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a b s t r a c t

Machine learning (ML) methods are gaining popularity in the forecasting field, as they
have shown strong empirical performance in the recent M4 and M5 competitions, as well
as in several Kaggle competitions. However, understanding why and how these methods
work well for forecasting is still at a very early stage, partly due to their complexity.
In this paper, I present a framework for regression-based ML that provides researchers
with a common language and abstraction to aid in their study. To demonstrate the utility
of the framework, I show how it can be used to map and compare ML methods used
in the M5 Uncertainty competition. I then describe how the framework can be used
together with ablation testing to systematically study their performance. Lastly, I use
the framework to provide an overview of the solution space in regression-based ML
forecasting, identifying areas for further research.

© 2021 The Author(s). Published by Elsevier B.V. on behalf of International Institute of
Forecasters. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The large progress made in the field of machine learn-
ng (ML) has started to spread to the field of forecasting
purring the development of new methods such as au-
oregressive neural networks (Benidis et al., 2020).
ethods based on ML have already shown impressive
erformance in the M4 (Makridakis, Spiliotis, & Assi-
akopoulos, 2020) and M5 (M Open Forecasting Center,
020) competitions, as well as multiple Kaggle competi-
ions (Bojer & Meldgaard, 2021). ML methods based on
eural networks and gradient boosting took the 1st (Smyl,
020) and 2nd place (Montero-Manso, Athanasopoulos,
yndman, & Talagala, 2020) in the M4 competition and
resented substantial improvements over benchmarks in
he modelling of forecast uncertainty (Makridakis et al.,
020). Neural networks and gradient boosting have also
anaged to dominate the four most recent of six fore-
asting competitions on the data science platform Kaggle
Bojer & Meldgaard, 2021). One of the main hypotheses

E-mail address: csb@mp.aau.dk.
ttps://doi.org/10.1016/j.ijforecast.2021.11.003
169-2070/© 2021 The Author(s). Published by Elsevier B.V. on behalf of Inte
he CC BY license (http://creativecommons.org/licenses/by/4.0/).
for their strong performance is the use of cross-learning,
where multiple time series are predicted using a sin-
gle model, thus allowing for learning patterns across
time series (Bojer & Meldgaard, 2021; Makridakis et al.,
2020; Montero-Manso & Hyndman, 2021; Semenoglou,
Spiliotis, Makridakis, & Assimakopoulos, 2020; Spiliotis,
Makridakis, Semenoglou, & Assimakopoulos, 2020).

Despite the impressive empirical performance of ML
methods, little is known about why, when, and how these
methods outperform proven methods such as exponential
smoothing. While the recent competitions highlighted the
potential of ML methods, they also clearly demonstrated
that not all ML methods are able to beat the statistical
benchmarks methods (Makridakis et al., 2020). The same
ML algorithm could significantly outperform the statisti-
cal benchmarks by a large margin in some solutions and
fail to do so in others. Understanding why this is the case
is a key research challenge for advancing the use of ML
methods in forecasting.

The ML forecasting methods used successfully in re-
cent forecasting competitions can be roughly divided into
two classes, namely regression-based ML and neural fore-

casting methods. Regression-based ML transforms the
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Table 1
Decomposition framework for regression based ML methods.
Area Component Description

Preprocessing Outliers Handling unusually large or small values
Imputation Handling of missing values

Dataset
construction

Feature engineering Transforming time series into useful data
representations

Target engineering Transforming the prediction target
Training set construction Strategies for weighting, subsetting, and

augmenting the training data
Model training
and validation

Model Consists of an algorithm such as LightGBM
and a loss function used to estimate
parameters

Multi-step strategy Strategy used to generate multi-step
forecasts

Pooling/cross-learning Strategy used to assign time series to one or
more models

Model evaluation Evaluation strategies for model selection
and performance evaluation

Hyperparameter tuning Strategy for exploring the space of model
hyperparameters

Final prediction strategy Strategy for final predictions, e.g., re-training
the model or averaging predictions of
multiple historical models

Ensembling Ensembling/combination Methods for constructing and combining
multiple models

Postprocessing Postprocessing Forecast adjustments
time series prediction problem into a regression problem,
whereas neural forecasting methods use architectures
that enable directly processing time series and generating
useful representations from them.

I argue that the main difficulty in understanding ML
orecasting methods lies in their complexity. This is espe-
ially true for regression-based ML methods, as they often
onsist of many components in addition to the model,
uch as preprocessing, feature engineering, hyperparam-
ter tuning, etc. Contestants in forecasting competitions
ave reported on their methods using different terminol-
gy and only on certain aspects of their solutions. Without
common language and abstractions for reporting on and
tudying these methods, it becomes difficult to identify
he parts of the method design that result in performance
ifferences.
In this paper, I attempt to contribute to the study of

orecasting ML methods by:

– presenting a framework for regression-based ML
forecasting methods that aims to provide a com-
mon abstraction and language for reporting on and
studying them.

– demonstrating how the framework can be used to
map complex ML methods using the winner and 3rd
place of the M5 Uncertainty competition as exam-
ples.

– suggesting an approach for further study of
regression-based ML methods by using the frame-
work together with ablation testing.

– using the framework to identify underexplored areas
ripe for further research.

. Framework

Inspired by the ML process and building on a review
nd categorization of many ML solutions to forecasting
1556
problems in the M4, M5, and Kaggle competitions, I have
developed the framework for ML forecasting methods as
presented in Table 1. The framework has been shaped by
the fact that most of the analysed solutions were of the
regression-based ML class, and as such it is most suited for
their analysis. It can be applied to map neural forecasting
methods, although a decomposition specifically designed
for this purpose should prove more insightful. In the
framework, an ML method consists of components in five
areas that are based on their purpose in the ML process:

– Preprocessing
– Dataset construction
– Model training and validation
– Postprocessing
– Ensembling

Each of these areas contains one or more components that
I have grouped into coherent units. The framework is sim-
ilar to existing models of the ML process (Amershi et al.,
2019) and AutoML pipelines (He, Zhao, & Chu, 2021) in
its organization. It differs from both by being focused on
forecasting and thus includes multi-step strategy, pooling,
and final prediction strategy as components. In addition,
it differs from (Amershi et al., 2019) by being focused
on decomposing the final method into its components
rather than on representing the overall process. Compared
to He et al. (2021), the framework includes ensembling
and postprocessing but does not consider hyperparameter
optimization for neural networks separately.

The following subsections will address each of the
five areas and their components in detail and describe
strategies observed in the competitions.

2.1. Preprocessing

The act of preprocessing and cleaning data is an impor-
tant part of any quantitative forecasting method, although
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t is often given little attention when the method is writ-
en up and published due to its’ often context-specific
ature. Two classes of cleaning come up often in time se-
ies applications: handling outliers and imputing missing
alues.

.1.1. Outliers
Outliers are unusually low or high values occurring due

o data errors or special circumstances such as one-off
vents. Examples could be sales during a special one-
ff promotion event or webpage visits during a period
f server downtimes. These unusual values can be prob-
ematic for traditional and ML methods for time series
orecasting as they are both based on the extrapolation
f historical patterns.
Unusually, large or small values can have a large im-

act on the forecast (Chen & Liu, 1993), which is un-
esirable if the outlier event is not expected to reoccur
n the forecasted period. However, one should be careful
bout removing or changing outliers, as that might lead
o underestimation of uncertainty when the event could
otentially reoccur in future.

.1.2. Imputation
Imputation is concerned with replacing missing val-

es in time series, as many time series methods do not
andle missing values. Many methods exist for imput-
ng missing values ranging from simple univariate meth-
ds such as last observation carried forward variations,
nterpolation, and model-based methods (Moritz & Bartz-
eielstein, 2017) to more complex methods such as ma-
rix factorization (Yu, Rao, & Dhillon, 2016).

.2. Dataset construction

Dataset construction is concerned with the process
f transforming one or more time series into a suitable
epresentation for an ML model. Training of ML models
equires two inputs: (1) the input dataset X that the
odel is expected to learn patterns from and (2) the tar-
ets that the model will learn to predict Y. In the context
f forecasting Y consists of future values of the time series,
hile X can consist of the raw historical time series data
nd other informative features, such as external factors or
ummaries of the historical data.

.2.1. Feature engineering
Feature engineering is concerned with transforming

he time series dataset into the input dataset X. The
oal of feature engineering is to come up with a set of
ransformations that increases the predictive performance
f the model. The challenge here is not only coming up
ith potentially useful transformations, but also select-

ng which features to use, as including many irrelevant
eatures are likely to lead to overfitting. Typical features
nclude external factors, lagged values of the time series,
olling statistics, and other time series features (Bojer &
eldgaard, 2021). Feature selection is often done manu-
lly using cross-validation performance or in the case of

he tree-based method using permutation importance.

1557
2.2.2. Target engineering
Target engineering is the process of making transfor-

mations to the target Y to improve predictive perfor-
mance. Transformations to the target, or the time series
itself, are typically made for one of the following three
purposes: (1) making the time series stationary, (2) deal-
ing with non-constant variance, and (3) scaling the time
series. Stationarizing the time series is often done for
traditional time series methods such as ARIMA, using
differences or seasonal differences. The forecasting field,
therefore, has a lot of tools already available for this area
that should also prove useful for regression-based ML
methods. The same is true for dealing with non-constant
variance, where methods such as the Box–Cox transform
(Box & Cox, 1964) are well-developed and understood.

The last issue of scaling has not been as relevant in
the forecasting field until recently, as most modelling
has focused on one model per time series. However, it
becomes important when multiple time series are to be
modelled using a single model, as patterns can otherwise
not be learned across time series with different scales.
Examples of scaling methods include variations of mean
scaling where the time series is divided by its historical
mean (Salinas, Flunkert, Gasthaus, & Januschowski, 2020)
or a moving average.

2.2.3. Training set construction
Training set construction concerns what data is used

in model training and the importance assigned to each
datapoint. It is often overlooked but is an important de-
sign parameter, as it together with feature and target
engineering determine what is learnable from the data.
Three key choices in the training set construction con-
cerns subsetting, data augmentation, and weighting. Sub-
setting concerns not using a part of the data for model
training. Examples would be to remove older data, as
the patterns might have changed over time, or selective
inclusion of data based on the period to be forecasted.
As an illustrative application of the latter, some Kaggle
contestants have removed holiday data for non-holiday
forecasts or data from the winter period if a forecast was
required for the summer period.

Augmentation is concerned with creating additional
data by making changes to the original data. The challenge
is in finding meaningful transformations that still pre-
serve the patterns in the data, thus providing additional
samples. An example of augmentation from the forecast-
ing literature includes bagging of exponential smoothing
models using an STL decomposition (Bergmeir, Hyndman,
& Benítez, 2016). The winners of the M5 Uncertainty com-
petition (ref – part of special issue) used augmentation in
the form of randomly scaling the time series by a factor
to improve extrapolation performance.

Weighting data can be used to assign different levels of
importance to observations in terms of impact on model
estimation. It can be used both to weigh errors in the
loss function as part of the training process, which is
supported by almost all modern ML methods, or as part of
the training set construction to randomly resample from

the dataset with probability in proportion to the weights.
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.3. Model training and validation

Model training and validation is the area that usually
eceives the most attention in research. It is concerned
ith all aspects related to the model, including its design,
raining, and validation. Two of the components are a
esult of issues specific to the forecasting context, namely
ulti-step strategy and final prediction strategy.

.3.1. Model
The model itself can be any supervised ML model that

aps from the input data X to an output Y. The form of
depends on the multi-step strategy and loss function.

o optimize parameters in the training process, the model
ses a loss function that assigns a cost to each prediction
rror. Common loss functions include mean squared error,
hich leads to a mean prediction, and quantile loss, which

eads to a quantile prediction (Kolassa, 2020). An example
se case for quantile loss is using multiple instances of the
ame model to forecast different quantiles, which allows
or predicting the forecast distribution using standard
egression-based ML methods.

.3.2. Multi-step strategy
One of the key challenges in using regression-based

ethods for time series is how to produce multi-step
head forecasts. The work of Bontempi, Taieb, and
e Borgne (2012) presents four classes of strategies for
ulti-step forecasting: the recursive strategy, the direct
trategy, the hybrid strategy DirRec, and multiple output
strategies. In addition to the above strategies, Kaggle
contestants have come up with three other strategies. The
first, which I will call seasonal direct, uses one model per
seasonal period to forecast ahead. In the M5 competition
where four-week forecasts were required for daily data,
this would mean using four models. This is possible by
only including time series features that rely on seven-
day (or more) lagged values. The second, which I will call
horizon modelling, uses a single model to forecast multi-
steps ahead without relying on a multi-output model. This
is possible by including the horizon as a feature in the
model and suitable constructing the training data. More
concretely, each row in the input data matrix will be
duplicated h times, a new column with the horizon will
be added, and the corresponding h-step ahead values in
Y will be aligned with the input matrix. The last strategy,
which I will call naïve regression due to the discarding
f recent information, is to simply ignore the multi-step
spect by only relying on lag-h or older values in the
eatures used.

.3.3. Pooling/cross-learning
Pooling or cross-learning can be viewed as a spectrum

f strategies for assigning time series to one or more
odels, ranging from local models with one model per

ime series to global models with a single model for all
ime series (Montero-Manso & Hyndman, 2021). While
he use of local and global methods is straightforward,
ybrid models are trickier as they also require a logic for
ssigning the time series to models, including deciding
n the number of models to use. Examples of this logic
nclude using the time series hierarchy, e.g., by having one
odel per store or product category or using time series
1558
clustering to decide on the subsets (Semenoglou et al.,
2020).

2.3.4. Model evaluation
Model evaluation is perhaps the most crucial compo-

nent of an ML method, as it is responsible for preventing
overfitting. Models can be evaluated for two separate pur-
poses: model selection and performance evaluation. The
purpose of model selection is to select the best ‘‘model’’,
where the model in this context refers to the configura-
tion of all the listed components. The selection is typically
based on performance on one or more validation sets,
potentially considering both the mean and variance of
the forecast accuracy. The purpose of performance eval-
uation is to provide an unbiased assessment of the out-
of-sample accuracy of the selected model. Strategies for
model evaluation are well-known within the statistics
and forecasting fields and include hold-out datasets, K-
fold cross-validation, and time series cross-validation and
variations such as blocked K-fold (Bergmeir & Benítez,
2012). A less known strategy used by some Kaggle con-
testants is a variant of K-fold cross-validation, known as
grouped K-fold cross-validation in the ML community.
This strategy uses a grouping variable and ensures that
rows from the same group end up in the same fold.
As an example of the strategy, the winners of the M5
Uncertainty challenge used year as the grouping variable,
ensuring that data from the same year is not used for both
training and evaluation.

2.3.5. Hyperparameter tuning
Hyperparameter tuning is concerned with strategies

for selecting the set of hyperparameters for a model that
optimizes predictive performance. Hyperparameters typ-
ically specify how the model training process is carried
out and tend to have a large impact on model accu-
racy and overfitting. The number of hyperparameters in
ML methods makes it infeasible both from an overfitting
and a computational perspective to conduct a brute-force
search. Multiple search strategies have therefore been
devised for finding good hyperparameters within a com-
putational budget ranging from simple approaches, such
as manual, grid, and random search, to genetic algorithms
and Bayesian optimization (see Feurer & Hutter, 2019 for
an overview)

2.3.6. Final prediction strategy
The process of evaluating models using cross-validation

or time series cross-validation results in multiple mod-
els being produced; one for each of the K-folds. After
model selection, a choice must be made regarding how
to generate out-of-sample forecasts for the test set. The
typical approach would be to retrain the model using the
newest data and use this retrained model. A risk with
this approach is that the retrained model will not have
had its performance evaluated and might perform poorly.
Alternative approaches observed in Kaggle competitions
include using the model from the most recent fold or
using an average of the predictions from the K models.
While these approaches do not use the most recent data,
they are more robust as they have been evaluated thus
reducing the risk of overfitting.
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.4. Ensembling/combinations

Ensembling, or combinations, concerns combining the
utput of multiple forecast models and very often leads
o improved performance. Two main aspects are present
ith ensembling: how to create a diverse pool of forecasts
odels to combine and how to combine the forecasts.
ith time series models, diversity in the ensembles has

ypically been achieved through the inclusion of different
odel families or by combining different models from

he same model family. With modern forecasting meth-
ds, diversity can also be added by modifying any of
he components, e.g., features, hyperparameters, or data
onstruction.
Approaches for combining the forecasts of the pool

f models have been studied extensively in the fore-
asting community already (e.g., Kourentzes, Barrow, &
etropoulos, 2019). One of the two main approaches is
tacking, where a model is trained to optimally combine
he predictions from the pool of models. This introduces
separate model that can be designed using the compo-
ents from the framework. The other approach is the use
f simple combination operators such as the average or
edian.

.5. Postprocessing

Postprocessing is concerned with adjusting the out-
uts generated by a model. Typically, this includes the
se of the subjective expertise of the forecaster in the
djustment process. Examples include making trend ad-
ustments to forecasts or clipping the forecasts, such as
eplacing negative forecasts with zero values or providing
max value for forecasts to ensure they stay within

easonable bounds. A widely researched data-driven ap-
roach suitable for hierarchical time series is forecast
econciliation, which exploits the structural information
f the hierarchy and in addition to reconciliation often im-
roves forecast performance at different aggregation lev-
ls (e.g., Wickramasuriya, Athanasopoulos, & Hyndman,
019).

. Application

In this section, I show the utility of the framework by
emonstrating how it can be used to map and compare
L methods in the M5 Uncertainty competition. Due to
pace limitations, I use the winning (ref to be added –
art of special issue) and the 3rd place solutions of the
5 Uncertainty competition as illustrative examples. A
apping of other reported solutions in the top 15 can
e found in the supplementary materials. Note that the
pplication is based on my interpretation of the published
aterial from the contestants and thus slight inaccuracies
re possible. Table 2 presents the mapping of the two
olutions based on the framework.
Based on the mapping, it is evident that, despite re-

ying on similar input data, the methods use different
trategies in all the components, thus clearly showcasing
he large design space and complexity in ML methods.
1559
Notably, both methods in Table 2 are similar in configu-
ration to gradient boosting and neural network methods
that have been successful in previous Kaggle competitions
(Bojer & Meldgaard, 2021). Noticeable differences for the
winning solution compared to the earlier Kaggle solutions
include the use of reconciliation, horizon modelling, group
K-fold, sampling, and range blending. The 3rd place solu-
tion differs mainly in terms of the use of oversampling
and distribution parameters as model outputs. By making
differences transparent, the framework aids in under-
standing the methods, but it does not by itself explain the
performance differential. The large number of contestants
using both LightGBM and neural networks with varying
performance does, however, suggests that it does not lie
in the model itself.

4. Understanding method performance

To truly learn from and understand the high perform-
ing methods in the M5 and other competitions, we need
to understand which components are responsible for their
performance. Ablation testing is a well-known method
in the field of ML used to identify which parts of the
often highly complex methods are responsible for im-
proved performance and which merely add accidental and
unnecessary complexity. It is standard to evaluate new
neural network architectures by comparing the architec-
tural innovations to benchmark modules or a reference
architecture without the module. Ablation testing works
by decomposing the method into components and then
systematically varying or turning off specific components
and measuring the impact on performance. In the case
of the M5 Uncertainty winner, ablation testing the non-
standard components in the solution seems like an obvi-
ous place to start, such as postprocessing, range-blending,
weighted subsampling, and removal of holiday months.

Adopting ablation testing in forecasting research would
have implications for our practices as a research commu-
nity. In the field of ML, ablation testing is supported by a
culture of using common benchmark datasets for testing,
of open sourcing code, and of adopting modular software
architectures for the methods developed. While the first
two practices are already strong points of the forecasting
community, the adoption of modular architectures is not
yet widespread. The use of a modular architecture al-
lows for easily swapping components, increasing the level
of abstraction at which model developers and ablation
testers can work. Great work is already being done in
this area, e.g., in Python packages such as sktime (Löning,
Bagnall, Ganesh, Kazakov, Lines et al., 2019) and GluonTS
(Alexandrov et al., 2020), and I strongly recommend the
community to join these efforts.

5. Research opportunities

As a side product of developing the framework, the
process allowed me to take stock of the strategies de-
veloped for each of the components in the competi-
tions examined. This resulted in a necessarily incom-
plete overview of the solution space for the design of
regression-based ML methods for forecasting. This
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apping of winner and 3rd place solution in M5 Uncertainty competition.

Component Winner Third place

Outliers

Imputation

Feature engineering Exponentially weighted moving averages,
rolling statistics based on sales and
de-trended sales. Categorical and calendar
features. Gaussian noise added to month.
Feature selection using cross-validation
performance

Sales, prices, and calendar variables from
the last 28 days. Weekday and holiday
features. Price trend. Average of time series
for individual model

Target engineering Range blending. Power transform on aggregated time series

Training set construction Excluded holiday months. Weight-based
sampling.

Oversampled two most recent years by
factor 2 and 4

Model LightGBM with quantile loss Long short-term memory (LSTM) model
with categorical embeddings, predicting
distribution parameters. Negative
log-likelihood of negative binomial for
individual model and student-t for
aggregate model

Multi-step strategy Horizon modelling Multiple output

Pooling/cross-learning One model for each aggregation level and
quantile

One model for store/item level. One model
for aggregated series

Model evaluation Nested group K-fold with year as group.
Leave-one-group-out for hyperparameter
tuning

4-fold time series cross-validation with each
validation fold having 8 weeks of data

Hyperparameter tuning Random search Early stopping for number of epochs. Others
unspecified

Final prediction strategy Weighted average of K models Retraining for aggregated model. No
retraining for individual model

Ensembling/combination K-fold models with multiple subsamples
used for each. Combination using average

Average of multiple seeds for
hyperparameter tuning. No ensembling for
final predictions

Postprocessing Reconciliation of Levels 1–9 mean forecasts
and adjusted quantiles based on this
overview in turn allowed for the identification of several
areas of the solution space that the forecasting field has
not yet studied in depth. One highly relevant area where
research is already well underway in the area of cross-
learning and pooling. Identifying when and where dif-
ferent pooling strategies outperform local models would
advance the field considerably. In relation to this topic,
the areas of feature and target engineering seem critical
for getting the most value out of cross-learning and inves-
tigating the dependencies between these areas seem like
a potentially fruitful research area.

Another area deserving of further research due to
ts importance for ML methods is cross-validation. While
reat research has already been conducted in this area
e.g., (Bergmeir & Benítez, 2012), the introduction of new
ross-validation strategies and considerable advances in
L methods suggests that this area might be worth revis-

ting. The same is true for the area of multi-step strategies
Bontempi et al., 2012), where new strategies have been
resented since the seminal paper on the topic.
The topics of sampling, augmentation, and weight-

ng of data, which were present in the examined M5
olutions, also seem worthy of study. Proven statistical
orkhorses such as exponential smoothing are built on
he insight that both recency and seasonality are impor-
ant. However, attempts to incorporate this insight, such
1560
as by subsamling or weighting the data, has not been
explored in the context of ML methods. Lastly, an effort to
disentangle the role of context-specific pre- and postpro-
cessing in method performance would be highly useful, as
it can help determine the generalizability potential of the
methods.

6. Conclusion

Inspired by research methods used in the field of ML, I
presented a framework for the study of regression-based
ML methods for forecasting. The goal of the paper is to
provide a common language and abstraction for the study
of ML methods for forecasting, as well as a vision for
how the framework might be used together with ablation
testing for studying their performance. While the frame-
work is based on many ML method designs as reported in
multiple forecasting competitions, it is but one scholar’s
initial attempt to decompose and tame the complexity of
modern ML methods. As with all models, they improve
significantly when confronted with more data, and it is
my hope that the framework will be used, discussed,
critiqued, and refined in the upcoming work on studying
the methods from the M5 competition and evaluate the
many new ML methods that are surely to be developed

in the near future.
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