
 

  

 

Aalborg Universitet

Fault Tree Analysis of Sensor Technologies for Autonomous UUV Navigation

Sørensen, Fredrik Fogh; von Benzon, Malte; Pedersen, Simon; Liniger, Jesper; Mai, Christian

Published in:
IFAC-PapersOnLine

DOI (link to publication from Publisher):
10.1016/j.ifacol.2022.10.474

Creative Commons License
CC BY-NC-ND 4.0

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Sørensen, F. F., von Benzon, M., Pedersen, S., Liniger, J., & Mai, C. (2022). Fault Tree Analysis of Sensor
Technologies for Autonomous UUV Navigation. IFAC-PapersOnLine, 55(31), 484-490.
https://doi.org/10.1016/j.ifacol.2022.10.474

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 23, 2024

https://doi.org/10.1016/j.ifacol.2022.10.474
https://vbn.aau.dk/en/publications/fe46e9d1-3f45-45d6-a257-8ea0375f121b
https://doi.org/10.1016/j.ifacol.2022.10.474


IFAC PapersOnLine 55-31 (2022) 484–490

ScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2022.10.474

10.1016/j.ifacol.2022.10.474 2405-8963

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license  
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Fault Tree Analysis of Sensor Technologies
for Autonomous UUV Navigation

Fredrik Fogh Sørensen ∗∗, Malte von Benzon,
Simon Pedersen, Jesper Liniger, Christian Mai

AAU Energy, Aalborg University, Niels Bohrs Vej 8, DK-6700 Esbjerg,
Denmark

∗∗ Corresponding author. E-mail: ffso@energy.aau.dk).

Abstract: Autonomous unmanned underwater vehicles (UUVs) are increasingly used for
inspection and cleaning tasks. While automating these tasks could greatly reduce the cost,
it requires reliable feedback from position and surroundings. Both internal effects and different
physical properties affect sensors, resulting in inaccurate feedback if not handled correctly by
the navigation system. In this study, an overview of these effects and properties are examined
for the most common sensor technologies used for underwater navigation. A fault tree analysis
(FTA) is conducted to get knowledge about how the sensor faults, as a result of these effects,
affect automated near-structure and off-structure missions, respectively. Moreover, experiments
are carried out with a high-resolution sonar and stereo camera to compare the measurement
accuracy at different distances. The sensor comparing test shows that cameras can, in some
cases, be insufficient to use as the only sensor for obstacle avoidance. It is concluded that the
sensor criticality is case-specific; in general, especially faults on attitude feedback are severe for
an acceptably-working navigation system and should therefore have high priority when selecting
the robotic sensors.

Keywords: Sensors, Underwater Robotics, Maritime robotics, Automated Navigation, Fault
Tree Analysis, UUV, ROV, AUV

1. INTRODUCTION

Underwater navigation with unmanned underwater vehi-
cles (UUVs) is a widely researched topic; see Paull et al.
(2014); Vickery (1998). The offshore industry suspects that
automation of the remotely operated vehicles (ROVs) used
for maintenance tasks will greatly reduce operating costs
(Pedersen et al. (2022); Tena (2011)), while autonomous
underwater vehicles (AUVs) potentially can improve in-
spection tasks even further (Mai et al. (2016)). To achieve
autonomy, good control performance is required, which
again requires accurate and reliable feedback (Kinsey et al.
(2006)).

Several studies examine different methods of navigation.
In Kinsey et al. (2006) an overview of different sensors
and some of their challenges, such as distortions, are
given. In Paull et al. (2014) a review of different methods
in regards to navigation is given, especially Simulation
Mapping and Localization (SLAM) is presented. However,
none of the previously mentioned studies clearly show how
the sensor challenges described potentially can affect the
overall navigation system. In Xu et al. (2013) a fault
tree analysis (FTA) based on a TM4500M AUV is used
to evaluate whether the AUV is reliable enough to use
for a specific time span. This article is case-specific for
the chosen ROV; combining the knowledge about sensor
distortions and FTA could make a more general view of
sensor faults.

In many fields, FTA is made to give a clear overview
of the safety and reliability of a complex system ( Lee
et al. (1985)). Furthermore, failure mode effects analysis
(FMEA) is widely used in safety-critical industries like
nuclear plants, aviation, and automotive (Ruijters and
Stoelinga (2015)). One example of how FTA can be used
to find the critical components in a system can be seen
in Liniger et al. (2017). Risk priority numbers are calcu-
lated for different components, concluding that valves and
accumulators are the most critical components in wind
turbines’ hydraulic pitch system.

This study presents some common operation types con-
ducted by UUVs, including inspection and marine growth
removal. These operation types are used to present differ-
ent kinds of operation-specific sensor distortions, which in
this study are defined as faults if the distortion results in
sensor inaccuracies violating a threshold. Then, faults are
defined as events that lead to sensor inaccuracies or errors,
eventually causing a mission failure. An FTA is made to
give an overview of how different faults affect the overall
navigation system. The FTA is evaluated in terms of which
sensors are most critical and should have the greatest
concern in the design phase. Moreover, the sensor faults
are investigated from experiments with a high-resolution
sonar and a stereo camera conducted in Port of Esbjerg
for realistic conditions.
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2. NAVIGATION SYSTEM

To achieve autonomous operation for UUVs, it is required
to have a navigation system to give feedback, such as the
UUV’s position and dynamic surrounding (Bjerkeng et al.
(2021)). An example of such navigation system can be seen
in Fig. 1.
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Fig. 1. Diagram of navigation system for an Underwater
vehicle

In the navigation system example, three sub-navigation
systems are constructed, relative navigation system (RNS),
feature-based navigation system (FBNS), and absolute
navigation system (ANS).

The RNS takes measurements from inertial sensors, such
as inertial measurement unit (IMU) and doppler velocity
log (DVL). The FBNS requires some sort of feature to
track. Features could be the sea-bottom, rock formations,
or man-made structures. The measurements are relative
distances between the UUV and the feature tracked.
Lastly, the ANS includes sensors such as acoustic position
system (APS), magnetometer, and pressure sensor. These
sensors give a measurement in the world frame, which
means they are unaffected by the attitude of the UUV.

Table 1. Sensor Technologies used for un-
derwater navigation (Kinsey et al. (2006);

Falkenberg et al. (2014))

Sensor Technology Motions*

IMU (9 DOF) xb,yb,zb,ϕ,θ,ψ

Pressure sensor D

DVL xb,yb,zb
SBL** N ,E,D

LBL** N ,E,D

Camera xb,yb,zb,ϕ,θ,ψ,d

Sonar xb,yb,zb,ϕ,θ,ψ,d

Echo sounder d

* The motions follows the frames defined in Fig. 2.
** These are referred to as acoustic positioning systems
(APS).

In table 1 different sensor technologies are shown. All
sensors shown are used in the navigation systems shown
in Fig. 1, but they might not all be used in the same ap-
plication, as some of the sensors are redundant. However,
to give a wide overview of the potential faults, all sensors
listed are used in this study.

The sensors are affected by many different distortions,
which have to be considered carefully while designing
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Fig. 2. Frames for the UUV, world frame follows the
standard NED-frame, body-frame a local NED-frame,
and d illustrates the distance to an object
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Fig. 3. Illustration of inspection and cleaning mission

an UUV. Some disturbances are case-specific such as
ferromagnetic materials in man-made structures. To give a
better idea of the disturbances acting on the sensors, this
study will be based on an inspection and cleaning mission
for an offshore installation.

3. INSPECTION AND CLEANING MISSION

The inspection and cleaning mission used as an example
for this study is illustrated in Fig. 3. The operation areas
define where inspection and cleaning take place, while the
dashed line illustrates how the UUV moves between the
operation areas. Thereby the mission can be described as
four tasks.

Task 1: The UUV moves to pillar A. Task 2: The UUV does
an inspection operation followed by a cleaning operation.
Operation 3: The UUV navigates off-structure to pillar B.
Task 4: An inspection operation and cleaning operation
are performed at pillar B.

Task 1 and 3 can both be described as off-structure
navigation operations. While operations 2 and 4 can be
divided into two sub-operations, inspection and cleaning.
These two operations are near-structure operations, which
therefore have the possibility to utilize measurements
relative to the structure.
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3.1 Inspection

Inspection operations are conducted periodically to ensure
structural integrity; today, these inspections are often done
by ROVs. The inspection can be for cracks and assessment
of marine growth (Liniger et al. (2022)). As the inspection
is done on structures, these can also be used as features
for SLAM. When using cameras for SLAM, two concerns
must be considered: turbidity and light (Jian et al. (2021)).
However, the structure also introduces some disadvantages
regarding the navigation system. Man-made structures
can be ferromagnetic and disturb the Earth’s magnetic
field (Menon et al. (2013)), affecting the magnetometer
and resulting in inaccurate measurements of the UUV’s
heading. Another disadvantage is the lack of line of sight
for acoustic positioning systems (APS), which decreases
the accuracy or even makes the measurement unavailable
Vickery (1998).

3.2 Marine Growth Removal

Marine Growth Removal has many similarities to inspec-
tion. It is also close to structures, which could result in
magnetic disturbances. However, in contrast to inspection
operations, the visibility could be decreased due to parti-
cles from the removed marine growth. Also, the cleaning
tool itself could course higher turbidity as seen on Fig. 4;
therefore, cameras’ placement must be considered carefully
if visual SLAM is intended as part of the feedback system.

Fig. 4. Example of induced localized turbidity increase
from high-pressure cleaning

3.3 Off-structure Navigation

Open water navigation differs from the previous opera-
tions types as this does not necessarily guarantee nearby
objects, which can be used in SLAM algorithms. In con-
trast to near-structure operations, open water navigation
is well-suited for APS; however, these systems also have
some disadvantages. They require careful placement of
transponders, and accurate knowledge of sound velocity
and are limited by the speed of sound in water, resulting
in noticeable time delays over long distances Kinsey et al.
(2006)

4. SENSOR FAULTS

In this study, a fault is defined as unwanted behaviors
and disturbances affecting the sensor, which results in

misreadings/incorrect measurements. In the following sec-
tions, different faults for the sensors considered for the
navigation system are described. The sensors considered
are gyroscope, accelerometer, DVL, camera, sonar, echo
sounder, APS, magnetometer, and pressure sensor.

The gyroscope has two faults that affect the measurement:
bias offset and drift (O-larnnithipong and Barreto (2016)).
Bias offset is the value that the gyroscope reading provides
when the sensor is stationary, which ideally should be zero.
One solution to account for this bias offset is by using
the measurement, when there is no angular movement
by the ROV, as a bias offset estimate as proposed in
O-larnnithipong and Barreto (2016). Drift is a constant
angular rate change; one way to minimize drift is to
compare a calculated gravity vector with the one measured
by the accelerometer when the robot is not moving. This
method is also presented in O-larnnithipong and Barreto
(2016); however, it was not able to eliminate the drift.

The accelerometer can be used to estimate the position
of the ROV; however, this requires a good knowledge
of the orientations of the sensor. Some calibration can
account for the misalignment of the sensors frame and
body frame. However, as the rotation matrix between the
body frame and the world frame can drift, the attitude
drift can result in incorrect estimates of position in the
world frame (Troni and Whitcomb (2012)). As with the
gyroscope, accelerometers can also be affected by an offset
bias; this can be removed by measuring the gravitational
acceleration as shown in Ibrahim and Moselhi (2016).

The DVL measures velocities in the body reference frame;
therefore, this is also affected by the attitude drift. The
DVL is an acoustic sensor, which means that deviations in
the speed of sound also impact the accuracy of the DVL.
The sound velocity in water is affected by properties such
as water temperature, salinity, and pressure (Bardakov
et al. (2010)). The DVL also requires bottom lock, which
can occasionally fail (Troni and Whitcomb (2012)).

Both camera and sonar are feature-based sensors that mea-
sure geophysical objects; these sensors have some shared
faults, including a lack of features and long-term attitude
drift. The position of the extracted features must be es-
timated in the world reference; however, it is measured
in the sensor frame, and there has to be adjusted for
the UUV’s attitude. However, once again, this rotation
matrix tends to drift. The lack of features can be due to
missing geophysical objects from which to detect features.
The lack of features can also be due to high turbidity
in the environment in front of the camera. Cameras are
also affected by the light settings as described in Jian
et al. (2021). Sonar is not as affected by turbidity or
light; however, it has the downside that it is affected by
deviations in the speed of sound.

The echo sounder has the same working principle as sonar
but sends a single acoustic beam in one fixed direction.
Therefore it has the same faults as the sonar: deviation
in sound velocity, lack of geophysical objects, and attitude
drift.

The APS is like the previous two acoustic sensors, also
affected by variations in the speed of sound. Another
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requirement for APS to work is the line of sight between
the locator and receiver (Miller et al. (2010)).

The Magnetometer is an excellent way to measure the
heading of the ROV as the Earth’s magnetic field is not
weakened by water Tyren (1987). However, other magnetic
fields affect the sensor as well. An iron calibration can
be used to remove the static fields in the ROV; however,
ferromagnetic materials in the surrounding environment,
like man-made structures, cannot be accounted for in such
calibration.

The pressure sensor can be used to estimate the current
depth of the ROV. However, the sensor accuracy can be
affected by temperature, resulting in temperature drift
(Balavalad and Sheeparamatti (2015)).

To give a better view of how the faults affect the overall
Inspection and cleaning mission, an FTA is conducted.

5. FAULT TREE ANALYSIS

A fault tree is used to translate a physical system into
a structured logic diagram and connects root causes to
system failure. The analysis will be based on the definitions
in Lee et al. (1985). The diagram consists of events and
logic symbols. The symbols used in this study can be seen
in Fig. 5, while a more complete list of symbols can be
seen in Lee et al. (1985).

The fault tree seen in Fig. 6 is constructed to capture
the general operating scenario of UUVs so that it can
be easily transferred to more specific applications. The
first event to define is the top event, an undesired or
failed state of the system. In this case, the top event
is an automated mission failure, which means that the
automated inspection and cleaning mission cannot be
completed without pilot intervention. This means that
the UUV could still be recovered, or the inspection and
cleaning could still be completed with the aid of a pilot.

The top tree structure following the top event depicts the
two main operational modes of the UUV, namely, near-
structure operation fault or off-structure operation fault,
as described in section 2. The off-structure operation fault
relies on the absolute and relative navigation systems and,
as explained in section 3.3 does not rely on feature-based
navigation. The absolute positioning system is broken
down into each motion in the world frame, which can be
seen on Fig. 2. Each motion will trigger the absolute navi-
gation system to fail; however, this should be reconsidered
for each mission. Some missions only require feedback in

the down position, not the horizontal movement or vice
versa.

The near-structure navigation fault is triggered by the
occurrence of both feature-based navigation system fault
and relative navigation system fault, which are further
connected to specific motion estimations.

The motions are then broken down into sensor faults.
Recall from section 4 that a fault is defined as unwanted
behaviors and disturbances affecting the sensor, which
results in misreadings. Note that some sensor faults are
affecting multiple events. For simplicity, the same sensor
fault is for some sensors present multiple times as for
gyroscope faults.

In Fig. 7 a further breakdown from sensor faults to effects
acting on the sensors can be seen. These effects act as
basic events. For DVL, an incorrect attitude measurement,
an inaccurate estimate of the sound velocity, and a lack
of bottom lock all result in misreadings from the DVL
sensor. Depending on the application and the precision
needed, short periods of misreadings can be permitted
before triggering a fault in the navigation system. These
thresholds for when an effect has been present long enough
to trigger a basic event are case-specific and depend on the
navigation system’s estimator.

An estimator using dead-reckoning can enhance the time
span under which a faulty signal or no signal can be
present without triggering a fault in the relative naviga-
tion system. The estimators can also estimate the drift
and counter these errors by combining the relative and
absolute sensors, like using a magnetometer to estimate
gyroscope drift. By using estimators for dead-reckoning
and to counter drift, the occurrence can be lowered for the
faults in the navigation system without making hardware
changes; however, this can only be done to a certain point
depending on the type of estimator, and the quality of the
sensors used (D et al. (2022)).

The fault tree analysis can be used to find critical compo-
nents by investigating the severity and occurrence of dif-
ferent intermediate events. However, this requires a good
knowledge of the case and UUV’s specifications, including
sound knowledge about the chosen sensors.

Even though this is a general fault tree without com-
parable values for the different events, they can still be
compared in terms of safety priority. E.g., if the collision
avoidance fails, it can cause damage to the ROV. Therefore
this system should have higher severity than the near-
structure and off-structure navigation systems.

From the FTA, it can be seen that only FBNS provides
information to the collision avoidance system. Therefore,
the sensors related to the FBNS will also have high
severity. To better understand the possibilities of using
these sensors, an experiment has been conducted at Port
of Esbjerg (See Fig. 8), where a ZED2i stereo camera and
an Oculus imaging sonar from Blueprint Subsea have been
compared. The echo sounder has been disregarded for this
test because the narrow field of view would not be suitable
for obstacle detection.

The test results are the RGB image from one of the
stereo lenses and the distance map from the sonar, which
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requirement for APS to work is the line of sight between
the locator and receiver (Miller et al. (2010)).

The Magnetometer is an excellent way to measure the
heading of the ROV as the Earth’s magnetic field is not
weakened by water Tyren (1987). However, other magnetic
fields affect the sensor as well. An iron calibration can
be used to remove the static fields in the ROV; however,
ferromagnetic materials in the surrounding environment,
like man-made structures, cannot be accounted for in such
calibration.

The pressure sensor can be used to estimate the current
depth of the ROV. However, the sensor accuracy can be
affected by temperature, resulting in temperature drift
(Balavalad and Sheeparamatti (2015)).

To give a better view of how the faults affect the overall
Inspection and cleaning mission, an FTA is conducted.

5. FAULT TREE ANALYSIS

A fault tree is used to translate a physical system into
a structured logic diagram and connects root causes to
system failure. The analysis will be based on the definitions
in Lee et al. (1985). The diagram consists of events and
logic symbols. The symbols used in this study can be seen
in Fig. 5, while a more complete list of symbols can be
seen in Lee et al. (1985).

The fault tree seen in Fig. 6 is constructed to capture
the general operating scenario of UUVs so that it can
be easily transferred to more specific applications. The
first event to define is the top event, an undesired or
failed state of the system. In this case, the top event
is an automated mission failure, which means that the
automated inspection and cleaning mission cannot be
completed without pilot intervention. This means that
the UUV could still be recovered, or the inspection and
cleaning could still be completed with the aid of a pilot.

The top tree structure following the top event depicts the
two main operational modes of the UUV, namely, near-
structure operation fault or off-structure operation fault,
as described in section 2. The off-structure operation fault
relies on the absolute and relative navigation systems and,
as explained in section 3.3 does not rely on feature-based
navigation. The absolute positioning system is broken
down into each motion in the world frame, which can be
seen on Fig. 2. Each motion will trigger the absolute navi-
gation system to fail; however, this should be reconsidered
for each mission. Some missions only require feedback in

the down position, not the horizontal movement or vice
versa.

The near-structure navigation fault is triggered by the
occurrence of both feature-based navigation system fault
and relative navigation system fault, which are further
connected to specific motion estimations.

The motions are then broken down into sensor faults.
Recall from section 4 that a fault is defined as unwanted
behaviors and disturbances affecting the sensor, which
results in misreadings. Note that some sensor faults are
affecting multiple events. For simplicity, the same sensor
fault is for some sensors present multiple times as for
gyroscope faults.

In Fig. 7 a further breakdown from sensor faults to effects
acting on the sensors can be seen. These effects act as
basic events. For DVL, an incorrect attitude measurement,
an inaccurate estimate of the sound velocity, and a lack
of bottom lock all result in misreadings from the DVL
sensor. Depending on the application and the precision
needed, short periods of misreadings can be permitted
before triggering a fault in the navigation system. These
thresholds for when an effect has been present long enough
to trigger a basic event are case-specific and depend on the
navigation system’s estimator.

An estimator using dead-reckoning can enhance the time
span under which a faulty signal or no signal can be
present without triggering a fault in the relative naviga-
tion system. The estimators can also estimate the drift
and counter these errors by combining the relative and
absolute sensors, like using a magnetometer to estimate
gyroscope drift. By using estimators for dead-reckoning
and to counter drift, the occurrence can be lowered for the
faults in the navigation system without making hardware
changes; however, this can only be done to a certain point
depending on the type of estimator, and the quality of the
sensors used (D et al. (2022)).

The fault tree analysis can be used to find critical compo-
nents by investigating the severity and occurrence of dif-
ferent intermediate events. However, this requires a good
knowledge of the case and UUV’s specifications, including
sound knowledge about the chosen sensors.

Even though this is a general fault tree without com-
parable values for the different events, they can still be
compared in terms of safety priority. E.g., if the collision
avoidance fails, it can cause damage to the ROV. Therefore
this system should have higher severity than the near-
structure and off-structure navigation systems.

From the FTA, it can be seen that only FBNS provides
information to the collision avoidance system. Therefore,
the sensors related to the FBNS will also have high
severity. To better understand the possibilities of using
these sensors, an experiment has been conducted at Port
of Esbjerg (See Fig. 8), where a ZED2i stereo camera and
an Oculus imaging sonar from Blueprint Subsea have been
compared. The echo sounder has been disregarded for this
test because the narrow field of view would not be suitable
for obstacle detection.

The test results are the RGB image from one of the
stereo lenses and the distance map from the sonar, which
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means that no feature extraction has been done, as the
experiment’s goal was to test the quality of the raw
measurements.

Fig. 8. Photo of the habour wall at Port of Esberg above
sea level where the sensor tests were conducted

The water has high turbidity in the water clearly seen in
Fig. 9. When the camera and sonar are both placed close
to the wall, as seen in Fig. 9a and Fig. 9d, both sensors
give good measurements of the wall; however, when the
sensors are moved away from the wall, the walls texture
becomes unclear as seen in Fig. 9e and Fig. 9f. In contrast,
the sonar keeps giving distance measurements to the wall
(See Fig. 9b and Fig. 9c).

The experiment shows the importance of knowing the
conditions within which the UUV should work. If collision
avoidance were based on cameras exclusively, an obstacle
would not be detected before being in a range of 0.2m
to 0.6m, which could violate the allowed threshold and
therefore result in an event failure.

6. CONCLUSION

This paper examines how the most typical sensor faults
propagate through the navigation system, eventually be-
coming a system failure for the autonomous navigation
system. This is done through an FTA. The top event is
an automated inspection and cleaning mission failure; it is
broken down through different events to end up in basic
events, based on various sensor distortions that trigger
these basic events if an allowed threshold is violated. Even
though no risk priority numbers (RPNs) are calculated,
the obstacle avoidance system has been considered a higher
priority than the relative and absolute navigation systems.
Two of the sensors in this system, sonar, and camera,
have been tested to examine how they perform under
turbid conditions. Tests at Port of Esbjerg highlight the
importance of knowing how different sensor faults mi-
grate through the system. It is shown that the camera
is challenged by high turbidity. The FTA shows that this
could easily result in a fault for the collision avoidance
system. Therefore, cameras are not usable in operation
cases where high turbidity can be expected. The tests also
demonstrate that the imaging sonar is not as affected by
the high turbidity, meaning that the possibility of faults
in the obstacle avoidance can be reduced by adding sonar
to the collision avoidance system. Furthermore, the FTA
indicates that 4 out of 9 examined sensors utilize the
attitude of UUVs for absolute positioning, which means

reliable attitude measurements must be of high priority
when selecting sensors for the UUVs.

It is concluded that few sensors can greatly impact the
overall reliability; therefore, good redundancy or robust
and reliable sensor measurements are important for reli-
able control of UUVs. Future works will focus on finding
RPNs for specific missions to determine more accurate
severity levels for the different navigation systems. The
fault tree can also be extended to include filter algorithms
for sensor fusion. Furthermore, the FTA can be used in
the development of fault-tolerant control.
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would not be detected before being in a range of 0.2m
to 0.6m, which could violate the allowed threshold and
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grate through the system. It is shown that the camera
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system. Therefore, cameras are not usable in operation
cases where high turbidity can be expected. The tests also
demonstrate that the imaging sonar is not as affected by
the high turbidity, meaning that the possibility of faults
in the obstacle avoidance can be reduced by adding sonar
to the collision avoidance system. Furthermore, the FTA
indicates that 4 out of 9 examined sensors utilize the
attitude of UUVs for absolute positioning, which means

reliable attitude measurements must be of high priority
when selecting sensors for the UUVs.

It is concluded that few sensors can greatly impact the
overall reliability; therefore, good redundancy or robust
and reliable sensor measurements are important for reli-
able control of UUVs. Future works will focus on finding
RPNs for specific missions to determine more accurate
severity levels for the different navigation systems. The
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