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Abstract. Stall Induced Vibrations (SIV) are an aeroelastic instability that might happen
when large portions of the wind turbine blade operate in moderate stall, which leads to high
internal loads that can damage the structure. Exploring the inflow space that cause SIV has
a high computational cost, which quickly increases with the number of input variables, since
it involves high-fidelity aeroelastic simulations. In this work, a surrogate model is used to
effectively explore the behavior of SIV in a five variable inflow space consisting of wind speed,
yaw angle, vertical wind shear, wind veer, and atmospheric temperature. The surrogate model,
trained from the results of a few aeroelastic simulations, predicts the severity of SIV for a given
inflow condition. The surrogate model is chosen by comparing the performance of a few common
model types, and Artificial Neural Networks (ANN) are found to provide a good balance between
accuracy and computational time. Using the ANN, the occurrence and severity of SIV in the
inflow space is studied. The analysis shows that for the turbine studied, yaw angle is the most
influential variable, while temperature is the least influential variable in terms of conditions that
lead to occurrence of SIV. Inflow conditions with a moderate yaw angle (around 10-25 deg), high
wind speeds, and high negative veer are found to be the most critical in terms of severity of SIV.
The current work is expected to serve as a helping tool to decide the focus of computationally
expensive simulations such as high fidelity CFD based aeroelastic simulations.

1. Introduction
Stall Induced Vibrations (SIV) are an aeroelastic instability that might happen when large
portions of the wind turbine blade operate in moderate stall (defined in this work as Angle of
Attack (AoA) between 15 and 40 deg). This is typically due to a negative aerodynamic damping
that happens as a result of the negative lift – AoA gradient [1]. Edgewise vibrations due to SIV
were first observed and investigated in stall-regulated turbines [2, 3, 4]. Although modern pitch-
regulated turbines do not operate in stall like the stall-regulated ones, computations still show
that SIV can lead to extreme vibrations in the edgewise direction, in certain inflow conditions
when the turbine is standing still [5]. These conditions are likely to happen when the turbines
are parked for maintenance, during installation and after the cut-out wind speed, where the
yaw angle can cause moderate stall. Apart from a risk of extreme loading to the blades, these
vibrations also contribute to the fatigue loads on the blades, thereby reducing the lifetime of the
blades. With the need to lower the Levelised Cost of Energy driving the design towards larger
and more flexible wind turbine blades, SIV are an important design consideration.
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SIV have been studied using the Blade Element Momentum theory (BEM) based solvers in the
limited yaw angle range around moderate stall regions [6]. The Advanced Aerodynamic Tools for
Large Rotors (AVATAR) project details a comprehensive comparative SIV study of BEM based
aeroelastic solvers against a higher fidelity CFD based aeroelastic solver [7]. The results show
that BEM-based solvers tend to over-predict standstill instabilities due to the utilization of static
airfoil data. The study also identified the use of good quality airfoil data and the use of the right
dynamic stall model to be key elements in predicting SIV using BEM-based engineering models.
The validity of these engineering models decreases as we move into deep stall regions. Though
the engineering models suffer such problems in predicting stall behaviour, they nonetheless offer
a huge reduction in the computational cost, while still having respectable validity in moderate
stall regions. The cost of an aeroelastic simulation to simulate 300 s is typically about 30
minutes, and it can be seen that the total computational cost increases drastically with the
increasing number of dimensions to explore. Thus, even with the cost reduction offered by the
engineering models, the exploration of the inflow space is still a very computationally expensive
process.

As a solution to this problem, in this work, it is proposed to study the effect of inflow
conditions on SIV using low cost alternatives to the simulations, namely surrogate models.
Surrogate models establish a relationship between the inputs and outputs of the simulations that
is quick to evaluate, and can be trained using the results of a few simulations. In the context of
wind turbine design, surrogate models have been used for similar applications involving costly
evaluations, such as evaluation of site specific loads [8], and study of the effect of multiple
parameters on the blade design [9].

To the authors’ best knowledge, the number of studies that have focused on the effect of inflow
variables on SIV are very few, and the current work aims to add to this body of knowledge. The
aim of this study is to explore the use of surrogate models to effectively explore the inflow space
with respect to SIV i.e. understand the effect of inflow and environmental conditions on SIV.
Studies of SIV in wind turbines [1, 10] show that the occurrence and severity of SIV depends
on inflow conditions, airfoil characteristics and structural characteristics of the blade. With this
motivation, the effect of five parameters are considered: wind speed, yaw angle, vertical wind
shear, wind veer, and atmospheric temperature (which in turn affects the air density and the
structural damping).

The outline of the paper is as follows. Section 2 explains the simulation setup and the inflow
space. Evaluation of SIV stability and the generation of the database to train the surrogate
model is discussed in section 3. Section 4 explains the choice of surrogate model. Section 5
discusses the effect of inflow conditions on the occurrence and severity of SIV. In section 6, some
conclusions are drawn.

2. Simulation Setup and inflow space
In this work, the IEA 10MW turbine is chosen for investigation [11]. The occurrence and
characteristics of SIV are studied for a parked rotor with 90 deg pitch angle, 0 deg azimuth
angle (blade 1 pointing upwards), constant wind conditions, and only the blades are considered
flexible. Hence only the individual blade modes are considered and not the turbine ones. The
aeroservoelastic tool HAWC2 [12] is used to obtain the response of the turbine for a given inflow
condition. The aerodynamics, and the aeroelastic model of HAWC2 has been verified against full
CFD simulations and experiments in previous studies [13, 14]. The effect of dynamic stall is
modelled through the MHH Beddoes dynamic stall method [1].

The inflow space consists of the five variables described in section 1. Parked conditions
usually happen in a wind turbine when the wind speed is either below the cut-in speed or above
the cut-out speed. However, wind speeds below the cut-in speed are not considered as they are
too low to introduce substantial vibrations. This also justifies the consideration of 90 deg pitch



The Science of Making Torque from Wind (TORQUE 2022)
Journal of Physics: Conference Series 2265 (2022) 032005

IOP Publishing
doi:10.1088/1742-6596/2265/3/032005

3

as the parking condition in this wind speed range is usually achieved by pitching the blades into
the wind. For the considered pitch angle, it can be seen that negative yaw angles lead to stable
conditions, while positive ones lead to SIV. Hence, only positive yaw angles are considered, and
the yaw angle range is limited so as to avoid sections of the airfoil operating in deep stall where
the engineering models have limited validity. The vertical wind shear exponent α is chosen to
cover negative and positive shear. Wind veer is modelled through a coefficient aφ as proposed
in Ref. [15]

∆φ = φ(z)− φ(zhub) ≈ aφe
−
√

zhub/hME
z − zhub√
zhubhME

(
1− z − zhub

2
√
zhubhME

− z − zhub
4zhub

)
, (1)

where z represents the height of the point, ∆φ(z) represents the veer angle at height z, zhub
is the hub height, hME is the modified Ekman atmospheric boundary layer depth here set to
500 m. The constant aφ depends on wind parameters and can be considered site-specific, and a
recommended range given in [15] is [-1.2, 0.5]. As it can be seen from Eq. (1), positive values
of aφ correspond to positive veer angles above the hub and negative veer angles below the hub
(veering), while negative values of aφ correspond to negative veer angles above the hub and
positive veer angles below the hub (backing). Also, aφ = 0 corresponds to zero veer, and values
further from zero imply higher veer in the respective direction. Practically, aφ is a scaling factor
to represent the veer. The ranges of the considered variables are shown in table 1.

Table 1: Ranges of the considered variables

Variable Range

Wind speed [25, 60] ms−1

Yaw Angle [0, 40] deg
α [-0.1, 0.4]
aφ [-1.2, 0.5]
Temperature [-15, 20]°C

The effect of temperature is that it leads to a change in air density and structural damping
of the blade modes. The relation between temperature and air density is modelled using the
ideal gas equation. The structural damping of glass fiber composite materials similar to the ones
used in wind turbine blades increases with the temperature [16]. However, the exact nature of
the variation depends on the fiber material used in the blades, and the fiber orientation. In this
work, a linear variation between temperature and structural damping is assumed. The reference
temperature for the normal damping values is considered as 15 °C, and a decrease of 50% in the
structural damping is assumed at −10 °C. The variation of the damping of the first three modes
with temperature is shown in Fig. 1.

In HAWC2, structural damping is modelled using the Rayleigh damping model where the
damping matrix is written as C = αM + βK where M and K are the mass and stiffness
matrices respectively, and α = [αx αy αz] and β = [βx βy βz] are coefficients. Typically,
while creating HAWC2 models α is set to zero, and the values of β are tuned until the required
structural damping is achieved. For a given value of α and β, and the structural model of the
turbine blade, the structural damping can be quickly calculated using the program HAWC2S [17].
To calculate the value of β for a given temperature, the new values of damping of the first three
modes are first calculated, and the values of βx, βy, βz are tuned using HAWC2S until the new
damping values for the first three modes are achieved. The tuning is framed as an optimization
problem with a cost function C =

∑3
i=1(ζi − ζi,req)

2, where ζi represents the damping of the ith
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Figure 1: Variation of damping of the first three blade modes with temperature

mode for a given β, and ζi,req represents the required damping for a given temperature. The
optimization problem is solved using OpenMDAO [18].

3. SIV Stability and database
3.1. Stability Characterisation
The edgewise bending moment at the root of blade 1 is chosen as the response to characterise
SIV. Thus, a growth of edgewise bending moment with time implies the presence of SIV while
a decay implies the absence of SIV. The behaviour of the wind turbine for different inflow
conditions broadly falls into three categories: linearly stable, linearly unstable and non-linearly
unstable (where the system enters a limit cycle after some time). The corresponding edgewise
bending moments are shown in Fig. 2.
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Figure 2: Stable and Unstable responses

The severity of SIV is estimated by identifying the damping ratio of the first blade edgewise
mode . The first 50 s is discarded as transient. The response is then limited in time to be in the
linear range to make it suitable for a damping identification method. Different methods were
attempted to identify the damping ratio - fitting an Auto Regressive (AR) model to the time
series, the classical logarithmic decrement method, and a variant of the logarithmic decrement
based on computing the slope of the straight line passing through the logarithm of the response
peaks. While the AR model can identify multimodal responses, it faces difficulties with noisy
responses. The logarithmic decrement method is very dependent on the choice of peaks, and
different peaks in the same response can lead to identification of significantly different damping
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ratios. The variant of the logarithmic decrement method avoids this problem by considering
many peaks, and hence is more robust. Of these methods, the variant of the log decrement
method is eventually chosen for its robustness. The damping ratio is identified using this method
as follows: Let ωd represent the damped frequency of the dominant blade mode, which in the
case of SIV is the first edgewise mode. ωd can thus be identified as the frequency corresponding
to the peak of the power spectral density of the response. The response, band-pass filtered
around ωd can be written as

y(t) = Ae−ζωnt sin(ωdt+ ϕ), (2)

where ζ represents the mode damping ratio, and ωn the mode natural frequency, which is related
to ωd as ωd = ωn

√
1− ζ2. It can be seen that for low values of ζ, ωn ≈ ωd. This approximation

is valid in the context of SIV, which are not expected to have very high values of ζ. In eq. (2),
the term Ae−ζωnt indicates the growth/decay of the peaks of the response , and so by indicating
with (ti, pi) the time and value of the ith response peak, it can be written that

log(pi) = −ζωnti + c, (3)

where c is the line intercept. Thus, the mode damping ratio can be calculated from the slope
of the straight line fitted to the logarithm of the bandpass filtered response peaks and the
corresponding time instances. The straight line is fit with the least-squares method.

3.2. Database generation and surrogate model training
The database necessary to train surrogate models is generated with 1000 points in the inflow
space and the corresponding damping ratios identified from the results of the HAWC2 simulations.
To be able to build useful surrogate models that can predict the behaviour of SIV in the inflow
space, it is important to ensure that the database has enough points with a negative damping
(presence of SIV). To ensure this, the following method is used to generate the samples. Roughly,
the following conditions are guessed as being favourable for SIV - high wind speeds, moderate
yaw angles, and low temperatures. So a trapezoidal distribution is considered for wind speed,
yaw, and temperature with a high density at high wind speeds, moderate yaw angles, and low
temperatures respectively. The effect of α and aφ are not guessed beforehand, and hence a
uniform distribution is considered for α and aφ. The samples for the database are generated
using a Latin Hypercube Sampling (LHS) method to avoid generation of correlated samples
and avoid generation of clustered samples in the multidimensional space. The marginal PDFs
and the pair plots of the samples are shown in figure 3. The library OpenTURNS [19] is used to
generate the samples using LHS Design.

Surrogate models that establish an input output relation between the inflow variables and the
corresponding damping ratio are then trained on this database. The surrogate models considered
are: Artificial Neural Network (ANN), Linear Interpolation, a Radial Basis Function (RBF), and
a Gaussian Process Regression (GPR) with a Matern Kernel. The linear interpolation, RBF, and
GPR models are considered because they predict the exact value at the training points. Given
that the output of a simulation is computationally expensive, this feature of the models makes
them an attractive choice. ANN is considered because it has the ability to fit highly nonlinear
functions, which is expected to be a characteristic of the damping ratio in the considered inflow
space.

The input and output variables are normalized to the range [0, 1], and the surrogate models
are trained on the normalized data. And similarly, whenever a prediction is to be made using
the trained model, the data is normalized to [0, 1] and the resulting output is then inverse
scaled to obtain the predicted damping ratio. For the ANN, RBF, and GPR models, 60% of
the samples are used for training, 20% for validation, and 20% are used for testing. Since the
linear interpolation model does not have any hyperparameters to be tuned using the validation



The Science of Making Torque from Wind (TORQUE 2022)
Journal of Physics: Conference Series 2265 (2022) 032005

IOP Publishing
doi:10.1088/1742-6596/2265/3/032005

6

0

20

40

Ya
w 

[d
eg

]

1.0

0.5

0.0

0.5

a
 [-

]

0.0

0.2

0.4

 [-
]

40 60
Wind Speed [ms 1]

10

0

10

20

Te
m

pe
ra

tu
re

 [°
C]

0 20 40
Yaw [deg]

1 0
a  [-]

0.0 0.2 0.4
 [-]

0 20
Temperature [°C]

Tr(25,45,60,60)

Tr(0,10,30,40)

U(-1.2,0.5)

U(-0.1,0.4)

Tr(-15,-15,5,20)

Figure 3: Marginal PDFs of the variables and the samples. Tr represents a trapezoidal
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data, 80% of the data is used for training, and 20% is used for testing. The model accuracy is
measured using the coefficient of determination, R2 calculated on the test data set.

4. Performance of Surrogate models
Since a large number of evaluations are required to analyse the behaviour of SIV in the inflow
space, the prediction speed of the surrogate models is of great relevance. Additionally, the
models must also have an accuracy as high as possible. The right surrogate model is hence
chosen based on these criteria. The models are ranked based on their accuracy and prediction
speed, as shown in figure 4. Of the surrogate models investigated, ANN is found to provide
a good balance between accuracy and prediction speed. The ANN is constructed using the
TensorFlow library [20]. It has an input layer with 8 neurons, and two hidden layers with 6
neurons each. It is to be noted that with respect to the time taken to train the models, ANN
has a high training time while the other models require significantly less time for training. But
the choice of ANN is justified since the training time is a one time cost as compared to the
surrogate evaluations which may be needed many times for analysis.

5. Influence of inflow conditions on SIV
5.1. Effect of inflow conditions on occurrence
In a multi dimensional domain, the effect of a particular variable on the output is not readily
seen, as it may depend on the values of the other variables. In such a setting, large number of
evaluations are necessary to analyse the effect of the variables on the output, and also analyse
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Figure 4: Accuracy and prediction speed of the surrogate models

the effect of interaction between the variables as different combinations may affect the output
differently. In these scenarios, surrogate models are a very useful tool as they can quickly make
a large number of evaluations. The behaviour of SIV in the considered inflow space is analysed
using methods inspired from Regional Sensitivity Analysis. We denote an inflow space variable
as Xi, where i = {1, 2, 3, 4, 5} denotes the index of each variable. For each Xi, ni equally
spaced levels are defined, and a 5-dimensional rectangular grid is constructed. Using the ANN,
a prediction of the damping ratio (ζ) is made over the grid. Then, for each Xi, the probability

of occurrence of SIV at a particular level (Xi = x
(j)
i ) is calculated as the ratio of number of

conditions (n) in which SIV are observed to the total number of conditions at that level.

PSIV (Xi = x
(j)
i ) =

n(Xi = x
(j)
i ; ζ < 0)

n(Xi = x
(j)
i )

. (4)

This quantity is proposed as a measure of the importance or influence of individual variables in
the multidimensional inflow space. A flat variation of PSIV (Xi) with Xi indicates that all values
of Xi can lead to instability, and hence the influence of Xi is not strong. On the other hand,
a steep variation indicates that certain values of Xi lead to instability more than other values,
and hence the influence of Xi is strong. The variation of PSIV with all the inflow variables is
shown in Fig. 5.

It can be seen that yaw angle is the most influential variable with high probability of
occurrence of SIV at higher values of yaw while shear and temperature are the least influential
variables, as the probability of occurrence is nearly constant across all values of these variables.
Wind speed and wind veer seem to have a mild influence on the occurrence of SIV.

The longer the portion of the blades experiencing stall, the more severe is the SIV. This
explains the increase of incidence of SIV with increasing yaw angle. As the yaw angle increases,
the sections of the blade start experiencing stall, with the stalled portion of the blade increasing
with increasing yaw angle. Similarly, as the negative veer increases, the outboard portions
experience stall, which increases SIV. The reason for the very low influence of temperature is
that the effect of temperature is modelled through a change in structural damping, and for
the turbine considered, the structural damping of the first edgewise mode is low (0.36%) as
compared to the negative aerodynamic damping, which can be as high as −5%. Therefore,
changes in temperature do not affect the overall damping significantly.
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To understand the influence of the interaction of variables, a similar analysis is done, by
considering the joint probability of occurrence of SIV for different combinations of the levels of
variables (similar to a bi-variate histogram). Let i and j denote the indices of the variables with
ki and kj levels respectively. Then the joint probability of occurrence of SIV for the combination
mth

1 level of Xi & mth
2 level of Xj is defined as

P ∗
SIV (Xi = x

(m1)
i ;Xj = x

(m2)
j ) =

n(Xi = x
(m1)
i ;Xj = x

(m2)
j ; ζ < 0)

n(Xi = x
(m1)
i ;Xj = x

(m2)
j )

. (5)

To understand the interaction among the variables, the combinations with respect to yaw angle
are the most beneficial to analyse since yaw is the most influential variable. The contour plots of
the joint probability of occurrence of SIV for combinations of yaw angle with the other variables
is shown in Fig. 6.

From Fig. 6a, it can be seen that conditions with a negative veer are more critical than
those with positive veer. With a moderate to high negative veer coefficient, SIV can happen
even at very low yaw angles, while with a positive veer, the threshold of yaw angle at which
SIV is expected to occur is much higher. With respect to wind speed, it can be seen from
Fig. 6b that the yaw angle threshold for SIV stability is higher at higher wind speeds. In Fig. 6c
and 6d, the combinations with yaw angle and shear and yaw angle and temperature show a
variation predominantly in the yaw direction, indicating that shear and temperature do not
have a significant impact on deciding the threshold for the yaw angle at which SIV are likely to
occur.

5.2. Effect of inflow conditions on severity
To assess the most severe conditions with respect to SIV, the damping ratio at different inflow
conditions is analysed. Since yaw angle is the most decisive variable, followed by aφ and wind
speed with a mild influence, the variation of damping ratio with yaw and aφ, and yaw and wind
speed as predicted by the surrogate model is analysed. Temperature and shear exponent are
fixed at the following values: temperature = 15 °C, α = 0.1.

Since the influences of wind speed and aφ are not known, the variation of damping ratio
and aφ is analysed for two different values of wind speed, close to the extremes at 30ms−1 and
55ms−1 . Similarly, the variation of damping ratio and wind speed is analysed for different
values of aφ at −0.9 and 0.2. The variations are shown in figures 7 and 8.
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(d) Yaw and temperature.

Figure 6: Predicted joint probability of occurrence of SIV for combinations of variables.
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Figure 7: Variation of damping ratio with yaw and aφ
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Figure 8: Variation of damping ratio with yaw and wind speed

It can be seen that yaw angles from 10 to 25 deg are the most critical. In this region, the
transition from a stable response to an unstable response occurs. The critical conditions happen
at low yaw angles at high negative veer, and at a higher yaw angle at positive veer. Since the
occurrence of SIV is not affected very much by a particular choice of value for temperature and
shear, the conclusions drawn above are expected to hold across the whole range of temperature
and shear in the inflow space.

It is to be noted that the severity of SIV as described in this work is measured using
the damping ratio at low amplitude levels. However, the simulations are performed using a
BEM-based aeroelastic solver, and as mentioned earlier, these solvers tend to over-predict the
instabilities. Hence a more accurate picture of SIV are expected using the high cost, high fidelity
CFD based aeroelastic solvers. But the methods presented in this study are expected to serve
as useful tools to narrow the inflow conditions to be simulated using the CFD solvers, thereby
optimizing the computational cost required to explore the inflow space.

6. Conclusions
In this work, the use of a surrogate model such as an Artificial Neural Network to understand
the behaviour of SIV in a given inflow space is demonstrated. Using the trained surrogate model,
a quick estimate of the turbine stability for any given inflow condition can be obtained instead
of performing a computationally expensive aeroelastic simulation. Further, the usefulness of
the surrogate model to study the sensitivity of SIV with respect to the inflow variables, and to
assess the inflow conditions that lead to severe SIV is demonstrated.

The following works are planned as an extension and as topics of a future publication:

• Develop a framework to optimally select samples in a n-dimensional inflow space for training
the surrogate models

• Develop a similar methodology to study other flow induced vibrations, such as Vortex
Induced Vibrations.
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