proceedings of the IEEE
international conference on computer vision, pp. 2223–2232 (2017)

http://dx.doi.org/10.1007/s11431-020-1582-8
http://dx.doi.org/10.1007/s11431-020-1582-8

	Introduction
	Visual Servoing
	A Taxonomy for Visual Servoing Systems
	Classical Visual Servoing Techniques
	Neural Network Based Visual Servoing Systems
	DNN-based Visual Servoing Systems
	State of the Art in DNN-based Visual Servoing Systems
	Discussion
	Declaration

