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Summary

We discuss the practice of directly or indirectly assuming a model for the number of points when
modelling spatial point patterns even though it is rarely possible to validate such a model in practice
because most point pattern data consist of only one pattern. We therefore explore the possibility to
condition on the number of points instead when fitting and validating spatial point process models.
In a simulation study with different popular spatial point process models, we consider model vali-
dation using global envelope tests based on functional summary statistics. We find that conditioning
on the number of points will for some functional summary statistics lead to more narrow envelopes
and thus stronger tests and that it can also be useful for correcting for some conservativeness in the
tests when testing composite hypothesis. However, for other functional summary statistics, it makes
little or no difference to condition on the number of points. When estimating parameters in popular
spatial point process models, we conclude that for mathematical and computational reasons, it is
convenient to assume a distribution for the number of points.

Key words: conditional inference; global envelope test; maximum likelihood; maximum pseudo-
likelihood; spatial point process models.

1 Introduction

Consider a spatial point process defined on the d-dimensional Euclidean space R?, and let
W c R be a bounded region W c R within which realisations of the process are observed.
In the literature on statistical analysis of spatial point processes, the data usually consist of a sin-
gle realisation {xy, ..., x,} C W, that s, a (finite) point pattern where both the number of points
n and the locations xi, ..., x, are considered to be random. For instance, in the R-package
spatstat (Baddeley ef al., 2015), which is widely used for analysing spatial point patterns,
there are more than 50 data examples of point patterns, but only seven of these consist of more
than one point pattern. Although it is impossible from a single point pattern to validate the plau-
sibility of any claimed model for the number of points, the practice is nonetheless to fit, validate
and use spatial point process models, which directly or indirectly assume a model for the num-
ber of points.
© 2022 The Authors. International Statistical Review published by John Wiley & Sons Ltd on behalf of International Statistical Institute.
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552 MGLLER AND VIHRS

For the example of a stationary Poisson process, 7 is a realisation of a Poisson-distributed
random variable, and conditioned on 7, the points are realisations of #» independent uniformly
distributed random variables on /. Even for this simple example of a point process model, it
is not possible to validate the assumed Poisson distribution for the number of points based on
just one realization. A common procedure for testing whether a Poisson process model fits a
given point pattern is to divide /¥ into disjoint subsets of equal size and count the number of
points falling within each subset. Conditioning on #, these observed counts constitute a realiza-
tion from a multinomial model with equal probabilities, and the validity of this model can be
checked using a goodness-of-fit test, for example, as implemented in the function quadrat.test
from spatstat. However, even if we accept this multinomial model, to claim that # is a real-
isation from a Poisson distribution amounts to assume independence for the counts
(Moran, 1952), and indeed, this assumption is hard to justify by a statistical test. Therefore, it
will be impossible from a single point pattern to validate that » is a realisation from a Poisson
distribution.

We still believe that it is usually reasonable to think of the number of points as a single real-
isation of a random variable. We merely point out that it would be inappropriate to make claims
about the distribution of the number of points because we have no chance to validate these as
illustrated for a stationary Poisson process above. If we are indeed willing to make some model
assumptions and can make simulated point patterns under these assumptions, such simulations
can of course be used to estimate the distribution of the number of points under the model if
wanted, but why should we believe in such a distribution when we do not have the means to
validate this? It may thus be more fair to accept that we do not know anything about the distri-
bution of the number of points and therefore use a conditional approach instead. However, we
have not found much places in the spatial point process literature where the role of conditioning
on n is studied. Ripley (1977) provided a short discussion of conditional inference saying ‘For
Poisson models, we can justify this conditioning by an appeal to a conditionality principle. In
general, all we can say is that conditional inference seems reasonable and that our revised pro-
cedures yield valid conditional tests’. Further, Ripley (1988) wrote ‘Where we are interested in
interactions, n may be approximately ancilliary’. He illustrated this for a Strauss process which
on the unit square when ignoring boundary effects has density

f({xl, ceey x,,}) OCﬂ”yY({xly s Xn})

wheref > 0, 0<y<1, R > Oands({xi, ..., x,}) is the number of R-close pairs of points in
the point pattern; we return to this process in Sections 2.3 and 4.2 and Section 2 in the
supporting information. Ripley (1988) derived an approximation of the probability density
function for the number of points:

n

pn) <2 exptly = 1ntn — D2 n

He noticed that this density depends on y but wrote ‘the dependence is quite weak
in typical cases’ where he referred to a plot of the cumulative distribution functions
when =50, R=0.05 and y =0.0,0.2,0.4,0.8,1.0. Mean values of »n in this case and
when £ = 200 are shown in Table 1 where we see a good agreement between those means
calculated from the approximation in (1) and those obtained by simulations. In our opinion,
the mean values in Table 1 depend much on y, but we notice in Section 4.2 that maximum
pseudo-likelihood estimates do not depend much on whether or not we condition on 7.

International Statistical Review (2022), 90, 3, 551-562
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Table 1. Mean values for the number of points in a Strauss process on a two-dimensional unit square with R = 0.05 and
different values of y and B

y=20 y=0.2 y=104 y=10.6 y=0.8 y=1
£ =50 37.33 39.13 41.19 43.61 46.48 50.00
(36.91) (38.91) (41.24) (43.78) (46.56) (49.87)
£ =200 95.00 104.11 115.92 132.12 156.45 200.00
(88.37) (100.72) (114.53) (132.35) (157.36) (200.32)

The means are calculated from the approximate distribution in (1), and the numbers in paren-
thesis are the means obtained from 5 000 simulations of the process.

Apart from Ripley’s study of the Strauss process considered above, we are not aware of any
thorough study of the effect of conditioning on n. Moreover, the practice is still to work with
spatial point process models without conditioning on n. Therefore, the objective of this paper
is to investigate the consequences of this practice and to explore the possible benefits of condi-
tioning on 7 when considering various popular classes of spatial point process models. We in-
vestigate this through a comprehensive simulation study of model validation based on the
widely used method of global envelopes and corresponding tests (Myllyméki et al., 2017),
and by discussing the effect of conditioning on » when making frequentistic parameter
estimation.

Our paper is organised such that Section 2 contains some preliminaries needed for our main
contributions in Sections 3—5, where Section 5 summarises our findings. Technical details re-
lated to these sections are found in the supporting information that is available in the online ver-
sion of the article. All statistical analyses were made with R (R. Core Team, 2019). We used the
packages spatstat (Baddeley er al., 2015) for handling spatial point patterns, GET
(Myllyméki & Mrkvicka, 2019) to make global envelope tests and ggplot2 (Wickham, 2016)
for visualisation. Furthermore, we used our own implementations of simulation and estimation
procedures when conditioning on the number of points, which can be found in the R-scripts in
the supporting information.

2 Preliminaries
2.1 Setting and Notation

Throughout this paper, we use the following point process setting and notation.

For a subsetx C R, letn(x) denote its cardinality (setting n(x) = ocoifx is not a finite set) and
xz: = xNB its restriction to any set B C R?. Let Q denote the set of all locally finite subsets
x C R thatis,n(xz) < ocowhenever B C R?isbounded. A simple locally finite point process
on R is a random variable taking values in Q. Here and elsewhere, we omit measure theoretical
details and refer instead to Moller and Waagepetersen (2004) and the references therein. The
point process can also be specified in terms of the counting measure N(B): = n(Xjp) for
bounded sets B C R? (more precisely, B should also be a Borel set, but as mentioned, we omit
such details).

We assume that X is a stationary simple locally finite point process on R? with intensity
p € (0, 00). This means that X € Q, the distribution of X is invariant under translations in
R? and EN(B) = p|B| where |B| denotes the d-dimensional volume (Lebesgue measure) of
BC RY. Stationarity is a common assumption for spatial point processes, and it allows us to
deal with frequently used functional summary statistics, refer to Section 2.2. We also assume

International Statistical Review (2022), 90, 3, 551-562
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that a single realisation x = {x1, ..., x,} of X has been observed where the observation win-
dow W c R? is compact and || > 0.

Letu,vE€ R, r>0and B C R?. Then, 1(") is the indicator function; |ju — v|| is the usual
distance between u and v; b(u, r) is the closed d-dimensional ball with centre u and radius r;
dist(B, u):=inf{r > 0|b(u, r)NB # @} is the distance from u to B; Bg,:=
{u € R?|b(u, r) C B} is B eroded by a ball of radius 7; B g := U, < b(u, r) is B dilated by
a ball of radius 7; and (B g,) 4, C B is the opening of B by a ball of radius r. Finally, we use
the convention 0/0: = 0.

br

2.2 Functional Summary Statistics

Functional summary statistics K, £, G and J which are non-parametric (empirical) esti-
mates of the theoretical functions below are widely used for exploratory purposes, model fitting
and model checking, refer to Baddeley er al. (2015) and the references therein.

For every » > 0 and an arbitrary point u € R?, Ripley’s K-function is defined by
pK(r):==EN(b(u, r)\{u})lu € X), )

the empty space function ' (or spherical contact function) and the nearest-neighbour function G
are

F(r):= P(dist(X, u) <r), G(r):==P(dist(X\{u}, u) <rju € X) (3)
and for F(r) < 1 the J-function is

J(r): =1 = G(r)/(1 = F(r)). (4)

These definitions do not depend on the choice of u since X is stationary, and as indicated by
the notation, we have conditioned on u € X in the definitions of K and G, meaning that X'\ {u}
then follows the reduced Palm distribution of X at u.

When estimating the K, F, G and J-functions by non-parametric methods, different types
of edge correction methods have been suggested in order to adjust for the fact that
n(Xwrp(u, ) tends to be smaller for points u € W which are close to the boundary of # com-
pared with points u € W which are far from the boundary of 7. Baddeley et al. (2015) noticed
that the choice of edge correction method is usually not very important. We choose to use a par-
ticular border (or minus-sampling) correction method that is available in spatstat and refer
to Baddeley et al. (2015) for the concrete estimators.

When conditioning on n, we are not aware of how to modify the definitions of K, F', G and J.
If we just condition in (2)—(4), the expressions will depend on u because stationarity no longer
holds. Still, when only a single point pattern is observed and hence it is impossible to validate
any claimed model of N (W), it seems appropriate to condition on n when calculating global
envelopes and tests as in Section 3.

2.3 Models
For the simulation studies in Sections 3 and 4.2, we consider four concrete examples of point
process models on R? as specified in M1-M4 below. Section 1 in the supporting information

International Statistical Review (2022), 90, 3, 551-562
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provides further details including how to make simulations both with and without conditioning
on the number of points.

M1: X is a stationary Poisson process. This is the model of no spatial interaction or complete
spatial randomness. When making simulations in Section 3, we let the intensity be p = 100.

M2: X is a stationary log-Gaussian Cox process. Then, X is driven by a stochastic intensity
Z = exp(Y) where Y is a stationary Gaussian random field on R*, meaning that X conditioned
on Y is a Poisson process with intensity function Z (Meller et al., 1998). We use an exponential
covariance function c(u, v): = aexp(—||u — v||/d) foru, v € R*> where 6> > 01is a variance
parameter and§ > 0 is a scale parameter, and so the mean of Y is u = log(p) — ¢° /2. Because
of the positive correlation in Y, realisations of X exhibit clustered behaviour. When making sim-
ulations in Section 3, we let p = 100, ¢> =1 and § = 0.1.

M3: X is a stationary Strauss process. This process has parameters f > 0, 0 <y <1 and
R > 0. It is defined by a so-called local specification: let B C R? be a bounded set of positive
area and define the R-close neighbourhood to B by 0B: = B g r\B. Then, for every such B, X
and Xpp , are conditionally independent given Xgp . Furthermore, for every finite

xep C OB, Xp conditioned on X5 = x5 has a density with respect to a Poisson process of in-
tensity 1 and restricted to B. This conditional density is

[ (x| xap) o< pr)y ) (5)

for finite xz C B, x = xgUxgp and s(x) = X, < ;1(|lx; — xj|| < R) if x = {x1, ..., x,}. The nor-
malising constant that is omitted in (5) depends on (f, y, R) and xsp, and it is intractable unless
y=1. When y = 1, X is just a stationary Poisson process with intensity f. As y decreases, X
becomes more and more inhibitory, and it is a Gibbs hard core model if y = 0. When making
simulations in Section 3, we let f = 200, y = 0.3 and R = 0.05. Then, the intensity is approx-
imately 100.

M4: X is a stationary determinantal point process. In brief, determinantal point processes
(Macchi, 1975; Lavancier ef al., 2015) are specified by a function C: R? x R%—C called the
kernel, and they are repulsive at all scales, compare Section 1.4 in the supporting information.
We use a Gaussian kernel C(u, v) = pexp(—||(u — v)/«||*) where k > 0 is a scale parameter
and p > 0 is the intensity. It should be satisfied that x < 1/,/pz, and this upper limit corre-
sponds to the most repulsive case when p is fixed. When making simulations in Section 3,
we let p = 100 and ¥ = 0.03 < 1/v/1007 = 0.056.

3 Global Envelopes and the Effect of Conditioning

In this section, we investigate the effect of conditioning on the number of points when using
global envelopes for model validation. Section 3.1 first describes the set-up of the simulation
study, and Section 3.2 describes and interprets the results.

3.1 Set-up

We investigate the effect of conditioning on the number of points when considering global
envelopes for functional summary statistics and corresponding tests based on the extreme rank
length as described in Myllymiki et al. (2017), Mrkvicka et al. (2018) and Myllyméki &
Mrkvicka (2019). Briefly, a (100 — «)% global envelope consists of a lower and an upper curve
defining a region such that the observed functional summary statistic for data falls completely

International Statistical Review (2022), 90, 3, 551-562
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between these bounding curves if and only if the global envelope test cannot be rejected at level
o%. There of course exist other tests that can be used in connection with spatial point processes,
refer to, for example Baddeley efal. (2015, chapter 10); however, because the use of a global
envelope and its corresponding test statistic is by far the most popular method for performing
model validation of a fitted spatial point process model, we restrict attention to this test proce-
dure. There are ways to make a combined global envelope test based on several functional sum-
mary statistics, but for our purpose, we prefer to investigate the effect of conditioning on the
number of points for each functional summary statistic.

We made the simulation study as follows. Under each of the four models M1-M4 we simu-
lated 1 000 independent point patterns within a two-dimensional unit square (the observation
window W). For each of these point patterns, we fitted the parameters of the models as described
in the last paragraph of this section. Under each fitted model and each true model, we made fur-
ther 2 500 simulations with and 2 500 simulations without conditioning on the number of
points. From each of these four cases, or three in the case of the Poisson process because the
fitted and true model is the same when conditioning on the number of points, we used the 2
500 simulations to calculate 95% global envelopes based on each of the functional summary
statistics £/, G, J and K. Some further technical and practical details related to the set-up of
the simulation study are deferred in Appendix A.

Clearly, more narrow envelopes are preferable when comparing envelopes for the same
type of functional summary statistic. For simplicity, in order to spot a general tendency in
the width of envelopes, we considered for each envelope a numerical approximation of its

area §§ (cy(r) — ¢i(r))dr where ¢, and ¢; are the upper and lower curves of the envelope,

respectively, and R is the highest r value for which the considered functional summary sta-
tistic was estimated.

3.2 Results

Figure 1 shows boxplots of the approximated area of the envelopes. We see that it generally
makes little difference in the areas of the envelopes whether the parameters are fitted from data

or not, except for K where there is less variation in the width of the envelopes when using the
true parameters especially in the unconditional case. We also see that for K and J, it makes no
real difference in the area of the envelopes to condition on the number of points either, but for G
and especially F the envelopes are in general more narrow in the conditional case.

Figure 2 shows quantile—quantile plots comparing the distributions of the p values of the
global envelope tests for each fitted model to a uniform distribution on [0, 1]. We see that some
of the tests are too conservative, which may be because the null hypothesis is composite except
in the conditional case of the Poisson process. Using F overall gives very conservative tests in
the unconditional case, especially for the Poisson, Cox and determinantal point process, and this
behaviour is corrected very well by conditioning on the number of points. For G, it makes little
difference to condition on the number of points except in the case of the Cox process where it
corrects the conservativeness in the unconditional case very well. For both J and K, it makes
little to no difference whether we condition on the number of points or not, and in all cases,
the distributions of the p values are in good agreement with the uniform distribution even though
we also see some slight conservativeness in some tests. Since K was used to fit the parameters of

the Cox and determinantal point processes, we usually do not want to use K for model validation
as well.

International Statistical Review (2022), 90, 3, 551-562
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FIGURE 1. Boxplots for the area between 95% global envelope curves for the functional summary statistic stated at the top
of each column. The results were obtained from the simulation study described in the text. The grey level indicates whether the
true parameters (dark grey) or fitted parameters (white) were used in the simulations. Whether simulations were made con-
ditional on the number of points is stated at the bottom of each column. The type of model under consideration is stated to the
left of each row

Moreover, to see the effect of increasing the intensity, we made a simulation study for the sta-
tionary Poisson process with p = 200. Our conclusions remained the same, and the only real
difference was that all envelopes were in general more narrow, which was to be expected since
the summary statistics varies less when we observe more points. However, the simulation stud-
ies for the remaining three models are time consuming, and it will be even worse if we increase
the intensity, but we do not believe the conclusions will be much different as we have indeed
established for the example of a Poisson process.
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FIGURE 2. Quantile—quantile plots comparing the empirical distributions of the p values of global envelope tests to a uni-
Sorm distribution on [0, 1]. The considered p values are the results of the simulation study described in the text. The type of
point indicates whether the global envelope tests were based on conditional (dots) or unconditional (triangles) simulations
under the fitted model. The functional summary statistic used is stated at the top of each column, the type of model is stated
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4 Conditional Estimation

In this section, we investigate the possibility to estimate parameters in spatial point process
models conditional on the number of points. We consider Cox, Gibbs and determinantal point
processes and in each case discuss whether conditional estimation offers any advantages over
the unconditional approach. There is of course no reason to consider conditional estimation
in the case of a stationary Poisson process because the conditional case is a binomial point pro-

cess with no unknown parameters.

4.1 Cox Processes

Parametric models for a stationary Cox process X driven by a random field Z on R? are usu-
ally of the form Z(u) = pR(u) where R = {R(u)}, < g is a non-negative unit-mean stochastic
process following a parametric model with a parameter y so that (p, w) has range (0, co0) x ¥

for some set ¥ C R”. The process X then has a density
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Sx) = P"E[R(x1)...RCs)exp{ W] = pf wR(u)du | ©)

with respect to a Poisson process of intensity 1 and restricted to . In general, this density is not
expressible on closed form except for rather trivial cases, and so likelihood based inference is
difficult although a missing-data Markov chain Monte Carlo approach can be used for approx-
imate maximum likelihood estimation, refer to Mpller and Waagepetersen (2004). Since
second-order moments of the counts N(B) are often expressible on closed form,
moment-based and composite likelihood estimation procedures are usually preferred, refer to
Moller & Waagepetersen (2017) and the references therein.

When conditioning on N (W) = n, any ordering (X1, ..., X,,) of the n points in X' has a den-
sity with respect to Lebesgue measure on " which is proportional to the right-hand side in (6).
Hence, it is also not expressible on closed form and depends on both p and . Furthermore,
moment-based estimation is no longer possible. Consequently, we do not see any advantage
in conditioning on the number of points.

4.2 Gibbs Processes

Suppose that X is a stationary Gibbs point process with known interaction radius R > 0 (de-
tails for this general setting are provided in Section 1.3 in the supporting information). Further,
suppose that X = x has been observed, and let xy  , = {x1, ..., xu}. We define the R-close
neighbourhood to W g g by OW g r: = (W g r) g z\W o r and base inference on the condi-
tional distribution of Xy _ , given X, = Xow o .. Thereby, we account for edge effects
due to the unobserved points in X s\ ;- because Xy  , and X pa, , are independent conditioned
on Xow o, = Xow o - Below, we discuss reasons and consequences of further conditioning on
N ( w o R) = m.

For specificity and simplicity, let us think of X as the stationary Strauss process given in
Section 2.3. Then, the likelihood function is of exponential family form with canonical param-
eter (log /3, logy) and minimal sufficient statistic (n(xp ), s(xw o UXaw 5 ). However, esti-
mation of (f, y) is complicated by the fact that the normalising constant is not expressible on
closed form fory < 1. Often, the interaction parameter yis of main interest; if we also condition
on N(W g r) = m, we obtain a likelihood function which only depends on y. The normalising
constant of that likelihood function is also not expressible on closed form for y < 1, but it is
simpler to approximate, compare Section 2 in the supporting information. In particular, as no-
ticed at the end of Section 2 in the supporting information, simulations and computations will
be faster when conditioning on N (W g ) = m. However, it is still slower and more difficult
than using maximum pseudo-likelihood estimation, which will be described next.

Maximum pseudo-likelihood estimation is known to be a fast and often reliable alternative to
maximum likelihood estimation, refer to, for example Jensen and Moller (1991), Baddeley
et al. (2014) and the references therein. The definition of the pseudo-likelihood function de-
pends on the context and is specified in Section 3 in the supporting information both with
and without conditioning on N (W g z) = m and in a way which accounts for edge effects. In
the conditional case, we consider Besag’s original pseudo-likelihood function (Besag, 1975);
in the unconditional case, we consider Besag’s extension to spatial point processes (Besag, 1977;
Jensen & Moller, 1991). The computational advantage of using the pseudo-likelihood functions
is that they do not depend on the intractable normalising constant that appears in maximum like-
lihood estimation.

We wanted to investigate whether it makes a real difference in the maximum
pseudo-likelihood estimate of y to condition on the number of points. In order to do this, we
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considered 1000 simulations on the unit square of a stationary Strauss process when f =
200, R = 0.05, and y was sampled uniformly in the interval [0.01, 1]. For each simulation,
we calculated the maximum pseudo-likelihood estimate of (B, y) with the function
exactMPLEstrauss in spatstat, which computes the maximum pseudo-likelihood esti-
mate to a high accuracy. We also found the maximum pseudo-likelihood estimate in the condi-
tional case by implementing a function where we used the same numerical methods for optimi-
sation and evaluation of integrals as in exactMPLEstrauss. In both cases, we let R = 0.05
be given. The average absolute difference between the estimates of y obtained with the two
methods was 0.005, and the largest absolute difference was 0.01. So it makes very little differ-
ence to condition on the number of points. Furthermore, the computations for the
pseudo-likelihood function in the conditional case may be more cumbersome since more inte-
grals have to be evaluated, compare Section 3 in the supporting information. Therefore, there
is no apparent reason to use the more complicated pseudo-likelihood method of the conditional
case.

4.3 Determinantal Point Processes

Parametric models for stationary determinantal point processes with intensity p > 0 are
specified by a parametric class of kernel functions, which are usually of the form Cy(u, v) =
pR,(u — v) where @ = (p, y) and (u, v)=R,(u — v) is a (complex) correlation function. Un-
der weak assumptions, for example that Cy is a continuous complex covariance function, the
kernel restricted to W x W has a spectral representation

Colw.v) = Sab ), wvew,

where {¢;},_,, s an orthonormal basis for the L*-space of square-integrable complex func-
tions on W and Ay, Ay, ... are corresponding eigenvalues. We have 4; = pA; where (¢;, 1;) de-
pends only on w and the condition 0 </; <1 is needed to ensure existence of the process.
Therefore, the parameter space ¥, of w will depend on the value of p; briefly speaking, there
is a trade-off between intensity and repulsion, and the set ‘¥, decreases as p increases, compare
Lavancier et al. (2015). For parameter estimation based on maximum likelihood and
moment-based methods, refer to Lavancier et al. (2015).

Conditioned on N(W) = n, any ordering (X1, ..., X,,) of the n points in X has probability
density function

Ze e (W) (g i = 2)) fdet{3i 6, () 8,060},
iy < o <y (Hlelij) <Hj ¢ fin, iy (1 — /11))

s e

for (xy, ..., x,) € W". For parametric models as considered above, it follows that the condi-
tional distribution of X given N(W) = n depends on both p and y in a complicated way; in
fact, it is more complicated than the likelihood in the unconditional case, compare Lavancier
et al. (2015). Therefore, we do not see any advantage in conditioning on N (W) = n when mak-
ing parameter estimation.
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5 Concluding Remarks

It is worth repeating that any claimed model for the number of points cannot be justified
based on just one realisation. However, in case of Cox, Gibbs and determinantal point pro-
cesses, it is convenient for computational reasons to assume a distribution for the number of
points when estimating parameters.

Regarding global envelope tests based on K or J, it made little or no difference in our sim-
ulation study whether we condition on the number of points. However, when we instead used £

or G, conditioning on the number of points gave more narrow envelopes and hence stronger
tests, and it corrected for conservativeness in the tests.

Global envelopes and tests are usually calculated from simulations of a single point process
model. For a composite null hypothesis, it is possible to make an adjusted global envelope test
but at the expense of many simulations (Myllyméki & Mrkvicka, 2019). Conditioning on the
number of points may offer an alternative which requires fewer simulations, but whether this
will be faster in practice depends on the actual speed of the simulation procedures. We leave
this for future research.

Regarding conditional estimation, we concluded that it is impractical and offers no clear ad-
vantage to consider conditional estimation for Cox and determinantal point process models. For
Gibbs point process models, it simplifies maximum likelihood estimation but complicates the
more commonly used and faster method of maximum pseudo-likelihood estimation where there
is also little difference in the estimates achieved with and without conditioning. We therefore
overall have found no apparent reason to use conditional estimation.
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APPENDIX A: Details Regarding the Simulation Study in Section 3

The following gives some practical and technical details regarding the simulation study de-
scribed in Section 3.1.

When calculating functional summary statistics, we always used the default range of  values
in spatstat. For details on simulation procedures, especially conditional simulation, refer to
Section 1 in the supporting information. When fitting parameters, we always did it without con-
ditioning on the number of points because we argue in Section 4 that there is no apparent rea-
sons to use conditional estimates. We used the natural estimate n(x) of the intensity in the case
of the Poisson process, used the method of minimum contrast estimation based on Ripley’s K
-function (refer to Baddeley et al. 2015) in the cases of the log-Gaussian Cox process and the
Gaussian determinantal point process and used the method of profile maximum
pseudo-likelihood in the case of the Strauss process (where we considered 41 equally spaced
values of R in the interval (0.03,0.07)). When fitting the parameters of the log-Gaussian Cox
process, we found that sometimes the scale parameter ¢ was seriously overestimated, which
caused the conditional simulation procedure to be extremely slow. Therefore, we decided only
to use realizations of the log-Gaussian Cox process M2 where the fitted scale parameter was be-
low 0.3, which left 953 realisations in the simulation study. When fitting parameters in the case
of the Gaussian determinantal point process, we found that x was seriously underestimated for a
few realizations, which either slowed down the simulation procedures considerably or caused
them to fail. We therefore excluded realisations with a fitted value of x less than 0.001 after
which 996 realisations remained.
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