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Abstract: Converting carbon dioxide into high-value-added formic acid as a basic raw material for the
chemical industry via an electrochemical process under ambient conditions not only alleviates green-
house gas effects but also contributes to effective carbon cycles. Unfortunately, the most commonly
used Pd-based catalysts can be easily poisoned by the in situ formed minor byproduct CO during the
carbon dioxide reduction reaction (CRR) process. Herein, we report a facile method to synthesize
highly uniformed PdAg alloys with tunable morphologies and electrocatalytic performance via a
simple liquid synthesis approach. By tuning the molar ratio of the Ag+ and Pd2+ precursors, the mor-
phologies, composition, and electrocatalytic activities of the obtained materials were well-regulated,
which was characterized by TEM, XPS, XRD, as well as electrocatalytic measurements. The CRR
results showed that the as-obtained Pd3Ag exhibited the highest performance among the five samples,
with a faradic efficient (FE) of 96% for formic acid at −0.2 V (vs. reference hydrogen electrode (RHE))
and superior stability without current density decrease. The enhanced ability to adsorb and activate
CO2 molecules, higher resistance to CO, and a faster electronic transfer speed resulting from the
alloyed PdAg nanostructure worked together to make great contributions to the improvement of the
CRR performance. These findings may provide a new feasible route toward the rational design and
synthesis of alloy catalysts with high stability and selectivity for clean energy storage and conversion
in the future.

Keywords: electrocatalysts; bimetallic alloy; carbon dioxide reduction

1. Introduction

Fossil fuel is an indispensable energy resource in modern society. However, the ex-
cessive use of fossil fuels has catastrophically resulted in the emission of a huge amount
of carbon dioxide (CO2), which is one of the main greenhouse gases that lead to envi-
ronmental pollution, climate change, and global warming [1,2]. Therefore, converting
carbon dioxide into high-value-added products can effectively cope with the aforemen-
tioned problems, alleviating the environmental and climate crisis and benefiting the carbon
cycle [3,4]. Currently, the reported CO2 conversion technologies include thermocatalytic [5],
photocatalytic [6,7], electrocatalytic [8], and photoelectrocatalytic approaches [9,10]. In
particular, electrochemical reduction of CO2 is considered the most promising way due
to the tuneable reaction products and ambient working conditions [11,12]. Among the re-
ported various products of CO2 reduction reaction (CRR), including carbon monoxide [13],
formic acid [14], methane [15], ethanol [16], and ethylene [17], formic acid has attracted
tremendous attention because it can be utilized as intermediate chemicals for industrial
products [18], such as gloves, medical [19], and as hydrogen storage materials [20].
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The most widely used electrocatalysts that can convert carbon dioxide into formic
acid are Pb, Cd, Hg, In, Sn, Bi, and relevant compounds based on these metal ions [21–24].
Unfortunately, Pb, Cd, Hg, and In are poisonous to the environment, while Sn and Bi need
to be carried out at a large overpotential of more than 300 mV [25]. As for Pd, previous
research has found that Pd can convert CO2 into formic acid, but the in situ formed CO
as the main byproduct during the reaction process is inevitably adsorbed on the catalytic
active site of the Pd surface, which hinders the continuous reactions to further produce
multi-carbon products [26,27]. Nevertheless, recent research has proved that alloying Pd
with other metals can effectively upgrade its CRR activities and CO tolerance [28–32].
However, due to the symmetrical linear structure of the CO2 molecule and the highly
uniform density of the electronic state of the whole molecule, CO2 is hardly adsorbed
on the active sites of the catalysts with a bent configuration. Therefore, the capability of
activating the chemical-adsorbed CO2 molecule into a curved structure on the active site for
further reaction with e− and H+ to form various products is essentially important [33]. A
proper adsorption strength of the *CO intermediate produced during the CRR is crucial to
the resulting products. Weak bound *CO intermediate to the metal surface may lead to fast
*CO desorbed from the catalyst surface as the dominant product, while strong strength of
the *CO intermediate may prevent further reduction of CO2, and consequently, hydrogen
evolution reaction (HER) almost exclusively occurs. An optimized contact condition is also
a key parameter to promote the CRR activities, which provides a fast electronic transfer
rate and decreases the required energy for CRR via lessening the resistance among the
liquid, the gas, and the solid interphase [34]. Hence, the rational design and synthesis of a
Pd-based alloy electrocatalyst with superior CRR performance via the optimized contact
angle and regulated surface structures with the desired proper adsorption strength of the
*CO intermediate are theoretically and practically feasible.

Herein, we successfully developed a novel PdAg alloy with a two-dimensional mor-
phology via a facile low-cost liquid synthesis approach using behentrimonium chloride
(C25H54ClN) as a capping agent at ambient temperature and pressure. By tuning the compo-
sition of the precursors during the synthesis, the morphologies and chemical compositions
of the catalysts were well-regulated. The CRR test confirmed that due to the optimized
morphologies and chemical compositions, the Pd3Ag nanocrystals exhibited a higher elec-
trochemical surface area, a faster electronic transfer speed, an enhanced CO resistance, and
a lower charge-transfer resistance, which in all contributed to the increment of the CRR
performance in varied aspects. This research demonstrated a simple and basic strategy
to prepare and effectively regulate the CRR performance of the Pd-based nanostructures
under mild conditions with the potential of mass production but less energy consumption.
This research also provides a new economically available approach for the rational design
and synthesis of novel catalytic materials with enhanced performance in clean and sus-
tainable energy conversion, storage, and applications, which enables researchers to further
expand the areas of their utilization in the field of electrocatalysis.

2. Materials and Methods

In a typical synthesis of Pd3Ag alloys, 0.335 g of PdCl2 (Sigma, 98%, St. Louis, MO,
USA) and 20 mL of 0.2 mol/L HCl (Sigma, 37%) were mixed together and diluted to 200 mL
to form a homogeneous chloropalladic acid solution with ultrapure water. Then, 0.5 mL of
the as-obtained chloropalladic acid solution and 0.08 g C25H54ClN (98%) were all added
into 10 mL ultrapure water under magnetic stirring for 30 min, followed by the injection
of 0.167 mL 0.01 mol/L AgNO3 (Sigma, 99.9%) under room temperature and kept for
45 min; finally, 1 mL 0.3 mol/L L-ascorbic acid (C6H8O6, Sigma, >99.0%) was dropped into
the above solution and maintained for 1 h. After the reaction, the product was collected
through centrifugation at 8500 rpm for 10 min and washed with water three times and
ethanol three times to remove most of the other species. Lastly, the product was dispersed
in water for further characterization. The Pd2Ag, PdAg, and Pd syntheses followed similar
procedures except for the different amounts of AgNO3. For the Pd2Ag synthesis, the added
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amount of AgNO3 was 0.33 mL and for PdAg was 0.5 mL. When no AgNO3 was added,
the product was pure Pd crystals.

The as-obtained nanocrystal suspension was dispersed into ethanol under ultrasonic
conditions. Then, the suspension was dropped on Mo grids coated with carbon film and
dried under ambient conditions. Transmission electron microscopy (TEM) image was
carried out on a HITACHI HT7700 operated at an acceleration of 100 kV. High-resolution
transmission electron microscopy (HRTEM), scanning transmission electron microscopy
(STEM) images, and energy-dispersive X-ray spectra (EDS) were all taken on an FEI, Thermo
Talos F200S field-emission high-resolution transmission electron microscope operated
at 200 kV.

Powder X-ray diffraction (PXRD) patterns were recorded on a Bruker D8 ADVANCE
X-ray diffractometer with Cu-Kα radiation (λ = 1.54178 Å). X-ray photoelectron spectra
(XPS) were collected on an ESCALab 250 X-ray photoelectron spectrometer, using non-
monochromatized Al-Kα X-ray as the excitation source. The concentration and ratio of
palladium and silver nanoparticles were measured with a Thermo Scientific Plasma Quad
3 inductively coupled plasma mass spectrometry (ICP-MS) after dissolving them with a
mixture of HCl and HNO3 (3:1, volume ratio).

The carbon dioxide reduction reaction (CRR) of the as-obtained samples was carried
out in a liquid 0.1 mol/L KHCO3 solution (Sigma, 99.7%) system using a CHI760e electro-
chemical workstation (CH Instruments, Inc., Shanghai, China) equipped with an H-type
electrochemical cell separated by a Nafion 211 membrane between the cathode and the
anode at room temperature. An Ag/AgCl electrode (saturated with 3.5 mol/L KCl) and a
Pt foil were used as the reference electrode and counter electrode, respectively. The glassy
carbon electrode (GCE) with a diameter of 5 mm (working electrode area 0.196 cm2) was
used as the working electrode (WE). To prepare the WE, 4 mg of catalyst and 20 µL of
Nafion solution (5 wt%) were dispersed in 980 µL of an ethanol–water (3:1 v/v%) solution
under ultrasonic conditions in a bath for 20 min to obtain a homogeneous ink. The ink
was then dropped on the glassy carbon electrode and dried under ambient conditions with
a loading amount of 1 mg/cm2. Prior to the CRR test, linear sweep voltammetry (LSV)
was first carried out in the KHCO3 solution (0.1 mol/L) under a highly purified Argon
atmosphere. For the CRR test, the LSV was recorded in the KHCO3 solution bubbled with a
highly purified CO2 atmosphere at a constant rate of 20 mL/minute. The potential values of
the Ag/AgCl reference electrode were calibrated with respect to RHE in all measurements
using the following equation, Evs(RHE) = Evs(Ag/AgCl) + 0.198 V + 0.059 pH. The quan-
tification of gaseous CO2 reduction products was conducted using a gas chromatograph
(GC, Agilent, 7890B) equipped with a thermal conductivity detector (TCD) and a flame
ionization detector (FID). Liquid products were quantified using a Bruker AVIII 400 MHz
1HNMR (nuclear magnetic resonance spectroscopy). Typically, 500 µL of electrolyte was
sampled at the conclusion of the electrolysis and was mixed with 100 µL D2O (Sigma,
99.9%), and 200 µL (m/m) DMSO (≥99.9%, Alfa Aesar, Haverhill, MA, USA) was added
as the internal standard. The one-dimensional 1H spectrum was measured with water
suppression using a pre-saturation method. The Faradic efficiency (FE) for formic acid
(HCOOH) and CO were calculated via the same following equation:

FE =
2FVC

Q
× 100

where F is the faradic constant 96,485 C mol−1; V is the volume of the electrolyte obtained
from the cathode; C is the concentration of the formic acid detected from NMR; Q is the
total amount of the transferred charge.

ECSA was estimated from the CV curves in 1 mol/L KOH using the following equation:

ECSA =
QPdO

0.405 mC m−2 × mPd



Nanomaterials 2022, 12, 3860 4 of 10

where QPdO is the integral area of PdO, 0.405 is the charge required for PdO reduction, and
mPd is the Pd mass on the working electrode.

3. Results and Discussion

The TEM images of the Pd3Ag nanocrystals with varied magnifications in Figure 1a,b
exhibit highly uniform two-dimensional nanostructures, with a diameter of nearly 50 nm.
The high-resolution TEM image of Figure 1c shows the visible lattice fringes with a d-
spacing of 0.221 nm, which matches well with the (111) plane of the Pd3Ag alloys [35,36].
Figure S1a (seen in Supporting Information) shows the d-spacing of 0.138, 0.198, and
0.112 nm indexed to the high-index- facets of (220), (200), and (222) of the Pd3Ag alloys
in the corners, respectively; the selective area electronic diffraction (SAED) of the Pd3Ag
in Figure S1b (seen in Supporting Information) also confirms the existence of the high-
index-facets. The powder X-ray diffraction (PXRD) pattern of the as-synthesized Pd3Ag in
Figure 1d shows five distinct diffraction peaks centered at 39.5◦, 46.06◦, 67.17◦, 81.08◦, and
85.58◦, which closely corresponds to the face-centered cubic (fcc) Pd (JCPDS No.46-1043) but
with an obvious shift of the diffract peaks position to low 2θ range. No other peaks ascribed
to metallic Ag or Pd could be detected. Moreover, to investigate the effect of Ag content on
the morphologies of the formed alloys, a controllable Ag level was introduced during the
synthesis of alloy samples. As can be seen in Figure S2 in Supporting Information, when the
molar ratio of Pd to Ag in the reaction system was 2:1, the morphologies of the Pd2Ag alloys
evolved into a less branched structure (Figure S1a, Supporting Information). However,
after further increasing the AgNO3 content to achieve the molar ratio of Pd:Ag to 1:1, the
obtained PdAg alloy exhibited an irregular structure, with only 2~3 branches (Figure S1b,
Supporting Information). When no AgNO3 was involved, and only the palladium precursor
was added, the resulting Pd nanocrystals exhibited irregular pre-nanosheet morphologies,
as shown in Figure S2c (seen in Supporting Information). All these data firmly proved
that the ratio of Pd to Ag in the precursor solution is the key parameter to tune the
morphologies of the resulting nanocrystals. The XRD patterns of the nanocrystals obtained
with a varied amount of AgNO3 presented in Figure S3 (seen in Supporting Information)
also display the diffraction peaks located between the face-centered cubic pure Pd (JCPDS
No.46-1043) and the face-centered cubic pure Ag (JCPDS No.04-0783), and the diffraction
peaks of the alloy shifted to low 2θ and close to the diffraction peaks of fcc Ag phase,
revealing the formation of the face-centered cubic (fcc) structure of PdAg alloys [35,37]. The
high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM)
and energy-dispersive X-ray spectroscopy (EDS) elemental mapping images (Figure 1e–h)
proved that the Pd and Ag atoms were homogeneously distributed throughout the whole
nanocrystals, further confirming the successful synthesis of PdAg alloys. In addition,
the molar ratio of Pd:Ag was determined to be nearly 3:1 through inductively coupled
plasma–mass spectrometry (ICP-MS), close to the calculated Pd and Ag precursor content
in the synthesis protocol.

The atomic composition and chemical states of the PdAg alloys were all characterized
using X-ray photoelectron spectroscopy (XPS). Figure 2a presents the full XPS spectrum of
the representative alloy sample, which indicates the existence of Ag and Pd in the sample.
The detailed XPS spectrum of Ag 3d in Figure 2b shows two peaks located at 367.3 eV and
373.3 eV that belong to Ag 3d5/2 and 3d3/2, respectively, which is about 0.3 eV positive
shift, compared with the pristine metallic Ag. Moreover, no peaks were observed for Ag+,
implying that only Ag0 existed in the nanocrystals. As shown in Figure 2b, the two peaks
located at 334.7 eV and 340.05 eV were attributed to Pd 3d5/2 and Pd 3d3/2, which were
about 0.3 eV positive shifts, compared with the pure Pd. Moreover, no peaks attributed to
Pd2+ could be detected within the detection limits, suggesting that only the metallic state
of Pd was present. All these results confirmed that the as-obtained product was a PdAg
alloy, and both Pd and Ag were present in a bimetallic state in the sample, which is well in
accordance with the XRD results of PdAg alloys [37,38].
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Figure 2. (a) Full XPS pattern of PdAg alloys; (b) high-resolution XPS spectra of Ag 3d; (c) high-
resolution XPS spectra of Pd 3d.

Cyclic voltammetry (CV) studies were carried out to investigate the CRR performance
of the as-obtained PdAg samples in 0.1 M KHCO3 solution saturated with Ar or CO2 in
a potential range from −0.4 V to 0.15 V. As shown in Figure 3a, the current density of
PdAg in the inert Ar atmosphere was much lower than that in the CO2 atmosphere because
only hydrogen evolution reaction (HER) occurred under an Ar atmosphere. Moreover,
the presence of CO2 was lower than that in the environment. The operation potential in
CO2 was more negative with an increased current density from −0.22 mA/cm2 at 0 V to
−6.69 mA/cm2 at −0.38 V, indicating that a CO2 reduction reaction occurred in this liquid
system. The gas and liquid products for CRR were determined using GC and 1HNMR,
respectively, after the CRR was carried out at a constant potential for 1 h (Figures S4 and S5
in Supporting Information). It is vital to note that only a trace amount of H2 and CH4 could
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be detected, and formic acid was the domain product in CRR (Figure S6 in Supporting
Information). As can be seen from Figure 3b, the Pd3Ag electrocatalyst exhibited an initial
faradic efficiency (FE) of 70% for formic acid at 0 V, and a maximum FE of 96% for formic
acid at −0.2 V, which can be ascribed to the enhanced charge transfer speed resulting from
the more negative potential. When further increasing the negative potential to −0.4 V, a
mere FE of 60% for formic acid was obtained, an indication that −0.2 V was the optimized
working condition.
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A long-term durability test was carried out using the chronoamperometry method at
−0.2 V for 7000 s. As can be seen from Figure S7 in Supporting Information, the current
density of Pd3Ag nearly remained the same, which indicates that the morphologies, active
site, and electronic transfer speed were maintained and remained unchanged. The HADDF-
STEM (see Figure S8 in Supporting Information), EDX spectra, and EDS mapping images
of the Pd3Ag collected after the long-term durability test show that the Pd and Ag atoms
were homogeneously distributed throughout the whole nanocrystals, further confirming
that the morphology and composition of PdAg bimetallic remained intact, suggesting the
superb stability of Pd3Ag within a wide range of potential. For comparison, the selectivity
of formic acid for Pd, Ag, and PdAg alloys with varied compositions was also investigated
in the potential range of 0~−0.4 V, and the results are presented in Figure 3c. Pure Ag
could not convert CO2 into formic acid and other chemical products at all, and only HER
reaction occurred in this case. Pure Pd displayed only 30% selectivity for formic acid at a
lower potential, and the highest selectivity of 85% could be reached at a potential of −0.2 V.
However, the PdAg alloys exhibited an enhanced selectivity of 63% toward formic acid at
0 V, and the selectivity increased with the increase in the content of Pd in the alloys. The
Pd3Ag sample demonstrated the highest selectivity above 96% in a potential range from
−0.1 V to −0.3 V, which outperformed many reported CRR electrocatalysts (see Table S1 in
Supporting Information).

This remarkable enhancement might be due to the following three reasons: (i) Alloying
the Pd with Ag can form two-dimensional nanosheet morphology, optimize the interface
contact conditions between the catalysts and the electrode in a liquid system, and possibly
decrease the resistance and accelerate the electronic transfer speed; (ii) the Ag atoms in the
PdAg alloys can effectively alleviate CO adsorption on the PdAg surface and provide more
catalytic active sites; (iii) the formation of PdAg alloys can effectively regulate the density
of surface electronic structures to form both negative-dominate and positive-dominate
domains, which can benefit the adsorption and activation of CO2 molecules from the line



Nanomaterials 2022, 12, 3860 7 of 10

structures to a bent structure. The newly developed effective catalysts through the alloying
of two metals in this work can remarkably increase the CRR efficiency and selection of
targeted products.

The electrochemical active surface areas (ECSAs) for the four samples were all de-
termined using the standard procedures from the integrated charge associated with the
reduction of PdO to Pd. As shown in Figure 4a, the ECSAs for Pd3Ag, Pd2Ag, PdAg, and Pd
were 57.5, 40.8, 35.4, and 11.1 m2 g−1, respectively, which indicates that alloying the Pd with
Ag is an efficient approach to promote the CRR active sites. The enhanced ECSA for Pd3Ag
may be ascribed to the high-index facets on the corners, which has been reported in previ-
ous research [39]. Tafel slope is a key inherent parameter to elucidate the rate-determined
step of the CRR. As depicted in Figure 4b, the Tafel slope of Pd3Ag was 133 mV/decade
(mV/dec), close to 143 mV/decade, indicating the formation of the CO2

•-key intermediate
is the rate-determining step for CO2 converting to formic acid [40]. However, the Tafel
slopes of Pd2Ag, PdAg, and Pd were 168, 190, and 217 mV/dec, respectively, slightly larger
than that of Pd3Ag, indicating that they have a similar rate-determining step with slower
reaction rates.
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Figure 4. (a) ECSAs observed in N2-saturated 1 M KOH, (b) Tafel plot, and (c) electrochemi-
cal impedance spectra (EIS) in CO2-saturated 0.1 M KHCO3 of Pd3Ag, Pd2Ag, PdAg, and Pd
alloy catalysts.

The electrochemical impedance spectra (EIS) in Figure 4c show that the Pd3Ag electro-
catalyst exhibited the smallest semicircle among the four samples in the Nyquist plot. The
charge transfer resistance (Rct) values obtained by the semicircle in the high-frequency zone
for Pd3Ag, Pd2Ag, PdAg, and Pd were 12.5, 33.7, 43.6, and 90.2 Ω, respectively, indicating
that Pd3Ag had the lowest charge-transfer resistance at the catalyst/electrolyte interface
and superior charge transport kinetics, which is consistent with the formerly observed
result that Pd3Ag alloy exhibited the lowest Tafel slope and the fastest reaction rate due to
its fast electronic and charge transfer in the CRR process.

4. Conclusions

In summary, we reported a facile room-temperature synthesis method to prepare
highly uniform palladium–silver nanocrystals using C25H54ClN as the capping agent.
By tuning the ratio of precursor Pd2+ and Ag+, the morphologies and electrocatalytic
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performance of the resulting PdAg alloys can be readily regulated. The palladium–silver
alloy prepared with a molar ratio of 3:1 exhibited superior CRR activities with a FE of 69%
for formic acid at a potential close to zero (−0.03 V), and the maximum FE up to 96% at
−0.2 V without obvious current density decrease even after 7000 s reaction for CRR was
achieved. In comparison, pure Ag showed almost no selectivity and FE for formic acid,
and pure Pd exhibited only 69% selectivity for formic acid. These results demonstrate
the superior activities of the Pd3Ag alloys toward CRR and the excellent selectivity for
formic acid. Moreover, this type of alloy can be prepared via a very simple and low-cost
inorganic synthetic route at room temperature in the aqueous phase. Thus, this cost-effect
new synthesis method, combined with its promising performance in CRR, will extend our
current knowledge in electrocatalysis and CO2 conversion and offer valuable materials and
technical solutions for energy conversion and climate change.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/nano12213860/s1, Figure S1: (a) High-resolution TEM images
of Pd3Ag; (b) selective area electron diffraction (SAED) of Pd3Ag. Figure S2: TEM images of (a)
Pd/Ag = 2:1, (b) Pd/Ag = 1:1, and (c) pure Pd. Figure S3: XRD patterns of Pd3Ag, Pd2Ag, and
PdAg. Figure S4: 1H NMR spectra of the liquid conversion products for Pd3Ag alloy after electrolysis
for 1 h at −0.2 V(vs. RHE). Figure S5: GC spectra of the gas conversion products detected with (a)
thermal conductivity detector (TCD) and (b) flame ionization detector (FID) for Pd3Ag alloy after
electrolysis for 1 h at −0.2 V (vs. RHE). Figure S6: Potential-dependent FE for CRR products and
partial current density. Figure S7: Chronoamperometric curves for Pd3Ag at −0.2 V (vs. RHE) in
CRR. Figure S8: Structural characterizations of bimetallic Pd3Ag after long-term durability test: (a)
HADDF-STEM-EDS mapping of Pd and Ag in the selected area. Elemental mapping of (b) Pd, (c) Ag,
and (d) a mixed pattern of Pd and Ag; (e) the EDX spectra of the Pd3Ag after a long-term durability
test. Table S1: Comparison of different catalysts in electrochemical CRR for HCOOH formation.
References [36,41–46] were cited in the Supplementary Materials.
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