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Scenario Generations for Renewable Energy
Sources and Loads Based on Implicit

Maximum Likelihood Estimations
Wenlong Liao, Birgitte Bak-Jensen, Jayakrishnan Radhakrishna Pillai, Zhe Yang,

Yusen Wang, and Kuangpu Liu

Abstract——Scenario generations for renewable energy sources
and loads play an important role in the stable operation and
risk assessment of integrated energy systems. This paper pro‐
poses a deep generative network based method to model time-
series curves, e.g., power generation curves and load curves, of
renewable energy sources and loads based on implicit maxi‐
mum likelihood estimations (IMLEs), which can generate realis‐
tic scenarios with similar patterns as real ones. After training
the model, any number of new scenarios can be obtained by
simply inputting Gaussian noises into the data generator of IM‐
LEs. The proposed approach does not require any model as‐
sumptions or prior knowledge of the form in the likelihood
function being made during the training process, which leads to
stronger applicability than explicit density model based meth‐
ods. The extensive experiments show that the IMLEs accurately
capture the complex shapes, frequency-domain characteristics,
probability distributions, and correlations of renewable energy
sources and loads. Moreover, the proposed approach can be eas‐
ily generalized to scenario generation tasks of various renew‐
able energy sources and loads by fine-tuning parameters and
structures.

Index Terms——Renewable energy source, scenario generation,
implicit maximum likelihood estimation (IMLE), deep learning,
generative network.

I. INTRODUCTION

THE integrated energy system is a standard large-scale,
non-linear, and dynamic control system with various

flexible resources, such as electric vehicles, wind turbines,
photovoltaic (PV) systems, and heat pumps [1]. To coordi‐
nate these flexible resources in complex integrated energy
systems, accurate modeling of time-series curves, e.g., power
generation curves and load curves, for renewable energy
sources and loads is necessary. One of the most popular

methods to model time-series curves is scenario generation,
which generate a large number of possible new time-series
scenarios to represent uncertainties of the renewable energy
sources and loads based on historical scenarios [2]. To some
extent, the scenario generation can be considered as the first
step of scenario forecasts, which trains a model to generate
realistic scenarios as the test set, and then iteratively solves
high-quality forecasting scenarios given a pre-trained model
and deterministic point forecasting values. More details on
why it makes sense to create new scenarios based on histori‐
cal scenarios can be found in [3].

The core thinking of the scenario generation aims to pro‐
duce a range of new time-series curves, which look like his‐
torical time-series curves. With regard to whether statistical
hypotheses about probability distribution are needed, exist‐
ing methods of scenario generations can be subsumed under
just two categories: explicit density model based methods
and implicit density model based methods. A brief compari‐
son between the above two methods is shown in Table I.
Specifically, the explicit density model based methods have
to manually assume the probability density functions
(PDFs), and then fit the unknown parameters in the PDFs by
employing historical time-series curves. The widely-used ex‐
plicit density model based methods involve the normal distri‐
bution model [4], Gaussian mixture model [5], Copula theo‐
ry based model [6], and autoregressive moving average (AR‐
MA) model [7]. These explicit density model based methods
have sound theoretical bases, and they are more interpretable
than implicit density model based methods, which are regard‐
ed as black boxes. However, the quality of time-series
curves generated from explicit density model based methods
is poor, since the time-varying and dynamic properties of
time-series curves make explicit density model based meth‐
ods hard to scale and difficult to apply [8], particularly when
multiple renewable power sources and loads are considered.
In addition, these explicit density model based methods typi‐
cally require statistical hypotheses of PDFs that may not
hold in practice engineering [9]. Moreover, the PDFs of re‐
newable energy sources and loads vary from region to re‐
gion, and therefore the explicit density model based methods
have difficulty in being generalized to other places [10]. Rel‐
atively, the explicit estimation of the PDFs of renewable en‐
ergy sources and loads is not necessary for implicit density
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model based methods. Moreover, the implicit density model
based methods can be easily generalized to scenario genera‐
tion tasks of various renewable energy sources and loads in
different regions by fine-tuning parameters and structures
[11]. The popular implicit density model based methods
mainly include generative adversarial networks (GANs) [12],
hidden Markov models (HMMs) [13], non-linear indepen‐
dent component estimations (NICEs) [14], and variational au‐
to-encoders (VAEs) [15]. Specifically, HMMs have sound
theoretical bases and simple structures, but they have diffi‐
culty in capturing the spatio-temporal characteristics of time-
series curves, since the assumption of independence of their
output values leads to the lack of context information. Deep
neural networks are powerful generative models [16], which

are independently developed for scenario generation tasks.
Nevertheless, the scale of parameters to be trained in NICEs
is very large, which increases the difficulty in adjusting pa‐
rameters. The performance of VAEs is relatively weaker,
since they are not able to accurately calculate the lower
bound of the log-likelihood of the historical time-series
curves. The training problems of GANs, e.g., instability, non-
convergence, and mode collapse, still exist in previous publi‐
cations [17], [18]. In general, the previous implicit density
model based methods involve either inaccurate loss func‐
tions or training problems, which seriously limit the quality
of the new scenarios. Therefore, it is necessary to propose a
new method with a stable training process, which can pro‐
duce high-quality scenarios.

The implicit maximum likelihood estimation (IMLE) is a
well-known deep generative network widely used in the com‐
puter vision field [19]. Compared with other generative net‐
works, e. g., VAEs, GANs, and NICEs, the quality of sam‐
ples generated from IMLEs is better in many fields, and its
training process is relatively more stable [20]. This is be‐
cause its loss function ensures that the real examples have a
generated sample nearby at optimality, but does not mini‐
mize the distinguishability between the datasets and new
samples. In addition, gradients are not vanishing, since the
gradients of the distances between real examples and their
nearest samples don’ t become zero. At present, IMLEs have
shown outstanding performance in various fields such as im‐
age generation, style transfer, and missing data imputation
[21], [22]. The successful applications of IMLEs in speech
synthesis and image processing demonstrate that they can
capture complicated patterns of high-dimensional samples.
Therefore, the IMLE can be treated as a candidate for sce‐
nario generation. In theory, IMLEs can not only effectively
extract latent representations of time-series curves for renew‐
able energy sources and loads through convolutional neural
networks (CNNs) with outstanding extracting performance,
but also employ the data generator with stable loss function
to generate high-quality new scenarios. However, most of ex‐
isting IMLEs are designed for the high-dimensional image
data with the same size of rows and columns, and these
structures and parameters are not applicable for 1-D time-se‐

ries curves of renewable energy sources and loads. There‐
fore, how to design a structure of IMLEs with strong perfor‐
mance according to the data characteristics of renewable en‐
ergy sources and loads needs further study. In [23], an unsu‐
pervised deep learning framework using IMLEs is employed
to generate scenarios for a single wind farm based on histori‐
cal samples, but they ignore the spatiotemporal correlations
between multiple adjacent wind farms. In this paper, the IM‐
LEs are generalized to scenario generation of multiple corre‐
lated renewable energy sources, e. g., wind farms, PV plants,
and loads including heating, cooling, and power loads in in‐
tegrated energy systems. Compared with the work in [23],
this paper focuses on designing the IMLEs to improve the
quality of scenario generation accounting for correlations
among the renewable energy sources and loads. Moreover,
the performance and key parameters of the proposed ap‐
proach are discussed by three different datasets. The key con‐
tributions are summarized as follows.

1) The IMLEs are generalized from scenario generation of
a single wind farm into scenario generation of multiple corre‐
lated renewable energy sources and loads. The specific struc‐
ture of IMLEs is designed to generate scenario for multiple
units.

2) The proposed approach is completely based on data-
driven generative networks, which project Gaussian noises
into high-dimensional time-series curves. After unsupervised
learning, IMLEs can directly generate realistic scenarios for

TABLE I
COMPARISON BETWEEN EXPLICIT DENSITY MODEL BASED METHODS AND IMPLICIT DENSITY MODEL BASED METHODS

Method

Explicit density
model based

methods

Implicit density
model based

methods

Model

Normal distribution

Gaussian mixture model

Copula theory based model

ARMA

HMM

NICE

VAE

GAN

Advantage

1) Sound theoretical bases
2) Good model interpretability

1) No statistical hypotheses
2) Strong generalization

Disadvantage

1) Requirement for statistical hypotheses
2) Limited quality

3) Poor generalizability

Ignoration of spatio-temporal correlations of
power generation curves

Too many hyper-parameters and limited
quality of samples

Inability to accurately calculate lower bound of
log-likelihood of historical curves

Unstable training process, e.g., instability,
non-convergence, and mode collapse

Reference

[4]

[5]

[6]

[7]

[13]

[14]

[15]

[16]-[18]
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PV plants, wind farms, heating, cooling, and power loads,
which hold the same characteristics, e. g., correlations, fre‐
quency-domain characteristics, fluctuations, and probability
distributions, as the real ones.

3) Different from explicit density model based methods,
the proposed approach sidesteps manual assumption of the
PDFs of renewable energy sources and loads, resulting in
stronger generalization. By fine-tuning parameters and struc‐
tures of the data generator, IMLEs can be easily used to pro‐
duce new scenarios for multiple adjacent renewable energy
sources and loads by simply inputting Gaussian noises to the
pre-trained IMLEs. Besides, there is no limit to the number
of new scenarios.

4) Compared with other implicit density model based
methods (e.g., GAN), the proposed approach can sidestep un‐
stable training problems, e. g., non-convergence and mode
collapse, since the loss function ensures that each real exam‐
ple has a generated sample nearby at optimality, and the
training process is a simple optimization problem that mini‐
mizes the loss function.

The rest of this paper is organized as follows. Section II
formulates the scenario generation using IMLEs. Section III
presents the case study. Section IV presents the conclusions
and future works.

II. SCENARIO GENERATION USING IMLES

A. Introduction of Scenario Generation

Generally, the scenario generation tasks can be divided in‐
to two categories: ① scenario generation for a single renew‐
able energy resource or load; and ② scenario generation for
multiple adjacent renewable energy resources or loads.

For the single renewable energy resource or load genera‐
tion, training samples include a series of historical power
generation curves or load curves X =[x1, x2, ..., xm ], and the
goal is to train a data generator based on IMLEs by using re‐
al samples from the training set. As shown in Fig. 1, the da‐
ta generator can be considered as a mapping function which
projects Gaussian noises into real samples, and the loss func‐
tion is a kind of similarity metric between real and generat‐
ed samples such as the Euclidean distance. After the unsuper‐
vised training process, Gaussian noises are used as inputs,
and the data generator generates new samples, which can de‐
scribe the same stochastic process as the real samples and
exhibit a variety of different patterns. To prevent the model
from simply replicating the samples from the training set,
the performance of the data generator should be evaluated
by comparing the similarity metric between real and generat‐
ed samples from the test set rather than the training set.
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Fig. 1. A simple structure of proposed approach.

In integrated energy systems, multiple adjacent renewable
energy resources or correlated loads may need to be consid‐
ered at the same time. Therefore, the scenario generation of
a single time series can be generalized to the scenario gener‐
ation of multiple time series. Specifically, historical samples
{X1X2...XN } of N renewable energy resources or loads are
used to train a data generator whose goal is to simultaneous‐

ly generate multiple scenarios. The generated samples should
represent probability distributions of renewable energy re‐
sources or loads as well as the correlations. For scenario gen‐
eration of renewable energy sources, the correlations include
the spatial and temporal correlations of power generation
curves. For the scenario generation of multiple loads, e.g.,
heating, cooling, and power loads, the correlations cover the
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temporal correlations of load curves and the correlations (al‐
so called coupling) between multi-class loads.

B. Loss Function of IMLEs

Normally, deep generative networks can be naturally
viewed as a sampling procedure from a prior probability dis‐
tribution, e.g., Gaussian distribution, and then noises are fed
to the data generator to obtain the new samples [23]. Gauss‐
ian distributions and data generators can be represented as:

ì
í
î

z~N(01)

x' = g(z)
(1)

where z is a Gaussian noise; and x' is a new scenario gener‐
ated from the data generator g(×) of IMLEs.

The probability distribution of the real scenario x is ex‐
pressed as:

q(x)= ∫q(z)q(x|z)dz (2)

where q(z) is the Gaussian distribution; q(x) is the probabili‐
ty distribution of the real scenario x; and q(x|z) is a condi‐
tional Dirac distribution or conditional Gaussian distribution.

Theoretically, (2) can fit any probability distribution, cov‐
ering the probability distribution of real samples. Further‐
more, suppose q(x|z) is a Dirac distribution. Equation (2) can
be rewritten as:

q(x)= ∫δ(x - g(z))q(z)dz =Ez~q(z) (δ(x - g(z))) (3)

where δ(×) is the Dirac function; and E(×) is the expected val‐
ue.

Actually, the Dirac function can be regarded as a Gauss‐
ian distribution with the variance close to zero, and its math‐
ematical formula is expressed as:

δ(x)= lim
σ® 0

1
(2πσ2 )d/2

exp ( -  x
2

2σ2 ) (4)

where σ is the standard deviation; and d is the dimension of
noises z.

Moreover, (4) is substituted into (3) to obtain the follow‐
ing results:

q(x)= lim
σ® 0

Ez~q(z)( )1
(2πσ2 )d/2

exp ( )-
 x - g(z)

2

2σ2 (5)

Suppose p(x) is the probability distribution of real scenari‐
os. The training process of generative networks is to mini‐
mize the following loss function by the gradient descent
method:

Ex~p(x) (lg q(x))= ∫ - p(x)lg q(x)dz (6)

By substituting (5) into (6), a more specific loss function
L can be obtained as:

L =Ex~p(x)( )-lg ( )lim
σ® 0

Ez~q(z)( )1
(2πσ2 )d/2

exp ( )-
 x - g(z)

2

2σ2

(7)

Obviously, there are few constants in (7) that will not af‐
fect the training results of IMLEs. In order to make the loss

function more concise, these dispensable constants are ig‐
nored, and then a new form of the loss function is obtained
as:

L »Ex~p(x)( )-lg ( )lim
σ® 0

Ez~q(z)( )exp ( )-
 x - g(z)

2

2σ2 (8)

In the training stage of IMLEs, n Gaussian noises Z =
[z1z2zn ] and m real scenarios X =[x1x2xm ] are fed
to IMLEs to the last form of the loss function [19]:

L »
1
m∑i = 1

m

lg ( )∑
j = 1

n

exp ( )-
 xi - g(zj )

2

2σ2
»

1
m∑i = 1

m ( )min∑
j = 1

n

 xi - g(zj )
2

(9)

In this case, this loss function can be used to update the
weights of IMLEs by the back propagation algorithm.

C. Structure of IMLEs

The recent success of CNNs has boosted researches on
the pattern recognition. Many data mining tasks such as tar‐
get detection and speech recognition, which are once heavily
dependent on artificial feature engineering to extract informa‐
tive features, have been revolutionized by CNNs with power‐
ful feature representing ability [24]. Therefore, CNNs are
employed to construct the data generator for scenario genera‐
tions of renewable energy sources and loads.

For the scenario generation task, the CNNs mainly consist
of transposed convolutional (TransConv) layers and dense
layers. Specifically, the input features are performed with
TransConv operations, and then a bias vector is added to ob‐
tain the output data of the TransConv layers. Its mathemati‐
cal formula is expressed as:

Y tran = ftran (X tran*W tran +Btran ) (10)

where Ytran is the output data of TransConv layers; Xtran is the
input data of TransConv layers; ftran (×) is the activation func‐
tion of TransConv layers; Wtran is the weight of TransConv
layers; Btran is the bias vector of TransConv layers; and * is
the TransConv operation.

Similarly, the output data of dense layers can be obtained
by multiplying input data with weights and adding a bias
vector. Its mathematical formula is expressed as:

Ydense = fdense (XdenseWdense +Bdense ) (11)

where Ydense is the output data of dense layers; Xdense is the
input data of dense layers; fdense (×) is the activation function
of dense layers; Wdense is the weight of dense layers; and
Bdense is the bias vector of dense layers.

D. Process of Scenario Generation

To summarize the above description, the steps of scenario
generation for multiple renewable energy sources and loads
based on IMLEs are introduced as follows.
1) Data Preprocess

Firstly, the datasets of renewable energy sources and loads
are imported. 80% of the samples are randomly selected as
the training set, and the remaining samples are used as the
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test set. Before inputting real time-series curves of renew‐
able energy sources and loads into IMLEs, they should be
normalized; otherwise, IMLEs are hard to converge in the
training process. Hence, the minimum-maximum normaliza‐
tion method is employed to project input data to values from
zero to one [10].

It is widely known that IMLEs are originally used to pro‐
duce images with the same size of columns and rows. Al‐
though the successful applications in image generation have
proven that IMLEs can accurately capture complex character‐
istics of high-dimensional data through unsupervised learn‐
ing, they have difficulty in directly processing the time-se‐
ries curves where the size of rows and columns are different.
Therefore, the time-series curves of renewable energy sourc‐
es or loads should be reshaped into a square matrix before
being input to IMLEs.

The rules of date transformation, i. e., converting time-se‐

ries curves into matrices, are shown in Fig. 2. For a single
power generation curve, the wind power generation curve of
1 × 144 scale is regarded as an example. The Reshape func‐
tion from Python is employed to transform the original wind
power curve into a square matrix of 12 × 12 scale, which can
be input to IMLEs directly. In the same way, the time-series
curves of renewable energy sources or loads can be reshaped
into a square matrix for multiple power generation curves.
For the time-series curves which cannot be directly reshaped
into a square matrix, it is necessary to insert some zero ele‐
ments into the end of time series [10]. For example, the
wind power generation curve is 1 × 48 scale, if the time reso‐
lution is 30 min. A zero element can be added to its end,
and then it can be reshaped into a square matrix of 7 × 7
scale. In this case, the 2-D matrix reshaped from the original
time-series curves can be fed directly to the data generator
of IMLEs.
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2) Initialize Structure
Before training IMLEs, some key parameters and struc‐

tures such as choice of the optimizer, number of iterations,
and number of hidden layers need to be initialized. Normal‐
ly, the control variable method can be used to select these
parameters [25], which will be discussed in Section III-B.
3) Train IMLEs

To obtain a batch of noises Z =[z1z2zn ], the Monte
Carlo method is employed to sample the Gaussian distribu‐
tion. Then, these Gaussian noises are input into the data gen‐
erator of IMLEs to generate the corresponding new scenari‐
os X̂ =[x̂1x̂2x̂n ]. Moreover, a batch of real scenarios is
selected from the training samples randomly. The Euclidean
distances between the real scenario xi and all new scenarios
X̂ are calculated to find the closest new scenario x̂p(i).

To update the weights of data generator by the gradient
descent method and back propagation method, the loss func‐

tion
1
m∑i = 1

m

 xi - x̂p(i)
2

of IMLEs is calculated. When the num‐

ber of iterations is exceeded, the pre-trained data generator
will be output.

4) Evaluate Performance
After training IMLEs, batches of Gaussian noises are fed

to the pre-trained data generator of IMLEs to obtain the cor‐
responding new time-series curves. Furthermore, the new
scenarios are also the matrices with the same size of col‐
umns and rows, and they need to be transformed into vec‐
tors through the inverse Reshape function. Last but not least,
samples from the test set are used to evaluate the perfor‐
mance of the proposed approach.

III. CASE STUDY

A. Data Description and Deep Learning Library

To fully test the performance of the proposed approach
for scenario generations of renewable energy sources and
loads, numerical simulations are performed on three real da‐
tasets. Specifically, the solar integration data and wind inte‐
gration data were published by the National Renewable Ener‐
gy Laboratory of the United States [26], [27]. The nine adja‐
cent PV plants and wind farms are used as examples to veri‐
fy the effectiveness of the proposed approach. Both PV

1567



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 10, NO. 6, November 2022

plants and wind farms include 1460 power generation curves
with a time resolution of 10 min. A third dataset comes from
the University of Texas at Austin [28], which includes 160
buildings, 70000 students, staff, and faculty. The heating,
cooling, and electric supply are provided from the Hal C.
Weaver power plant and its associated facilities. From July
2011 to September 2012, hourly heating, cooling, and power
load data are recorded in this dataset.

In all datasets, 80% of the samples are randomly selected
as the training set, and the remaining samples are used to
evaluate the performance of the proposed approach. The pro‐
grams are implemented in Spyder 3.2.8 with deep frame‐
works, including Tensorflow 1.0 and Keras 2.0.

B. Discussion of Key Parameters

The scenario generation of a single wind farm is utilized
as an example to illustrate how to select the key parameters
of IMLEs. Specifically, the basic units which are commonly
used to construct the hidden layers in the field of deep learn‐
ing include dense layers, TransConv layers, long short-term
memory (LSTM) layers, and gated recurrent unit (GRU) lay‐
ers. To find the suitable basic units for IMLEs, the loss func‐
tions of IMLEs consisting of different layers are calculated
20 times, and the average loss functions are given in Table
II.

The following conclusions can be drawn from Table II.
1) The LSTM layer based IMLEs and the GRU layer

based IMLEs have similar performance, which are inferior
to the Dense-based IMLEs. In contrast, the TransConv layer
based IMLEs significantly outperform other IMLEs in most
cases, since CNNs are better at extracting the latent features
of the data.

2) With the increase of the number of hidden layers, the
loss function of TransConv layer based IMLEs first decreas‐
es and then increases again, because multiple TransConv lay‐
ers can improve the representation ability of IMLEs. Howev‐
er, too many hidden layers lead to an over-fitting problem.
Generally, three TransConv layers can be considered as a
good starting point for IMLEs.

As shown in Fig. 3, the suitable structures and parameters
of IMLEs for scenario generation of PV plants and wind
farms can be found based on the conclusions from Table II.

Figure 3(a) is the structure of scenario generation for a
single generation unit, such as a wind farm or PV plant, and

Fig. 3(b) is the structure of scenario generation for nine adja‐
cent generation units. Comparing the structures of these two
sub-figures, it is found that IMLEs can be easily generalized
to a variety of scenario generation problems (e. g., wind and
PV power generation curves) by fine-tuning parameters.

Taking Fig. 3(a) as an example to explain parameters, the
data generator mainly includes a dense layer and three Trans‐
Conv layers. Specifically, the rectified linear unit (ReLU)
function is the activation function of the dense layer with
228 neurons. There are 32 filters in the first TransConv layer
and 16 filters in the second TransConv layer. The number of
the filters in the last TransConv layer is 1. The hyperbolic
tangent (Tanh) function is the activation function of the last
TransConv layer, and the remaining TransConv layers use
ReLU functions as their activation functions.

Note that the parameters in TransConv layers (e.g., filter,
kernel, and stride) generally depend on experience and appli‐
cation (the shape of the output data) [29]. Specifically, as
the kernel size becomes larger, each feature is spread out
from the input layer to a larger region. Therefore, the larger

TABLE II
AVERAGE LOSS FUNCTIONS OF IMLES CONSISTING OF DIFFERENT LAYERS

No. of hidden
layers

1

2

3

4

5

6

7

Average loss function of IMLEs

TransConv

66.63

65.32

63.55

63.64

64.36

64.42

67.26

LSTM

67.69

68.30

68.94

72.72

69.30

67.67

69.28

Dense

69.51

67.89

68.14

67.14

67.51

65.85

66.03

GRU

69.85

67.82

69.81

69.00

74.23

70.75

67.98

Input Gaussian noises

Dense, Unit=228, ReLU

TransConv, filters=32, strides=2
BatchNorm, ReLU, kernel=2

32×1

228×1

6×6×32

12×12×16

Output sizeStructure of generator

Reshape function

TransConv, filters=16, strides=2
BatchNorm, ReLU, kernel=2

TransConv, filters=1, strides=1
BatchNorm, Tanh, kernel=1 12×12×1

144×1

Reshape function 3×3×32

Input Gaussian noises

Dense, Unit=228, ReLU

TransConv, filters=32, strides=2
BatchNorm, ReLU, kernel=2

96×1

2592×1

18×18×32

36×36×16

Output sizeStructure of generator

Reshape function

TransConv, filters=16, strides=2
BatchNorm, ReLU, kernel=2

TransConv, filters=1, strides=1

BatchNorm, Tanh, kernel=1
36×36×1

144×9

Reshape function 9×9×32

(a)

(b)

Fig. 3. Structures and parameters of IMLEs for scenario generations. (a)
Scenario generations for a single generation unit. (b) Scenario generations
for nine adjacent generation units.
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the kernel size is, the larger the output matrix is. The stride
size indicates the speed at which the kernel moves through
the output layer. The larger the stride size is, the larger the
output matrix is. The filter represents the dimensionality of
the output space. If a large amount of points are necessary
for the network to generate the object, the generator may use
bigger filters. If objects are somewhat small or have local
features, the generator considers applying smaller filters.
Last but not least, CNNs have been widely used for different
tasks, so when designing the data generator, the parameters
(e. g., filter, kernel, and stride) in TransConv layers can be
borrowed from existing network structures of previous publi‐
cations.

After initializing the structure of IMLEs, the gradient de‐
scent methods are applied to optimize the loss function of
IMLEs. Furthermore, popular gradient descent methods in‐
clude Adagrad, Adamax, SGD, Adam, Nadam, RMSProp,
and AdaDelta [30], which are used as black boxes in deep
learning frameworks. To show how to choose an appropriate
optimizer for IMLEs in scenario generation of wind farms,
the loss functions of IMLEs with different optimizers are cal‐
culated 20 times, and the average loss functions are given in
Table III.

IMLEs have good performances when Adamax, SGD,
Nadam, RMSprop, and Adam are used as optimizers of IM‐
LEs. In particular, the loss functions of Adam algorithm is
the smallest, indicating that the Adam algorithm is the best
choice for IMLEs. In addition, the loss functions of AdaDel‐
ta and Adagrad are significantly larger than those of other
methods, which shows that they are not suitable for scenario
generation via IMLEs.

In Fig. 4, the training evolution of the IMLEs on the wind
dataset is shown to explore the training stability, conver‐
gence performance, and the minimum iteration of IMLEs.

Along with the increasing iteration times, the loss func‐
tion of IMLEs decreases rapidly. When iteration times are
more than 100, the loss function of IMLEs is getting close

to a constant, which indicates that the data generator has
converged. Unlike other generative networks (e. g., GAN)
whose loss function involves instability or non-convergence
[8], the convergence speed of IMLEs is fast and the training
process is stable relatively. In short, the number of iterations
can be initialized to 100, which is sufficient to ensure the
maturity of IMLEs. When the iteration procedure ends, the
pre-trained IMLEs with outstanding performance are used to
generate scenarios for renewable energy sources and loads.

C. Scenario Generation for Renewable Energy Sources

Normally, relevant works visualize a part of real images
and their closest new images, which are the final result of
the actual optimization, to verify the effectiveness of differ‐
ent methods in computer visions [19]- [21]. By analogy, the
mainstream publications analyze the performance of the gen‐
erative models by comparing some real power generation
curves from the test set with their closest new power genera‐
tion curves [8]-[10]. Only comparing the real power genera‐
tion curves with their closest new power generation curves
cannot adequately illustrate the effectiveness of the proposed
method, because some bad cases may be ignored. Further,
the PDFs are employed to compare the overall similarity be‐
tween all the new samples and real samples [15]. If the dif‐
ference between new samples and real samples is very
small, their PDFs would almost overlap. In contrast, the
PDFs of new samples significantly vary from real ones, if
there are a large number of unrealistic new samples. In
short, this section verifies the effectiveness of the proposed
method by comparing the similarity between generated sam‐
ples and real samples from the test set, as previous publica‐
tions do.

In order to check if real scenarios and new scenarios gen‐
erated from IMLEs have similar properties, 2500 Gaussian
noises are used as inputs of the data generator respectively,
so as to produce 2500 PV power generation curves and 2500
wind power generation curves. Next, a portion of real scenar‐
ios with specific properties (e. g., sharp fluctuation, fast
ramps, and large peaks) from the test set are picked to calcu‐
late Euclidean distances with the new scenarios. Finally, Fig.
5 visualizes the picked real scenarios and their nearest new
scenarios when the iteration procedure ends.

The first row of Fig. 5 presents the shapes of new wind
and PV power generation curves generated from IMLEs,
which are similar to real power generation curves. It is diffi‐
cult to distinguish real samples from new ones. The IMLEs
are able to accurately capture the complex dynamic charac‐
teristics of power generation curves, such as sharp fluctua‐
tion, fast ramps, large peaks, and valleys. The real scenarios
selected from the test set are not used to train IMLEs, while
wind and PV power generation curves generated from IM‐
LEs are the same as the shapes of real scenarios in the test
set. This indicates that IMLEs have outstanding generaliza‐
tion ability rather than simply replicating the samples from
the training set.

Aside from the shapes of power generation curves, it is nec‐
essary to verify some common statistical properties between
real and new power generation curves generated from IMLEs.

TABLE III
AVERAGE LOSS FUNCTIONS OF IMLES WITH DIFFERENT OPTIMIZERS

Optimizer

AdaDelta

Adagrad

Adam

Nadam

Loss function

238.29

110.20

63.23

63.52

Optimizer

Adamax

SGD

RMSProp

Loss function

67.83

65.08

63.55
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Fig. 4. Training evolution of IMLEs on wind dataset.
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For example, the temporal correlation is a typical property
at the wind and PV power generation curves, which are of‐
ten represented by the auto-correlation function [17]. To
check whether new and real power generation curves have
similar temporal correlations, the auto-correlation functions
are shown in the second row of Fig. 5. The auto-correlation
functions of wind and PV power generation curves generat‐
ed from IMLEs resemble those of the real scenarios closely,
which show that IMLEs can capture the temporal correla‐
tions of the real power generation curves accurately.

Duration curves of wind farms and PV plants reflect the
variation of output powers in a downward form [10]. The ar‐
ea under the duration curves of renewable energy sources
represents all energy produced by PV plants or wind farms
in a day. Further, the third row of Fig. 5 shows the duration
curves of PV plants and wind farms. It is found that the
trends of power duration curves between the generated new
scenarios and the real scenarios are basically the same, and
the areas surrounded by the y-axis and x-axis are extremely
similar, which shows that the new scenarios generated from
IMLEs can reflect the total energy of real wind and PV pow‐
er generation curves well.

The frequency-domain properties and fluctuations of pow‐
er generation curves play an important role in the stable op‐
eration of integrated energy systems. To represent the energy
value of frequency components in wind and PV power gener‐
ation curves, the power spectral densities (PSDs) are used to

evaluate the frequency-domain characteristics of power gen‐
eration curves [15].

From the fourth row of Fig. 5, it is clear that the trends
and shapes of PSDs in the scenarios generated form IMLEs
are consistent with the real scenarios, which indicates that
the new scenarios generated from IMLEs can fit the fluctua‐
tion components of wind and PV power generation curves at
different frequencies of the real scenarios well.

The Pearson correlation coefficient is one of the popular
indices to evaluate the relationship between continuous vari‐
ables, and it is often used to measure the linear relationship
of wind and PV power generation curves at different look-
ahead times. To further verify if new scenarios generated
from IMLEs have similar temporal characteristics as the real
scenarios, Fig. 6 visualizes the Pearson correlation matrices
of real power generation curves and new power generation
curves for wind farms and PV plants.

The following conclusions can be drawn from Fig. 6.
1) For PV power generation curves, their time horizons of

Pearson correlation matrices are different from those of wind
power generation curves. This is because PV power is zero
in the morning and at night, and Pearson correlation coeffi‐
cient does not exist during these periods. Moreover, with the
increase of time, the Pearson correlation coefficients be‐
tween current wind power and previous wind power gradual‐
ly decrease, while the temporal characteristics of PV power
decrease first and then increase.

Real scenario; Scenario generated from IMLEs
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Fig. 5. Visualization of real scenarios and their closest new scenarios generated from IMLEs. (a) Three samples of wind farms. (b) Three samples of PV
plants.
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2) The Pearson correlation matrices of real scenarios and
generated scenarios are very similar, which shows that with‐
out any statistical hypotheses of probability distributions be‐
ing made during the training process, IMLEs can capture the
temporal dependency of wind and PV power generation
curves accurately.

Previous publications have shown that there are strong
spatial characteristics between adjacent PV plants or wind
farms [8], [9], which play a significant role in the operation
of integrated energy systems. Hence, the stochastic scenario
generation of renewable energy sources needs to consider
spatial correlation.

In order to qualitatively analyze the performance of IM‐
LEs in capturing the spatial correlations of renewable energy
sources, Fig. 7 shows the real power generation curves and
new power generation curves generated from IMLEs of nine
adjacent PV wind farms and nine adjacent power plants in
different colors.

It is obvious that the real power generation curves of nine
wind farms and nine PV plants have the same trend, which
indicates that there are strong spatial correlations among
these adjacent wind farms and PV plants. IMLEs are able to
account for the spatial correlations among multiple genera‐
tion units while generating the stochastic scenarios for re‐
newable energy sources, which is in line with the actual situ‐
ation. Moreover, the nine generated PV power generation
curves are lightly closer to each other than the real ones, but
this small difference is acceptable, since the spatial correla‐
tion among multiple generation units is related to the time-
varying environmental factors, e.g., cloud and light inten‐
sity.

Furthermore, the mean Pearson correlation coefficients of
all samples are employed to quantitatively calculate the spa‐
tial correlations among multiple generation units, as shown
in Fig. 8.

As can be observed from Fig. 8, although some parts of
the Pearson correlation coefficient among generated samples
are less than those of real samples, the error of the Pearson
correlation coefficient does not exceed 0.1. This quantitative‐
ly shows that IMLEs can well capture the spatial correlation
of adjacent power generation units.

In addition to the spatiotemporal correlations of power
generation curves, their amplitudes are also important attri‐
butes. An explicit density model based method (e.g., Copula
method [6]) and other implicit density model-based methods
(e.g., VAE [15] and GAN [17]) are used as baselines. Figure
9 shows the PDFs of real scenarios and new scenarios gener‐
ated from IMLEs and baselines.
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Fig. 7. Real power generation curves of nine adjacent renewable energies.
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ated from IMLEs. (c) Nine real PV power scenarios. (d) Nine new PV power
scenarios generated from IMLEs.
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Besides, Table IV presents the Euclidean distances of the
PDFs between real scenarios and new scenarios quantitative‐
ly. Obviously, there is a small difference of PDFs between
real scenarios and the new scenarios generated from IMLEs.
Compared with other generative networks (e.g., Copula meth‐
od, VAEs, and GANs), two PDFs of IMLEs are closer to
those of real samples. This demonstrates the outstanding ca‐
pability of IMLEs to produce new scenarios for wind and
PV power generation curves with accurate distribution char‐
acteristics.

D. Scenario Generation for Multiple Loads

To ensure that IMLEs have outstanding performance for
scenario generation of heating, cooling, and power load
curves, as shown in Fig. 10, the appropriate parameters of
the data generator are determined by using the control vari‐
able method in [25].

Obviously, the structures and parameters of IMLEs for
scenario generation of heating, cooling, and power load
curves can be obtained by fine-tuning the structures of IM‐
LEs for renewable energy sources in Fig. 3.

To check whether real load curves and new load curves
generated from IMLEs have similar properties, 2500 Gauss‐
ian noises are used as inputs of the data generator to pro‐
duce 2500 samples. Each generated sample includes a heat‐
ing load curve, a cooling curve, and a power load curve.
Then, a part of real scenarios with complex dynamics charac‐
teristics (e.g., large peaks and valleys) from the test set are
selected to calculate Euclidean distances with the new load
curves. Finally, Fig. 11 visualizes the selected real load
curves and their closest new load curves when the iteration
procedure ends.

Obviously, the generated heating, cooling, and power load
curves closely resemble the real ones from the test set, which
are not used in the training process of IMLEs. Next, the sec‐
ond row of Fig. 11 shows that the real-generated pairs of heat‐
ing, cooling, and power load curves have very similar auto-
correlation function values. The third row of Fig. 11 shows the
duration curves for heating, cooling, and power loads. The
comparison results show that the generated and real duration
curves are highly overlapping, i.e., the area enclosed with the
x-axis and y-axis is approximately equal, which indicates that
the total energy demand of the heating, cooling and power
load curves generated from IMLEs during a day is in line with
the real ones. Finally, it can be found from the fourth row of
Fig. 11 that the heating, cooling, and power load curves gener‐
ated from IMLEs are close to the real power load curve values
in each frequency component, which indicates that the fluctua‐
tion characteristics of the power sequence generated from IM‐
LEs are consistent with those of the original sequence.

In order to further verify whether the new heating, cool‐
ing, and power load curves generated from IMLEs have the
similar temporal correlation as the real ones, Fig. 12 uses
colormaps to visualize the Pearson correlation matrices of re‐
al and generated heating, cooling, and power load curves.
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TABLE IV
EUCLIDEAN DISTANCES OF PDFS BETWEEN REAL SCENARIOS AND NEW

SCENARIOS

Model

Copula

GAN

VAE

IMLE

Euclidean distance (p.u.)

Wind power

0.0946

0.0487

0.0580

0.0163

PV power

0.0247

0.0302

0.0339

0.0139

Input Gaussian noises

Dense, Unit=128, ReLU

TransConv, filters=32, strides=2

BatchNorm, ReLU, kernel=2

32×1

128×1

4×4×32

8×8×16

Output sizeStructure of generator

Reshape function

TransConv, filters=16, strides=2
BatchNorm, ReLU, kernel=2

TransConv, filters=1, strides=2
BatchNorm, Tanh, kernel=1

9×9×1

81×1

Reshape function 2×2×32

Discard redundant data 72×1

24×3Reshape function

Fig. 10. Structure and parameters of IMLEs for scenario generation of
heating, cooling, and power load curves.
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Although the Pearson correlation coefficients between pre‐
vious and current loads decrease with time, they are always
greater than 0.8, indicating that the heating, cooling, and
power load curves are strongly time dependent. Similar ele‐
ment values in these Pearson correlation matrices show that
the proposed scenario generation approach can capture the
temporal correlations of heating, cooling, and power load
curves accurately.

Previous publications have shown that there are strong cor‐
relations (also called coupling) among heating, cooling, and
power loads [28], which have important implications for the
stable operation and risk assessment of integrated energy sys‐
tems.

Therefore, the correlations among heating, cooling, and
power load curves need to be considered when generating
stochastic scenarios for them.

In particular, the two samples in the first row of Fig. 11
qualitatively show that the cooling and power loads are posi‐
tively correlated, while they are negatively correlated with
the heating loads. IMLEs can account for these correlations
among multi-class loads when generating new heating, cool‐
ing, and power load curves.

Furthermore, the mean Pearson correlation coefficients of
all samples are employed to quantitatively evaluate the corre‐
lations among heating, cooling, and power loads, as shown
in Fig. 13.

Apparently, the mean Pearson coefficient matrix of the
new load curves does not differ much from the real ones.
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Fig. 11. Visualization of real load curves and their closest new load curves generated from IMLEs. (a) Sample 1. (b) Sample 2.
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Fig. 12. Pearson correlation matrices of different scenarios. (a) Real heat‐
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cooling load scenarios generated from IMLEs. (f) New power load scenari‐
os generated from IMLEs.
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The maximum error of Pearson coefficient matrix between
the real samples and new one is 0.02, indicating that IMLEs
can capture the correlations among heating, cooling, and
power loads well.

In addition to the above properties, Fig. 14 shows the
PDFs of real and new heating, cooling, and power load
curves generated from IMLEs and popular baselines (e. g.,
Copula method, VAEs, and GANs). Also, Table V presents
the Euclidean distances of the PDFs between real historical
and new cooling, heating, and power load curves quantita‐
tively.

The probability distributions of the load curves generated
from the different deep generative networks are generally
consistent with the real situation, indicating that these mod‐
els can simulate the distribution characteristics of the real
load curves well. In addition, since the PDFs of IMLEs are
the closest to those of heating, cooling, and power loads, it
shows that IMLE outperforms Copula method, GANs, and
VAEs in terms of probability distributions.

IV. CONCLUSION

This paper proposes a novel data-driven approach to im‐
prove the quality of stochastic scenario generation for renew‐
able energy sources and loads in integrated energy systems
based on IMLEs. After performing simulation analysis on
the real dataset, the following conclusions are obtained.

1) Compared with the dense layer, LSTM layer, and GRU
layer, the TransConv layer is more suitable for the data gen‐
erator of IMLEs. Normally, the number of TransConv layers
should not be too small or too large, and three TransConv
layers can be considered as a good starting point for differ‐
ent datasets. In addition, the Adam algorithm is more suit‐
able as the optimization algorithm for IMLEs in scenario
generation tasks than other algorithms.

2) Unlike previous implicit density model based methods
(e.g., GANs) whose loss functions are difficult to converge,
IMLEs converge very quickly and are relatively stable
throughout the training process. In addition, IMLEs capture
the probability distributions of renewable energy sources and
loads more accurately than popular generative models, such
as the Copula method, VAEs, and GANs.

3) Simulation results show that IMLEs are able to accu‐
rately capture the signature properties (e. g., fluctuations,
large peaks, and fast ramps), frequency-domain characteris‐
tics, and temporal correlations of renewable energy sources
and load curves in integrated energy systems. Besides, the
energy consumption or energy generation of the generated
samples is very similar to that of the real samples.

4) When simultaneously generating new stochastic scenari‐
os for multiple adjacent renewable energy sources, IMLEs
can consider the spatial correlations among them. Similarly,
IMLEs also take good account of the correlations (also
called coupling) among heating, cooling, and power loads.

For future works, the IMLEs may be extended into condi‐
tional scenario generations with specified properties (e. g.,
heavy loads).
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Fig. 14. PDFs of load curves. (a) Heating load. (b) Cooling load. (c) Pow‐
er load.
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Fig. 13. Mean Pearson correlation coefficients among heating, cooling,
and power loads. (a) Real samples. (b) New samples generated from IMLEs.

TABLE V
EUCLIDEAN DISTANCES OF PDFS BETWEEN REAL AND NEW

COOLING, HEATING, AND POWER LOAD CURVES

Model

Copula

GAN

VAE

IMLE

Euclidean distance (p.u.)

Heating load

0.033

0.030

0.027

0.015

Cooling load

0.088

0.055

0.059

0.026

Power load

0.038

0.030

0.027

0.014

1574



LIAO et al.: SCENARIO GENERATIONS FOR RENEWABLE ENERGY SOURCES AND LOADS BASED ON IMPLICIT MAXIMUM...

REFERENCES

[1] W. Wang, S. Huang, G. Zhang et al., “Optimal operation of an inte‐
grated electricity-heat energy system considering flexible resources dis‐
patch for renewable integration,” Journal of Modern Power Systems
and Clean Energy, vol. 9, no. 4, pp. 699-710, Jul. 2021.

[2] Q. Zhao, W. Liao, S. Wang et al., “Robust voltage control considering
uncertainties of renewable energies and loads via improved generative
adversarial network,” Journal of Modern Power Systems and Clean
Energy, vol. 8, no. 6, pp. 1104-1114, Nov. 2020.

[3] Y. Wang, G. Hug, Z. Liu et al., “Modeling load forecast uncertainty
using generative adversarial networks,” Electric Power Systems Re‐
search, vol. 189, pp. 1-9, Dec. 2020.

[4] J. Cao, W. Du, H. Wang et al., “Probabilistic load flow using Latin hy‐
percube sampling with dependence for distribution networks,” in Pro‐
ceedings of 2nd IEEE PES International Conference and Exhibition
on Innovative Smart Grid Technologies, Manchester, UK, Dec. 2016,
pp. 1-6.

[5] Z. Wang, C. Shen, F. Liu et al., “Analytical expressions for joint distri‐
butions in probabilistic load flow,” IEEE Transactions on Power Sys‐
tems, vol. 32, no. 3, pp. 2473-2474, May 2017.

[6] Y. Qiu, Q. Li, Y. Pan et al., “Analytical expressions for joint distribu‐
tions in probabilistic load flow,” International Journal of Hydrogen
Energy, vol. 44, no. 11, pp. 5162-5170, Feb. 2019.

[7] Q. Tu, S. Miao, F. Yao et al., “Forecasting scenario generation for
multiple wind farms considering time-series characteristics and spatial-
temporal correlation,” Journal of Modern Power Systems and Clean
Energy, vol. 9, no. 4, pp. 837-848, Jul. 2021.

[8] Y. Chen, Y. Wang, D. Kirschen et al., “Model-free renewable scenario
generation using generative adversarial networks,” IEEE Transactions
on Power Systems, vol. 33, no. 3, pp. 3265-3275, May 2018.

[9] Y. Chen, P. Li, and B. Zhang, “Bayesian renewables scenario genera‐
tion via deep generative networks,” in Proceedings of 52nd Annual
Conference on Information Sciences and Systems (CISS), Princeton,
USA, Mar. 2018, pp. 1-6.

[10] L. Ge, W. Liao, S. Wang et al., “Modeling daily load profiles of distri‐
bution network for scenario generation using flow-based generative
network,” IEEE Access, vol. 8, pp. 77587-77597, Apr. 2020.

[11] J. Li, J. Zhou, and B. Chen, “Review of wind power scenario genera‐
tion methods for optimal operation of renewable energy systems,” Ap‐
plied Energy, vol. 280, pp. 1-12, Dec. 2020.

[12] C. Wang, C. Xu, X. Yao et al., “Evolutionary generative adversarial
networks,” IEEE Transactions on Evolutionary Computation, vol. 23,
no. 6, pp. 921-934, Dec. 2019.

[13] Y Khalifa, D Mandic, and E Sejdi, “A review of hidden Markov mod‐
els and recurrent neural networks for event detection and localization
in biomedical signals,” Information Fusion, vol. 69, pp. 52-72, May
2021.

[14] L. Zhang and B. Zhang, “Scenario forecasting of residential load pro‐
files,” IEEE Journal on Selected Areas in Communications, vol. 38,
no. 1, pp. 84-95, Jan. 2020.

[15] Z. Pan, J. Wang, W. Liao et al., “Data-driven EV load profiles genera‐
tion using a variational auto-encoder,” Energies, vol. 12, no. 5, pp. 1-
15, Mar. 2019.

[16] N. Hajarolasvadi, M. A. Ramírez, W. Beccaro et al., “Generative ad‐
versarial networks in human emotion synthesis: a review,” IEEE Ac‐
cess, vol. 8, pp. 218499-218529, Dec. 2020.

[17] J. Liang and W. Tang, “Sequence generative adversarial networks for
wind power scenario generation,” IEEE Journal on Selected Areas in
Communications, vol. 38, no. 1, pp. 110-118, Jan. 2020.

[18] J. Qiao, T. Pu, and X. Wang, “Renewable scenario generation using
controllable generative adversarial networks with transparent latent
space,” CSEE Journal of Power and Energy Systems, vol. 7, no. 1, pp.
66-77, Jan. 2021.

[19] K. Li and J. Malik. (2018, Sept.). Implicit maximum likelihood estima‐
tion. [Online]. Available: https://arxiv.org/abs/1809.09087

[20] Y. Hoshen, K. Li, and J. Malik, “Non-adversarial image synthesis with
generative latent nearest neighbors,” in Proceedings of IEEE/CVF Con‐
ference on Computer Vision and Pattern Recognition (CVPR), Long
Beach, USA, Jun. 2019, pp. 5804-5812.

[21] K. Li, T. Zhang, and J. Malik, “Diverse image synthesis from seman‐
tic layouts via conditional IMLE,” in Proceedings of IEEE/CVF Inter‐
national Conference on Computer Vision (ICCV), Seoul, Korea
(South), Nov. 2019, pp. 4219-4228.

[22] S. Ravuri, S. Mohamed, M. Rosca et al., “Learning implicit genera‐

tive models with the method of learned moments,” in Proceedings of
35th International Conference on Machine Learning, Hanoi, Vietnam,
Sept. 2018, pp. 4314-4323.

[23] W. Liao, B. Jensen, J. Pillai et al., “Data-driven scenarios generation
for wind power profiles using implicit maximum likelihood estima‐
tion,” in Proceedings of 12th International Conference on Applied En‐
ergy (ICAE2020), Bangkok, Thailand, Dec. 2020, pp. 1-5.

[24] W. Liao, B. Bak-Jensen, J. R. Pillai et al., “A review of graph neural
networks and their applications in power systems,” Journal of Modern
Power Systems and Clean Energy, vol. 10, no. 2, pp. 345-360, Mar.
2022.

[25] W. Liao, D. Yang, Y. Wang et al., “Fault diagnosis of power transform‐
ers using graph convolutional network,” CSEE Journal of Power and
Energy Systems, vol. 7, no. 2, pp. 241-249, Mar. 2021.

[26] C. Draxl, A. Clifton, B. Hodge et al., “The wind integration national
dataset (WIND) toolkit,” Applied Energy, vol. 151, pp. 355-366, Aug.
2015.

[27] National Renewable Energy Laboratory. (2012, Nov.). Solar integra‐
tion national dataset toolkit. [Online]. Available: https://www. nrel.
gov/grid/sind-toolkit.html

[28] K. Powell, A. Sriprasad, W. Cole et al., “Heating, cooling, and electri‐
cal load forecasting for a large-scale district energy system,” Energy,
vol. 74, pp. 877-885, Sept. 2014.

[29] N. Aloysius and M. Geetha, “A review on deep convolutional neural
networks,” in Proceedings of 2017 International Conference on Com‐
munication and Signal Processing (ICCSP), Chennai, India, Apr. 2017,
pp. 588-592.

[30] S. Ruder. (2016, Sept.). An overview of gradient descent optimization
algorithms. [Online]. Available: https://arxiv.org/abs/1609.04747

Wenlong Liao received the B.S. degree from China Agricultural University,
Beijing, China, in 2017, and the M.S. degree from Tianjin University, Tian‐
jin, China, in 2020. He is currently pursuing the Ph. D. degree in Aalborg
University, Aalborg, Denmark. His current research interests include smart
grids, machine learning, and renewable energy.

Birgitte Bak-Jensen received the M. Sc. degree in electrical engineering
and the Ph.D. degree in modeling of high-voltage components from the In‐
stitute of Energy Technology, Aalborg University, Aalborg, Denmark, in
1986 and 1992, respectively. She is currently a Professor with the Depart‐
ment of Energy Technology, Aalborg University. Her current research inter‐
ests include distribution system analysis, smart grids, and intelligent energy
systems.

Jayakrishnan Radhakrishna Pillai received the M.Tech. degree in power
systems from the National Institute of Technology, Calicut, India, in 2005,
the M.Sc. degree in sustainable energy systems from the University of Edin‐
burgh, Edinburgh, U. K., in 2007, and the Ph. D. degree in power systems
from Aalborg University, Aalborg, Denmark, in 2011. He is currently an As‐
sociate Professor with the Department of Energy Technology, Aalborg Uni‐
versity. His current research interests include distribution system analysis,
grid integration of electric vehicles and distributed energy resources, smart
grids, and intelligent energy systems.

Zhe Yang received the B.S. degree from Northeast Electric Power University,
Jilin, China, in 2017 and the M. S. degree from North China Electric Power
University, Beijing, China, in 2020. He is currently pursuing the Ph.D. degree
in Aalborg University, Aalborg, Denmark. His current research interests in‐
clude machine learning, renewable energy, and power system protection.

Yusen Wang received the B. S. degree from China Agricultural University,
Beijing, China, in 2017, and the M. S. degree from KTH Royal Institute of
Technology, Stockholm, Sweden, in 2019. He is currently pursuing the Ph.D.
degree in KTH Royal Institute of Technology. His current research interests in‐
clude machine learning, and smart grids.

Kuangpu Liu received the B. S. degree from Northwestern Polytechnical
University, Xi’an, China, in 2017, and the M.S. degree from Northwestern
Polytechnical University, Xi’an, China, in 2020. He is currently pursuing
the Ph.D. degree in Aalborg University, Aalborg, Denmark. His current re‐
search interests include reinforcement learning, machine learning, and re‐
newable energy.

1575


