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Parameter Estimation of Power Electronic Converters
With Physics-Informed Machine Learning

Shuai Zhao , Member, IEEE, Yingzhou Peng , Member, IEEE, Yi Zhang , Member, IEEE,
and Huai Wang , Senior Member, IEEE

Abstract—Physics-informed machine learning (PIML) has been
emerging as a promising tool for applications with domain knowl-
edge and physical models. To uncover its potentials in power elec-
tronics, this article proposes a PIML-based parameter estimation
method demonstrated by a case study of dc–dc Buck converter.
A deep neural network and the dynamic models of the converter
are seamlessly coupled. It overcomes the challenges related to
training data, accuracy, and robustness which a typical data-driven
approach has. This exemplary application envisions to provide a
new perspective for tailoring existing machine learning tools for
power electronics.

Index Terms—Buck converter, deep neural network, prognostics
and health management, physics-informed machine learning
(PIML), condition monitoring.

I. INTRODUCTION

IN-SITU component electrical parameters can be used for
adaptive control, fault diagnosis, and condition monitoring of

power electronic converters [1], [2]. One research direction is to
indirectly estimate the parameters based on existing sensors and
available information in the converters, without the introduced
hardware interference and cost [3]. The efforts made can be
categorized into purely data-driven methods [4]–[7] and hybrid
data-driven approaches [8]–[11], depending on whether the
system physical models are utilized or not.

The purely data-driven method is designed to learn underlying
functional relationships between the easily accessible signals
and component parameters to be monitored, and a vast amount
of machine learning (ML) tools [12], [13] can be used to establish
such functional relationships. Given the established functional
relationship and easily accessible signals, the component pa-
rameters will be estimated indirectly. For example, in [4], a
feed-forward neural network is applied to learn the nonlinear
relationship between the capacitance of the dc-link capacitor
and the harmonics of the dc-link ripple voltage. Once the neural
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network is well trained, the capacitance will be inferred from
the harmonics of ripple voltage indirectly. In [5], to monitor the
capacitor aging status in the dc filters, an adaptive neuro-fuzzy
inference system algorithm is trained to establish the functional
relationship between the algorithm inputs, including the con-
verter input voltage and voltage crossing the dc filters, and the
algorithm output as the capacitor aging index in the dc filters.
In this way, the capacitor aging index is indirectly obtained with
easily accessed voltage information. One of the key merits of
the purely data-driven method is that these methods are flexible
and easy to implement [3]. Nevertheless, to our best knowledge,
these purely data-driven solutions have been rarely implemented
in industrial fields, due to the following common challenges.
First, the power electronics is not a data-intensive field to date,
such as image recognition, where the data-driven method has
shown great success based on solid data foundations (e.g.,
“ImageNet” with million samples). Instead, the data collection
in power electronics is prohibitively resource-consuming with
limited sampling frequency and accuracy. As a result, ML tools
may not be well trained and thus the benefits cannot be fully un-
leashed. Second, considering the uncertainty sources (high-level
heterogeneity, parameter variations, diversified mission profiles,
etc.) in power electronic systems, the underlying assumption of
the identical data distributions between the training and testing
datasets are difficult to fulfill. Thus, the method generalization
is relatively poor especially for the cases where few data are
available in the training dataset. More often than not, it results
in the models that are less robust for external disturbance. Third,
power electronic systems are implemented for mission-critical
applications in most cases, with almost zero-tolerance to unpre-
dictable results. However, most of the existing purely data-driven
solutions suffer from the “black-box” feature. The predictions
are less accountable and may be subjected to physical inconsis-
tency, which could be unacceptable for practical engineers.

One of the favorable features of power electronic systems
is that there are already certain aspects of physical models
and domain knowledge. It includes deterministic functional
relationships of underlying system behaviors, e.g., symmetry,
invariance, algebraic equations, logical rules, principles (e.g.,
Ohm’s law, Kirchhoff circuit laws, differential equations) [14],
etc. Therefore, it is natural to leverage the efficient deterministic
principles and flexible data-driven approaches in a synergistic
manner for complementing each other, as hybrid data-driven
methods. In contrast to purely data-driven methods, the system
models are partially known in advance as the prior information.
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The unknown model coefficients, which are the component pa-
rameters to be monitored, will be estimated with the measurable
data. By searching an optimal set of model coefficients with op-
timization tools, an accurate model is deemed to be established
once the errors between model outputs and the physical systems
are minimized. For example, in [15], the component parameter
estimation is formulated as a multivariable optimization task
of a state-space model of a Buck converter. The matrices of
the state-space model are decomposed with eigenvectors and
eigenvalues with unknown component parameters, and these
parameters are optimized by using the biogeography-based
optimization method. In [16], a generalized gradient descent
algorithm is applied to the parameter estimation of an inter-
leaved boost converter based on the system dynamic model.
Usually, the hybrid data-driven methods are more accurate and
robust, while the existing studies still suffer from the following
limitations. First, in most existing studies, the data collection
requires injecting a pseudorandom binary sequence into the con-
troller [3]. Considering the controller is one of the crucial parts,
its safety and reliability are the highest priority, especially for
mission-critical applications. From the industrial product per-
spective, proactively injecting the disturbance into the controller
is not favorable or even not allowed for condition monitoring
purposes. Second, advanced frequency domain analysis, such
as s- or z-domain transformation, is required in most cases.
These analysis techniques are challenging to be scalable for large
complex systems [3]. Third, due to the intrinsic nonlinearity, the
model discretization techniques are necessary for simplifying
the model. The inaccuracy resulting from the discrete form
is more significant for complex systems and will reduce the
estimation accuracy [17].

To date, the notion of physics-informed machine learning
(PIML) [14], [18], [19] is gaining widespread attention. Com-
pared to the existing ML tools, it is imperative to integrate
physics models into data-driven pipelines, so as to enforce
the learning process toward physically consistent solutions. It
provides a new paradigm to integrate the physical models and
data in the data-driven methods, with great benefits to reduce
data requirements, reduce the computation burden, and aug-
ment the prediction transparency [13]. This new paradigm has
achieved success in complex engineering fields and profoundly
outperformed conventional methods, such as fluid mechan-
ics [20], power systems [21], etc. Several salient tools have
been developed for PIML in the literature. For example, with
the automatic differentiation capability of a neural network, the
physical knowledge can be explicitly incorporated to the loss of
a supervised learning task during the training stage. As a result,
a physics-informed neural network (PINN) [22] is proposed
and implemented as an open-source tool based on Tensorflow.
In [23], the infinite derivative property of Gaussian processes
is exploited for developing the physics-informed Gaussian pro-
cesses (PIGP). The Gaussian process priors can be modified
according to the particular forms of physical models, so that the
data and physical knowledge are integrated during the learning
stage. Compared to PINN, the advanced uncertainty quantifi-
cation feature of Gaussian processes can be also extended to
the PIGP. In addition, several pioneering open-source toolboxes

have been prepared to accelerate the PIML implementation, such
as DeepXDE [24] based on Tensorflow, SciANN [25] based
on Keras, and SimNet [26] developed by NVIDIA, which are
expected to deliver great benefits to the domains with plentiful
physical models and fewer data.

This article aims to deliver these benefits of PIML to the power
electronic field. As an exemplary application, it proposes a new
method of parameter estimation of a dc–dc Buck converter based
on PIML. The Buck converter physical knowledge is seamlessly
coupled into the training of a deep neural network to mitigate the
common challenges in data-driven parameter estimation. The
code and data accompanying this article are available in the
Supplementary Material and also on GitHub at1. The presented
study has the following contributions and advantages.

1) It proposes a new scheme to synergistically combine the
data and physical models in the parameter estimation tasks
for power electronic applications.

2) The implemented PIML for Buck converter requires a
relatively small size of training data, more importantly,
which are readily available feedback signals for control
purposes.

3) The complex s- or z-domain transformation and dis-
cretization techniques are not required in the proposed
method. Moreover, in principle, the method could be
scalable for more complex power electronic systems with
a larger number of parameters compared to the Buck
converter.

The rest of this article is organized as follows. Section II
presents the methodology, including the physical model of a
dc–dc Buck converter, idea and framework of the PIML method,
and data preparation procedure. Section III and Section IV verify
the proposed method in the simulation and experiment testing,
respectively. Finally, Section V concludes this article.

II. METHODOLOGY

A. System Dynamic Modeling of Buck Converter

Taking advantage of complementary strengths of physical
models and data, this article proposes a new parameter esti-
mation method based on the modern PIML tool, simultaneously
exploiting the powerful universal approximation capability of
deep learning, and the efficient deterministic physical models.
The dc–dc Buck converter, which is a fundamental energy
conversion system topology in power electronics, will be applied
as an exemplary application to uncover the potentials of PIML
in power electronics.

Fig. 1 shows the circuity topology of a dc–dc Buck con-
verter. The system dynamic model of the Buck converter has
been well-established in the literature as (1) [8]. In (1), A =
(S ·Rdson +RL +RCR/(RC +R)). S is the switch state of
the power semiconductor device that is 1 when it is ON or 0,
otherwise, iL is the inductor current, vC is the dc capacitor
voltage, vo is the output voltage, R is the load resistance, C is
the capacitance of the dc-link capacitor,RC is the corresponding
equivalent series resistance, Vin is the input voltage, and VF is

1[Online]. Available: https://github.com/ms140429/PIML_Converter

https://github.com/ms140429/PIML_Converter
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Fig. 1. Circuit topology of the dc–dc Buck converter.

the diode forward voltage. In essence, the converter is operated
with a controllable pulse width modulation (PWM) sequence.
From a dynamic system perspective, the system behavior of the
converter is deemed as periodic repetitions of multiple PWM
cycles with the switch state S = 1 and S = 0. According to (1),
specifically, at the beginning of each PWM cycle, the inductor
current iL and output voltage vo will start from their initial states
and then evolve toward certain ending states, given an operation
timeΔtwithS = 0. Subsequently, these ending states will serve
as the initial states for the rest PWM time period T −Δt, when
S = 1. The above two steps will be repeated alongwith the
converter operation.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

diL
dt

dvC
dt

vo

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−A

L
− 1

L

(
R

RC +R

)

1

C

(
R

RC +R

)
− 1

C

(
1

RC +R

)

RCR

RC +R

R

RC +R

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
×
⎡
⎣ iL

vC

⎤
⎦

+ S

⎡
⎢⎢⎢⎢⎢⎣

vin

L

0

0

⎤
⎥⎥⎥⎥⎥⎦
+ (1− S)

⎡
⎢⎢⎢⎢⎢⎣

−VF

L

0

0

⎤
⎥⎥⎥⎥⎥⎦
. (1)

B. Physics-Informed Machine Learning Concept

According to (1), the parameter estimation of the converter
is essentially a multivariable optimization task of differential
equations. Existing numerical differential equation solvers in
the literature, however, are not applicable here due to the
distinctive feature of condition monitoring applications, e.g.,
stiffness behavior in the system model, sparse and noisy data,
high accuracy requirement, etc. Using a neural network for
parameter estimation of differential equations goes back to the
1990s [27]. However, the power and potentials of such ideas
were not unleashed due to the limited computation hardware
by then. The situation has been remarkably improved to date,
both in terms of the computation hardware and open-source
toolbox. A growing body of literature indicates that the classical
ML methods are developed to incorporate partial differential
equations of dynamic systems in the data-driven solutions or
discovery [22], [23]. In this article, we resort to this modern

Fig. 2. Explicit relationship between the observable states u(tn), u(tn+1),
and intermediate latent states u(tn+ci ) through backward equation (4) and
forward (7).

scientific computation framework for the parameter estimation
of power electronic systems. Formally, consider a dynamic
system with the following differential equations:

ut +N [u; λ] = 0, x ∈ Ω, t ∈ [0, T ] (2)

and

f := ut +N [u; λ] (3)

where u = u(x, t) denotes the solution of differential equations,
x are the space coordinates, and t is the time coordinate. The
abovementioned form of system dynamic model is generic and
covers a wide range of tasks. Regarding (2), there are two
relevant tasks as 1) data-driven solution: given system parameter
λ, what is the solution of u; and 2) data-driven discovery: given
the system observed data u, what are the system parameters λ

that can generate such data.
For the parameter estimation task in the converter, u can

be either the inductor current iL or the output voltage vo,
and the parameter set λ are the component parameters to be
monitored, including inductance L, resistance of inductor RL,
capacitance C, equivalent series resistance RC , and ON-state
resistance Rdson of the power semiconductor device. Moreover,
other information including input voltage Vin and diode forward
voltage VF can be incorporated as the unknown parameters in
the estimation procedure as well. As a result, it aims to estimate
the component parameters given the data of the inductor current
iL and output voltage vo, i.e., data-driven discovery.

C. Implicit Runge–Kutta Time-Stepping Scheme

Consider a general case of a dynamic system governed by
(2). For simplicity, the space coordinates x are neglected in
u hereafter. For data collection, suppose that the system is
observed with the state u(tn) at the time tn and the state
u(tn+1) at time tn+1, where tn+1 = tn +Δt. Note that the
time period Δt is unnecessarily equal for any tn. Meanwhile,
as shown in Fig. 2, assume that there are q intermediate states
u(tn+ci) during the Δt time period, where tn+ci = tn + ciΔt,
ci ∈ [0, 1], i = 1, . . ., q. In contrast to the observable statesu(tn)
andu(tn+1), note that these intermediate states are unobservable
and latent. According to [22], the observable states u(tn) and
u(tn+1) and the intermediate states u(tn+ci) can be explicitly
coupled in the framework of the implicit Runge–Kutta method
with q−stages [28]. Formally, their functional relationship can
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be derived as

ui(tn) = u(tn+ci) + Δt

q∑
j=1

aijN [u(tn+cj ); λ] (4)

ui(tn+1) = u(tn)−Δt

q∑
j=1

bjN [u(tn+cj ); λ] (5)

where i, j = 1, . . ., q, ui(tn) = u(tn), and ui(tn+1) =
u(tn+1). The parameter set {aij , bj , cj} can be explicitly
calculated given a certain step number q in the implicit
Runge–Kutta method. Specifically, it is generally provided as a
Butcher tableau [28] with the following form

c A

bT
=

c1 a11 a12 . . . a1q
c2 a21 a22 . . . a2q
...

...
...

. . .
...

cq aq1 aq2 . . . aqq
b1 b2 . . . bq

(6)

where A = (aij)i,j=1,2,...,q ∈ Rq×q, b, c ∈ Rq×1. By incorpo-
rating (4) into (5), the relationship between the ending states
u(tn+1) and the intermediate states u(tn+ci) can be derived as

ui(tn+1) = u(tn+ci) + Δt

q∑
j=1

(aij − bj)N [u(tn+cj ); λ]. (7)

Therefore, the relationship between u(tn) and the intermediate
latent states u(tn+ci) is governed by the backward equation (4),
and such a relationship in terms of u(tn+1) is governed by the
forward equation (7). For illustration, the functional relationship
between the observable states and the intermediate latent states
is shown in Fig. 2. In this way, u(tn) and u(tn+1) are correlated
together through depending on the intermediate latent states
u(tn+ci). Notably, the parameter λ is involved in this constructed
functional relationship.

Likewise, the abovementioned idea is applied to characterize
the dynamics of the inductor current and output voltage of the
Buck converter in this article. The training data are selected as
the peak values of the inductor current and output voltage when
the transient behaviors occur, as these data are more informative
and sensitive to the converter parameter variations. As it will be
seen later in Section II-E, such a data collection mechanism is
efficient and of the data-light feature. Take the inductor current
as an example. Specifically, consider that the inductor current
is only available at the peak points, i.e., the lower peak current
iL(tn) and upper peak current iL(tn+1). The time between the
peak points is denoted as Δt, i.e., tn+1 = tn +Δt. For the q-
steps implicit Runge–Kutta time-stepping scheme, suppose that
the intermediate latent states between the peaks of the inductor
current are iL(tn+ck), tn+ck = tn + ckΔt, k = 1, . . ., q, ck ∈
[0, 1]. From a dynamic system perspective, given the initial state
of the inductor current iL(tn), the converter is expected to cross
each intermediate states iL(tn+ck), respectively, and then reach
the ending state iL(tn+1) during Δt. For illustration, the state
evolution mechanism of the inductor current is shown in Fig. 3.
The abovementioned analysis applies to the output voltage vo
as well.

Fig. 3. Intermediate latent states of inductor current iL in the scheme
of implicit Runge–Kutta time-stepping scheme, where tn+ck = tn + ckΔt,
k = 1, . . ., q. This setting also applies to the output voltage vo.

Collectively, the intermediate latent states for the converter
are [iL(tn+c1), . . . , iL(tn+cq ), vo(tn+c1), . . . , vo(tn+cq )]. The
system dynamic model (1) can be further derived according to
the standard form (2). Specifically, for the inductor current iL

diL
dt

+N [iL;θ] = 0 (8)

N [iL;θ] =

[
(S ·Rdson +RL)iL + vo
−S · Vin + (1− S) · VF

]

L
(9)

and for the output voltage vo

dvo
dt

+N [vo;θ] = 0 (10)

N [vo;θ] =
vo + C ·RC ·R · N [iL;θ]−R · iL

C · (Rc +R)
(11)

where θ = {L,RL, C,RC , Rdson, Vin, VF , R} are the unknown
component/system parameters to be estimated. In this way, the
system dynamics of the Buck converter are derived in the frame-
work of the implicit Runge–Kutta method. The relationships of
the initial and ending states of the inductor current/output voltage
are explicitly constructed, which is significant for coupling the
data and the physics model. Given the data of initial and ending
states of iL and vo, how to approximate the intermediate latent
states is a crucial step for the proposed method, which will be
detailed subsequently.

D. Physics-Informed Neural Network for Buck Converter

Deep learning is a powerful tool to approximate any nonlinear
relationship between the model inputs and outputs. By exploiting
the universal approximation capability, a deep neural network
is applied here to construct and predict the intermediate latent
states, given the information of the initial and ending states of
the inductor current and output voltage. These approximated
intermediate states will be utilized as the prior information for
the subsequent physical models (8) and (10) [22].

Fig. 4 shows the configuration of the PINN for the dc–dc
Buck converter. It consists of two parts, i.e., the data-driven part
and physical model part. For the data-driven part, the inputs
of the deep neural network include the initial states of the
inductor current iL(tn) and output voltage vo(tn), the switch
state S, and the period of time Δt from the initial states to the
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Fig. 4. Structure of the PINN for the dc–dc Buck converter. The intermediate latent state layer is coupled with the initial states iL(tn) and vo(tn) and ending
states iL(tn+1) and vo(tn+1) through backward equation (4) and forward equation (7), where tn+1 = tn +Δt.

ending states of the inductor current and output voltage. The
deep neural network can be flexibly configured with a different
number of hidden layers and neurons in each layer for sufficient
network expressivity. The output of the data-driven part is the
intermediate latent states of inductor current and the output
voltage [iL(tn+c1), . . . , iL(tn+cq ), vo(tn+c1), . . . , vo(tn+cq )],
which are unobservable and used as the inputs for the physical
model part. The physical model part is configured according to
the backward equation (4) and forward equation (7), which are
embodied with the dynamic model of the Buck converter in (8)
and (10). The outputs of the physical part are the initial and
ending states of the inductor current and output voltage. It is
worth mentioning that connections between the hidden layers in
the data-driven part are determined by the numerical weights w
of a deep neural network. In contrast, the connections between
the latent state layer and the final outputs are facilitated with
the backward equation (4) and forward equation (7) with the
physical implications of converter dynamics (8) and (10). The
data-driven part and physical part are, therefore, seamlessly
coupled as a PINN for the Buck converter. Essentially, this
configuration learns the dynamic behavior of the Buck converter
system in a period of timeΔt andT −Δt for the switching states
S = 0 and S = 1, respectively, through a supervised learning
task.

In this structure, the unknown component parameters θ to be
estimated in the physical model are combined with the weights
w and biases b in the data-driven part. Notably, the physical
part involved with (8) and (10) is explicit and differentiable. As
a result, the supervised learning error at the final output can be
propagated through the physical-model part and the data-driven
part, respectively, for updating the learning gradients. Therefore,
the chain rule of the typical back-propagation training scheme
can be readily extended to incorporate the physical part, so that
all the parameters in the PINN can be simultaneously trained
through a standard back-propagation method. Note that there

are usually up to thousands of parameters in {w,b} in a typical
deep neural network. Therefore, it is worth mentioning that in
this configuration, there is almost no limitation on the number of
the parameters in the physical model, which indicates the method
scalability. As a result, the parameter estimation of the dc–dc
converter can be completed through the neural network training.
Specifically, the error function of the PINN is formulated as

E(Θ) =
∑
n

[
(iL(tn)− îL(tn))

2 + (iL(tn+1)− îL(tn+1))
2
]

+
∑
n

[
(vo(tn)− v̂o(tn))

2+(vo(tn+1)− v̂o(tn+1))
2
]

(12)

where the parameter set of the PINN is Θ = {w, b, θ}, {w,b}
are the parameters of the data-driven part of the deep neural
network, and θ are the parameters of the physical model of the
Buck converter. This hybrid design can seamlessly combine the
data of the physics model of the Buck converter, modulating the
training phase efficiently so that it is enforced to the underlying
physical principles and constraints of the converter.

E. Configuration of Data Acquisition and Sharing

It is noticeable that the PINN is designed to learn the dynamic
behavior of the Buck converter in the period of time Δt. The
selection of the Δt is particularly important considering the
implementation constraints in field applications, e.g., data access
feasibility, sampling frequency, reliable sampling, noise, etc.
To this end, a peak-to-peak sampling mechanism is proposed
in this article to enable efficient data acquisition. Fig. 5 shows
the proposed peak-to-peak sampling mechanism. In this setting,
each collected peak data point plays two roles and can be shared
between the backward and forward equations. Specifically, each
low-peak data point can be utilized for either the initial state
of the converter when S = 1 or the ending state when S = 0.
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Fig. 5. Configuration of the data acquisition and data sharing.

TABLE I
SPECIFICATIONS OF THE DC–DC BUCK CONVERTER IN THE SIMULATION

Likewise, the high-peak data point is either the ending state of
the converter whenS = 1 or the initial state whenS = 0. One of
the major benefits of such peak-to-peak sampling method is that
it will significantly reduce the data requirements for the training,
i.e., the sampling frequency will be significantly reduced to
2fsw, which is low and can be readily implemented on typical
power electronic systems. Meanwhile, the control signal, i.e.,
the switch state S = 0 or S = 1, can be implicitly identified
from the peak values and therefore it is unnecessary to collect
the control signals.

III. ACCURACY AND ROBUSTNESS ANALYSIS

To verify the accuracy and robustness of the proposed method,
a dc–dc Buck converter is implemented in MATLAB to generate
the simulation data. The specifications of the Buck converter are
given in Table I. Notably, the converter simulation for the data
generation is very flexible, where various external disturbance
factors in practice can be manually injected for testing accuracy
and robustness, such as the analog-to-digital converter (ADC)
quantization error, noise immunity capability, and synchroniza-
tion error between the inductor current and output voltage. Thus,
in addition to the clean data generated by the converter directly,
the abovementioned three aspects can be comprehensively tested
for method verification.

A. Method Accuracy and Robustness

For the training data, the peak-to-peak values of the inductor
current and output voltage when transient behaviors occur are
collected. The converter transient behaviors may be due to the
converter start-up, load-changing, etc. Notably, these typical
operational modes are common and such data collection scheme
is readily applicable to industrial implementations. Taking the
traction inverter in the railway application as an example, the
data of the transient states of the train start-up, accelerating,
decelerating, etc., are easy to obtain. Note that the collecting

of peak-to-peak values would be challenging if an appropriate
controller is designed to suppress the overshoot and the follow-
ing oscillations. In this case, the time period of the transient
behavior will be shorter, suggesting that the number of peak-
to-peak points of the ripple signals would be small. While the
degradation of power electronic devices is usually very slow
(e.g., months), the data collection procedure can wait for a
longer time for capturing more transient behaviors due to the
load changes. It will have sufficient time to prepare the dataset,
especially considering the data-light feature of the proposed
method. Moreover, it is noted that the data collection is not
only limited to the transient behaviors due to the load changes.
Other factors (e.g., the variation of input voltage Vin and system
startup/shutdown) that can make the converter change from the
stable state to transient state can be exploited as well.

In this simulation case, the peak values of the inductor
current and output voltage of the transient state due to ar-
bitrary load changes (e.g., R0 → R1, R1 → R2, R2 → R3)
are used. For each transient case, the peak-to-peak values of
120 switching periods are collected from the time of the load
changing to that of the converter running into the steady state.
As a result, for the three load-changing cases, the dataset
D = {iL(tn), iL(tn+1), vo(tn), vo(tn+1),Δt}n is consisting of
peak-to-peak samples in 360 periods, which is a small dataset
for deep neural network training and indicates the data-light
feature of the proposed method. It is worth mentioning that the
data volume of D is constant for the parameter estimation task
at any condition monitoring times. It will not be progressively
increasing alongwith the long-term system operation.

The PINN-based parameter estimation method is imple-
mented by using Python with Tensorflow backend. The deep
neural network is configured as five layers with 50 neurons in
each layer, and such a structure selection will be justified later
in Section III-B. The network is trained by using the Adam
optimizer followed by a full-batch L-BFGS optimizer [22], with
the default parameter settings (the learning rate η = 0.001, and
exponential decay rates β1 = 0.9 and β2 = 0.999). The epoch
of the Adam optimizer is set as 200 000. Based on the fact
that the theoretical truncation error of the implicit Runge–Kutta
method is O(Δt2q) [28], the q of the time-stepping scheme is
elaborately selected to suppress the truncation error below the
machine accuracy. It can be determined as

q = 0.5 log(ε)/ log(Δt). (13)

In this case, the largest Δt will be the period of the PWM signal,
i.e., 50 μs. For a 64-bit operation system, the machine precision
is ε = 2.2e− 16. To mitigate the truncation error, the q should
be at least 2 > 1.82. In the following testing, q is set as 20 to
suppress the truncation error factor and ensure the data-driven
structure robustness as well. This setting also aims to suppress
the effect of q in the following analysis to a large extent. In
addition to the directly simulated data, three disturbance aspects
are verified based on emulating the data characteristics in the
field operation, including the ADC quantization error, noise
immunity capability, and synchronization error.

1) ADC quantization error: One of the key differences be-
tween the simulation and the experimental data is the
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TABLE II
PERCENTAGE ERROR (%) OF COMPONENT PARAMETERS IN DIFFERENT TESTING CASES

(ADC error: ADC quantization error; Sync error: Synchronization error). The data-driven part is the deep neural network configured as five layers with 50 neurons
in each layer. All the results below 0.1% are rounding up to 0.1% for clarity.

quantization error when using ADC for the data sampling.
Thus, the simulation data are further processed with a 12-
bit ADC quantization to emulate the sampling procedure
in practice. Considering the signal scope of iL and vo, the
quantization error for the inductor current is 10/(212 − 1)
= 2.4 mA and that of the output voltage is 30/(212 − 1)
= 7.3 mV.

2) Noise immunity capability: This affecting factor is tested
by adding the random Gaussian noise in iL and vo.
Specifically, the standard derivation σ for 1 time noise
in the inductor current iL is set as the ADC precision
10/(212 − 1)= 2.4 mA and that of the output voltage vo is
set as 30/(212 − 1) = 7.3 mV. According to the 3σ-rule of
the Gaussian random variable, for one time noise case, the
approximated scope of current noise is around [−7.2, 7.2]
mA, and that of the voltage noise is around [−21.9, 21.9]
mV. Likewise, multiple levels of noisy data are generated,
including five times (the noise scale of the iL is [−36, 36]
mA and that of the v0 is [−109.5, 109.5] mV) and 10 times
(the noise scale of the iL is [−72, 72] mA and that of the
v0 is [−219, 219] mV). Considering the ripple scope in
the iL is (0.49, 0.97) A and that of the vo is (0.0021, 0.42)
V, the abovementioned settings are applicable in practice.

3) Synchronization error between iL and vo: In practice,
the sampling hardware may not be able to sample the
peaks of iL and vo, simultaneously, as designed. There
may be a synchronization error when sampling these two
signals. Considering the period of the PWM signal 50μs, a
random synchronization error is introduced to emulate this
disturbance factor. Specifically, a uniform random variable
with scope [0, 2] us is added between the sampling time
of iL and vo for simulating this scenario.

With the abovementioned experimental settings, the training
of the PINN is completed in around 15 min on a regular compu-
tation platform (Intel Xeon CPU E5-2620, 2.4 GHz). It is worth
mentioning that the proposed method is designed for the degra-
dation condition monitoring. It is expected to be implemented on
cloud-edge-based computation platforms. For example, the edge
platform will send the data (e.g., the inductor current iL and the
output voltagevo) to the cloud platform. Afterward, the proposed
method will be executed on the powerful cloud platform for the
parameter estimation. Since the degradation in power electronic
systems is very slow (e.g., months) in practice, the execution
time on the cloud platform is not quite critical. In the future,

Fig. 6. Convergence of the training process of the PINN and the average
percentage error of parameter estimation.

the computation efficiency can be elaborately optimized for
real-time applications (e.g., adaptive control design).

Various combinations of the disturbance factors are tested and
results are listed in Table II, with the average of all parameter
estimations in each testing case. For illustration, Fig. 6 shows
the convergence process of the clean data case. Note that the
training loss and the average percentage error are shown in the
logarithmic scale. It can be seen that the average percentage
error progressively decreases with the decreasing of the training
error. In the end, the training error variation is stable and the
average estimation error is within 0.1%. Several salient facts
are identified as follows. First, for the clean data case without
any disturbance factors, the proposed method is very accurate
and the estimated percentage errors are below 0.1% for all the
parameters, while based on a limited training dataset of only
360 samples. It suggests that incorporating physical knowledge
into the typical ML pipeline can significantly reduce the re-
quirements on data volume. Second, compared to the clean data
case, it is noted that the factor of the ADC quantization error is
almost negligible. The estimation accuracy of the RC and VF is
relatively vulnerable to the synchronization error and the noise
factors, while they are still accurate for condition monitoring
applications. Third, the RL and Rdson are relatively vulnerable
to the composite disturbance factors, as shown in the last two
testing cases. While compared to the individual RL and Rdson,
it can be seen that the sum of RL and Rdson is more accurate
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TABLE III
AVERAGE PERCENTAGE ERROR (%) OF ALL PARAMETERS FOR THE CLEAN

DATA TESTING CASE IN TERMS OF DIFFERENT LAYERS AND NUMBER OF

NEURONS IN THE DATA-DRIVEN PART

All the results below 0.1% are rounding up to 0.1% for clarity.

TABLE IV
AVERAGE PERCENTAGE ERROR (%) OF ALL PARAMETERS FOR THE POOR DATA

TESTING CASE

(ADC quantization error, synchronization error, and 10 times noise data) in terms of
different layers and number of neurons in the data-driven part.

and stable in terms of different affecting factors. As a result,
the indicator RD = RL +Rdson is chosen for the condition
monitoring of the inductor and power semiconductor device
together, which is aligned with the fact found in [8] as well. As
a whole, from the perspective of the average percentage error,
the maximum average error is less than 5% in all testing cases,
indicating that the proposed method is accurate and robust for
the parameter estimation task of the dc–dc Buck converter.

B. Optimal Network Structure Design for Simulation

In addition to the disturbance factors in the data, the accuracy
regarding the structure of the deep neural network is investigated
as well. Theoretically, the neural network in the data-driven
part should be sufficiently expressive for modeling the complex
intermediate states. Thus, it is necessary to test the network
structure in terms of the different number of hidden layers and
neurons in each layer. In the testing, the number of layers and
neurons is increased gradually to gain more expressivity. The
method is tested based on the clean data and the poor data (ADC
quantization error, Synchronization error, and 10 times noise) in
Table II, and the estimation results are presented in Tables III
and IV, respectively. The averaged percentage error of these
parameters is used to quantify the neural network performance.
For the clean data testing case, it is noted that when the neuron
size is larger than 30 and the number of layers is larger than three,
the average percentage error is almost stable and is below 0.2%,
which indicates that the network expressivity is sufficient for this
parameter estimation task. For rest cases with smaller neuron
sizes or fewer hidden layers, the estimated average percentage
error is higher and inconsistent due to the limited expressivity of
the data-driven part. The abovementioned analysis also applies
to the case of the poor data testing case, where the average

Fig. 7. Testing hardware of the dc–dc Buck converter [8].

percentage error is almost stable at around 7% when the neuron
size is larger than 30 and the number of layers is larger than three.
As a result, considering the computation efficiency and accuracy,
the deep neural network in the data-driven part is chosen as five
layers with 50 neurons in each layer for the abovementioned
simulation testing in Section III-A.

As an applicable design rule, it can start with a network
structure with the number of neurons and number of layers to
a large extent, e.g., 9× 130. Afterward, progressively reducing
the number of neurons and number of layers to check the stability
of the estimation accuracy, as in Table III. Once a rough lowest
boundary is determined (e.g., 3× 30), a slightly larger network
structure (e.g., 5× 50) can be applied as the final network
design.

IV. EXPERIMENTAL VERIFICATION

Fig. 7 shows the Buck converter prototype for the case study.
This testing platform is based on a previous work [8], where
the capacitor and power semiconductor device can be easily
replaced to emulate the parameter shifts. The switching fre-
quency fsw is 20 kHz. The training dataset is collected by a 12-bit
oscilloscope (HDO4054 A). In each switching cycle, only the
peak-to-peak values of the inductor current and output voltage
are sampled for the training dataset.

A. Experimental Setting

Multiple testing groups under a variety of operating condi-
tions and component combinations are investigated. Note that
the capacitor and power semiconductor device are the most
vulnerable components in power electronic systems. In the
hardware testing, the degradation behavior of the converter is
simulated by manually changing power semiconductors (M1:
0.225 Ω, M2: 0.152 Ω, M3: 0.072 Ω) and capacitors (C1:
164.5μF, 0.201Ω, C2: 160.7μF, 0.217Ω, C3:156.8μF, 0.234Ω,
C4:152.9 μF, 0.253 Ω), forming different testing groups (e.g.,
C1M1). Other component/system specifications are the same
as those used in the simulation as in Table I. Note that these
parameters are measured offline. For example, the inductance
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Fig. 8. Data acquisition of the inductor current and output voltage signals.

is measured as 7.25 μH and RL is 0.314 Ω at the switching
frequency with the LCR meter.

B. Data Acquisition and Preprocessing

During the normal operation, the load is manually changed
to obtain the transient signals of the inductor current and output
voltage. For illustration, the collected inductor current and out-
put voltage are shown in Fig. 8. In contrast to the simulation data,
it is obvious that there is a high-level noise in the hardware testing
data, although the oscilloscope is used for data sampling. These
transient signals are collected when manually and arbitrarily
changing the load three times, e.g., R0 −R1, R1 −R2, and
R2 −R3, from the occurrence of the transient behavior until
the converter runs to the stable state.

As mentioned, only the peaks of the inductor current and
output voltage are used. Each transient signal is collected with
120 peak-to-peak pairs, as a total of 360 data pairs are prepared
for the training dataset. In the testing, the capacitors and power
semiconductor devices are manually replaced for emulating
the component degradation behavior. Moreover, two different
power rating conditions (i.e., 48–24 V and 24–12 V) are also
applied for testing the operational rating factors. The different
combinations of the components and power rating form multiple
testing groups. Each testing group consists of three testing cases,
where the data collection procedure will be repeated three times,
so that the data of the inductor current and output voltage are
independently collected by multiple times. It will be applied

Fig. 9. Data collections of iL and vo when the converter transient behaviors
occur due to the load changing. The data collection in each testing group is
independently repeated three times for repeatability verification.

to verify the method’s repeatability. For illustration, the data
of the three testing cases at one testing group are given in
Fig. 9. As expected, it is noted that there is observable data
discrepancy between the three testing cases. As it will be shown
later, such difference will only affect the estimation accuracy to
a very limited extent, which indicates the good repeatability and
robustness of the proposed method.

C. Estimation Result Analysis

Multiple testing groups in terms of various component com-
binations and power ratings are set for testing the accuracy and
robustness, as in Table V. For each testing group, note that the
parameter estimation process is independently repeated based
on the three different training data samples. For the hardware
testing, the deep neural network in the data-driven part is set as
five layers with 50 neurons in each layer, based on the optimal
network structure searching results later in Section IV-D.

Before the experiment, the component parameters are mea-
sured with the LCR meter offline. Considering the variation
factors between the offline static testing and the field operational
stage online, there are errors and discrepancies between the
LCR measured results and the component parameters in the
operational converter. To suppress this factor, it is more reason-
able to use the percentage variation to illustrate the estimation
accuracy. Take the case of 48/24 V as an example. The testing
group of C1M1 is considered as a benchmark standard and its
parameter variations of both the LCR measured values and the
estimated values with the proposed method, are deemed as 0%.
Meanwhile, their normalized values are deemed as 100%. Sub-
sequently, the rest testing groups are compared with the C1M1
group to calculate their parameter variations and normalized
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TABLE V
PERCENTAGE VARIATIONS OF THE ESTIMATED PARAMETERS AT MULTIPLE EXPERIMENTAL SETTINGS UNDER POWER RATINGS OF 48/24 V AND 24/12 V (C: µF,

RC : Ω, RD : Ω). THE LCR VALUES ARE CALCULATED WITH LCR METER

Fig. 10. Normalized value of the estimated parameters for the dc–dc Buck converter under 48–24 V rating case. R1, R2, and R3 are the loads used for generating
transient signals. The results of each testing group are normalized in terms of the benchmark group C1M1.

values, both for the cases of the LCR measured values and
the estimated results. The corresponding percentage variations
and the normalized values are then compared to validate the
method’s effectiveness. The results are presented in Table V, and
the normalized value of the 48–24 V case is shown in Fig. 10
for illustration.

The comparison results show that the proposed method is
robust and accurate for monitoring the parameter variations.
Several key facts can be identified from the testing experiment.
First, based on Table V, it can be seen that the estimation
percentage variations are accurate and close to the benchmark
values, especially for the C and RC , for both the power rating
conditions 48/24 V and 24/12 V. Second, it is found that the
estimated variations of the input voltage Vin and the loads
R1, R2, and R3 are very accurate, as shown in Fig. 10. Third,
in each testing group, the proposed method can provide almost
identical results with good repeatability in each testing case,
which can be obviously shown in Fig. 10. Compared to the
previous studies [8], it is evident that the proposed method is
more accurate and robust, while based on only a limited dataset

with fewer sensor input signals (e.g., the input voltage Vin and
load R are not required).

It is noted that the estimation ofRD is not quite accurate com-
pared to other estimated system parameters (e.g., input voltage
Vin and the loads R1, R2, and R3). For example, in the testing
group C4M3 at 48–24 V, the estimated variation ofRD is 46.5%,
which is not quite close to the benchmark variation 28.0%. One
of the major reasons is that the two components (e.g., Rdson

and RL) are only applied as the constant unknown variables
in the model. Nevertheless, in the field operation, Rdson is
highly affected by the operational conditions, e.g., temperature,
current, etc., and those factors have not been considered in the
converter physical model (1). Moreover, the RL may be varied
with different inductor current iL, which is neglected in the
model as well. In addition, from the converter-level perspec-
tive, there are another two error sources. On the one hand, the
physical model is designed to closely characterize the converter
dynamics. However, there may be some discrepancies between
the physical model and real converter due to the neglected high-
order parasitic factors. On the other hand, the data acquisition
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TABLE VI
AVERAGE PERCENTAGE ERROR (%) OF ALL PARAMETERS IN THE HARDWARE

TESTING IN TERMS OF DIFFERENT LAYERS AND NUMBER OF NEURONS IN THE

DATA-DRIVEN PART

process will inevitably include external disturbance noise, ADC
quantization error, synchronization error, etc., which will reduce
the estimation accuracy as well.

D. Optimal Network Structure Design for Hardware Testing

Similar to Section III-B, based on the hardware testing data,
the robustness in terms of the neural network structure is tested
by gradually increasing the hidden layer number and the size
of neurons. The testing is based on the testing data of group
C1M1. It is worth mentioning that the average percentage error
in terms of the LCR meter measured values are used to quantify
the performance. Thus, the estimated percentage errors will be
higher than that in Table IV due to the uncertainty sources
discussed in Section IV-C. The results are given in Table VI.
It is noted that when the neuron size is larger than 30 and the
number of layers is larger than three, the average percentage
error is almost stable and is below 11%, which indicates that
the network expressivity is sufficient for this task. As a result,
a 5-layers deep neural network with 50 neurons in each layer is
used for the hardware testing data.

E. Discussions and Potentials

The proposed method can provide highly accurate and robust
estimation results of the dc–dc Buck converter. As an exemplary
application, the PIML tool has shown great benefits in the
condition monitoring of a dc–dc Buck converter. It is worth
mentioning that this tool can be extended to other applications
involved with plentiful physical models, e.g., model predictive
control, electromagnetic interference design, etc. Although it has
shown promising results, yet there are still some open problems
to be answered in future works.

1) How to determine the optimal weighting hyperparameters
between terms in the loss function (12).

2) Why there is no suboptimal solution regarding the physical
part.

3) Is there any formal design guideline of the deep neural
network and what is the lowest network configuration in
the data-driven part.

4) Is there any other more informative signal pattern for the
parameter estimation, in addition to the peak-to-peak of
the transient behaviors.

5) How to further reduce the data volume and finding a
theoretical limitation on the number of transient signals

when preparing the training data. More directions are open
to explore.

V. CONCLUSION

This article proposes a new parameter estimation method
for power electronic systems based on the PIML. A PINN is
specifically tailored through seamlessly integrating a deep neural
network and the dynamic model of a Buck converter. As for
the data-light feature, the proposed method can be well-trained
based on a small training dataset of only 360 data samples, which
can be easily prepared in practice. The simulation and hardware
implementation results verify the performance in accuracy and
robustness of the proposed parameter estimation method. We
expect this work will serve as an inspiration for PIML in power
electronic applications to uncover the potentials of integrating
physics into data-driven approaches.
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