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Deep Sound Field Reconstruction in Real Rooms:
Introducing the ISOBEL Sound Field Dataset

Miklas Strøm Kristoffersen,1, 2 Martin Bo Møller,1 Pablo Mart́ınez-Nuevo,1 and Jan Østergaard2

1Research Department, Bang & Olufsen a/s, Struer, Denmark
2AI and Sound Section, Department of Electronic Systems, Aalborg University, Aalborg, Denmark

Knowledge of loudspeaker responses are useful in a number of applications, where a sound
system is located inside a room that alters the listening experience depending on position
within the room. Acquisition of sound fields for sound sources located in reverberant rooms
can be achieved through labor intensive measurements of impulse response functions covering
the room, or alternatively by means of reconstruction methods which can potentially require
significantly fewer measurements. This paper extends evaluations of sound field reconstruc-
tion at low frequencies by introducing a dataset with measurements from four real rooms.
The ISOBEL Sound Field dataset is publicly available, and aims to bridge the gap between
synthetic and real-world sound fields in rectangular rooms. Moreover, the paper advances on
a recent deep learning-based method for sound field reconstruction using a very low number
of microphones, and proposes an approach for modeling both magnitude and phase response
in a U-Net-like neural network architecture. The complex-valued sound field reconstruction
demonstrates that the estimated room transfer functions are of high enough accuracy to
allow for personalized sound zones with contrast ratios comparable to ideal room transfer
functions using 15 microphones below 150 Hz.
The following article has been submitted to the Journal of the Acoustical Society of America.
After it is published, it will be found at http://asa.scitation.org/journal/jas.

I. INTRODUCTION

The response of a sound system in a room primarily
varies with the room itself, the position of the loudspeak-
ers, and the listening position. In order to deliver the
intended sound system behavior to listeners, it is neces-
sary to know about and compensate for this effect. Ap-
plications include among others room equalization (Cec-
chi et al., 2018; Karjalainen et al., 2001; Radlovic et al.,
2000), virtual reality sound field navigation (Tylka and
Choueiri, 2015), source localization (Nowakowski et al.,
2017), and spatial sound field reproduction over prede-
fined or dynamic regions of space also referred to as
sound zones (Betlehem et al., 2015; Møller and Øster-
gaard, 2020). An approach to achieve this, is to measure
the loudspeaker response at the desired listening loca-
tions and adjust the sound system accordingly. However,
the task of measuring impulse responses on a sufficiently
fine-grained grid in an entire room, quickly poses as a
time-consuming and extensive manual labor that is not
desirable. Instead, methods have been developed for the
purpose of estimating impulse responses in a room based
on a limited number of actual measurements. These
methods are also referred to as sound field reconstruc-
tion and virtual microphones. The task of reconstruct-
ing room impulse responses in positions that have not
been measured directly, is an active research field which
has been explored in several studies (Ajdler et al., 2006;
Antonello et al., 2017; Fernandez-Grande, 2019; Mignot
et al., 2014; Verburg and Fernandez-Grande, 2018; Vu
and Lissek, 2020).

Machine learning, and in particular deep learning,
is currently receiving widespread attention across scien-

tific domains, and as an example within room acoustics,
it has been used to estimate acoustical parameters of
rooms (Genovese et al., 2019; Yu and Kleijn, 2021). In re-
cent work, deep learning-based methods were introduced
to sound field reconstruction in reverberant rectangular
rooms (Llúıs et al., 2020). This data-driven approach is
able to learn sound field magnitude characteristics from
large scale volumes of simulated data without prior infor-
mation of room characteristics, such as room dimensions
and reverberation time. The method is computationally
efficient, and works with irregularly and arbitrarily dis-
tributed microphones for which there is no requirement
of knowing absolute locations in the Euclidean space, in
contrast to previous solutions. Furthermore, the recon-
struction proves to work with a very low number of micro-
phones, making real-world implementation feasible. To
assess the issue of real-world sound field reconstruction,
the method is evaluated using measurements in a single
room (Llúıs et al., 2020). However, it is still unknown
how much knowledge is transferred from the simulated to
the real environment, as well as how well the model gen-
eralizes to different real rooms. This is a general problem
in deep learning applications that rely on labor intensive
data collections, which is our motivation for publishing
an open access dataset of real-world sound fields in a
diverse set of rooms.

This paper studies sound field reconstruction at low
frequencies in rectangular rooms with a low number of
microphones. The main contributions are:

• This paper introduces a sound field dataset, which
is publicly available for development and evaluation
of sound field reconstruction methods in four real
rooms. It is our hope that the ISOBEL Sound Field
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dataset will help the community in benchmarking
and comparing state-of-the-art results.

• We assess the real-world performance of deep
learning-based sound field magnitude reconstruc-
tion trained on simulated sound fields. For this
purpose, we consider low frequencies, since low-
frequency room modes can significantly alter lis-
tening experience.Furthermore, we are interested in
using a very low number of microphones.

• Moreover, we extend the deep learning-based sound
field reconstruction to cover complex-valued inputs,
i.e. both the magnitude and the phase of a sound
field. Evaluation is performed in both simulated
and real rooms, where a performance gap is ob-
served. We argue why complex sound field recon-
struction may have more difficulties in transferring
useful knowledge from synthetic to real data.

• Lastly, we demonstrate the application of complex-
valued sound field reconstruction within the field
of sound zone control. Specifically, it is shown that
sound fields reconstructed from as little as five mi-
crophones pose as valuable inputs to acoustic con-
trast control.

The paper is organized as follows: Section II intro-
duces the concept of sound field reconstruction. Details
of measurements from real rooms are presented in Sec-
tion III. In Section IV, we focus on the problem of recon-
structing the magnitude of sound fields, while Section V
extends the model to complex-valued sound fields. Fi-
nally, Section VI investigates the application of sound
zones through sound field reconstruction.

II. SOUND FIELD RECONSTRUCTION

Our approach towards the sound field reconstruction
problem is based on the observation that acoustic pres-
sure in a room can be described using a three-dimensional
regular grid of points defining a three-dimensional dis-
crete function. The approach specifically for the purpose
of magnitude reconstruction was introduced in (Llúıs
et al., 2020). First, let R = [0, lx]× [0, ly]× [0, lz] denote
a rectangular room, where lx, ly, lz > 0 are the length,
width, and height of the room, respectively. Given such
room, we define the grid as a discrete set of coordinates
Do. However, for the sake of simplicity, we reduce the
three-dimensional problem to a two-dimensional recon-
struction on horizontal planes. The two-dimensional grid
with a constant height zo is defined as

Do :=
{(
i
lx

I − 1
, j

ly
J − 1

, zo

)}
i,j

(1)

for zo ∈ [0, lz], i = 0, . . . , I − 1, j = 0, . . . , J − 1, and in-
tegers I, J ≥ 2. Note, though, that the dataset collected
for this study, which we will introduce in Section III,
does in fact contain multiple horizontal planes at different
heights. We keep the investigations of three-dimensional

reconstruction for future work, and frame the core chal-
lenge of this paper as estimation of sound pressure in
two-dimensional horizontal planes.

The function that we seek to reconstruct on this grid
is the Fourier transform of the sound field in a frequency
band that covers the low frequencies. The complex-
valued frequency-domain sound field calculated using the
Fourier transform is given by

s(r, ω) :=

∫
R
p(r, t)e−jωtdt (2)

where ω ∈ R is a given excitation frequency, and p(r, t)
denotes the spatio-temporal sound field with r ∈ R. We
refer to the real and imaginary parts of the sound field
using sRe(r, ω) and sIm(r, ω), respectively. Note that
s is defined as the magnitude of the Fourier transform
in (Llúıs et al., 2020). Instead, for magnitude recon-
struction, we introduce the magnitude of the sound field

|s(r, ω)| :=
∣∣∣∣∫

R
p(r, t)e−jωtdt

∣∣∣∣ (3)

for ω ∈ R and r ∈ R.
The procedure for reconstructing s(r, ω) on Do takes

its starting point from actual observations of the sound
field in select positions of the grid. We refer to the col-
lected set of these available sample points as So, which
we further define to be a subset of the full grid. That is,
So ⊆ Do. The cardinality |So| of the set So is the num-
ber of available sample points, which we will also refer to
as the number of microphones nmic in later experiments.
We define the samples available to the reconstruction al-
gorithm as

{s(r, ω)}r∈So⊆Do . (4)

An important aspect of these definitions is that the
grid is unitless and positions can be defined in relative
terms. That is, when sampling a point in the grid, only
the relative position within the grid, and hence the room,
needs to be known. This allows us to relax the data
collection compared to alternative methods that require
absolute locations. Another important element to con-
sider is that the sampling pattern of So can form any
arrangement within Do as long as 1 ≤ |So| ≤ |Do|. As an
example, this means that sampled points can be irregu-
larly distributed spatially in a room.

Situations may arise where the sound field resolu-
tion, as defined by lx, I, ly, and J , is too coarse. As an
example, consider rooms that are either very long, wide,
or in general large. Another example includes applica-
tions where fine-grained variations within a sound field
are of importance. To compensate for this effect, we al-
low the reconstruction to base its output on another grid
than Do. Such domain will typically be an upsampling
of the original grid, but similarly it can be defined with
other transformations, e.g. downsampling. Specifically,
we define the grid as

DL,P
o :=

{(
i

lx
IL− 1

, j
ly

JP − 1
, zo

)}
i,j

(5)
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where i = 0, . . . , IL − 1, j = 0, . . . , JP − 1, and L,P
must be chosen such that IL, JP ∈ Z+. Note that a value
larger than one for either L or P results in an upsampling
in the respective dimension.

The task of the sound field reconstruction is then to
estimate the sound field on the grid DL,P

o based on the
sampled points So. In particular, the objective of the
reconstruction algorithm is to learn parameters w given

gw : C|So|K → C|D
L,P
o |K (6)

{s(r, ωk)}r∈So,ωk∈Ω 7→ {ŝ(r, ωk)}r∈DL,P
o ,ωk∈Ω

where gw is an estimator and Ω = {ωk}Kk=1 is the set of
frequencies at which the sound field will be reconstructed.
The remainder of the paper describes the procedure for
learning parameters w using deep learning-based meth-
ods.

A. Evaluation Metrics

The successfulness of the estimator is quantitatively
judged using normalized mean square error (NMSE) at
each frequency point in {ωk}Kk=1

NMSEk =

∑
r∈DL,P

o

|s(r, ωk)− ŝ(r, ωk)|2∑
r∈DL,P

o

|s(r, ωk)|2
. (7)

The NMSE provides an average error over all positions in
the grid between reconstructed and original sound fields
for a single room at a single frequency. We also introduce
an average NMSE, which is the NMSE performance av-
eraged over all frequencies of interest as well as over all
realizations from M trials, e.g. multiple rooms

MNMSE =

1

MK

M∑
m=1

K∑
k=1

∑
r∈DL,P

o

|sm(r, ωk)− ŝm(r, ωk)|2∑
r∈DL,P

o

|sm(r, ωk)|2
. (8)

This measure serves as an overall indication of the ac-
curacy of a model, whereas the NMSEk allows a deeper
insight of model behaviors at different frequencies. Note
that the M trials are specific to each experiment and will
be described accordingly.

III. THE ISOBEL SOUND FIELD DATASET

A major contribution of this paper is the ISOBEL
Sound Field dataset, which is released as open access
alongside the manuscript.1 The intended purpose is to
use the measurements from real rooms for evaluation of
sound field reconstruction in a diverse set of rooms. Note
that the room-wide measurements of room impulse re-
sponses have several other use-cases that will not be fur-
ther investigated in this paper, but we encourage the use
outside sound field reconstruction as well. This section
details the dataset and the measurement procedure.

The dataset consists of measurements from four dif-
ferent rooms as specified in Table I and depicted in Fig. 1.
The data collection is an extension to the real room mea-
sured in (Llúıs et al., 2020), which is included in the ISO-
BEL Sound Field dataset as Room B for simple access to
all measured rooms. The rooms are located at Aalborg
University, Aalborg, Denmark, and Bang & Olufsen a/s,
Struer, Denmark. The rooms have significantly different
acoustic properties and also vary in size. Two types of
measurements are conducted in each room: 1) Reverber-
ation time; 2) Sound field. However, only the sound field
measurements are released as part of the dataset.

The reverberation times are measured in conformity
with ISO 3382-2 (ISO 3382-2:2008, 2008) and calculated
based on resulting impulse responses using backwards in-
tegration and least-squares best fit evaluation of the de-
cay curves.2 The reverberation times reported in the
table are the arithmetic averages of 1/3 octave T20 esti-
mates in the frequency range 50-316 Hz.

The sound field measurements are performed on a
32 by 32 grid with sample points distributed uniformly
along the length and width of each room. That is, a
total of 1024 positions are measured in each room if pos-
sible, but in some cases it is not feasible to measure all
positions due to e.g. obstacles.3 The horizontal grids
are measured at four different heights: 1, 1.3, 1.6, and
1.9 meters above the floor.4 This is achieved using the
microphone rig depicted in Fig. 1. Two 10 inch loud-
speakers are used to acquire sound fields from two dif-
ferent source positions in each room. Both loudspeakers
are placed on the floor, one in a corner and one in an
arbitrary position. The sound sources are kept in the
same position, while the microphones are moved around
the room to record impulse responses. For each micro-
phone position in the grid, the two sources play logarith-
mic sine sweeps in the frequency range 0.1-24,000 Hz fol-
lowed by a quiet tail, (Farina, 2000). We use a sampling
frequency of 48,000 Hz. The equipment includes among
others four G.R.A.S. 40AZ prepolarized free-field micro-
phones connected to four G.R.A.S. 26CC CCP standard
preamplifiers and an RME Fireface UFX+ sound card.
The four microphones are level calibrated at 1,000 Hz
using a Brüel & Kjær sound calibrator type 4231 prior
to the measurements.

TABLE I. Room characteristics in the ISOBEL Sound Field

dataset. The reverberation times are the arithmetic averages

of 1/3 octave T20 estimates in the frequency range 50-316Hz.

Room Dim. [m] Size [m2/m3] T20 [s]

Room B 4.16 x 6.46 x 2.30 27/ 62 0.39

VR Lab 6.98 x 8.12 x 3.03 57/172 0.37

List. Room 4.14 x 7.80 x 2.78 32/ 90 0.80

Prod. Room 9.13 x 12.03 x 2.60 110/286 0.77

Deep Sound Field Reconstruction in Real Rooms: Introducing the ISOBEL Sound Field Dataset 3



FIG. 1. Left: Rig with four microphones. Rooms from top left to bottom right: Room B, VR Lab, Listening Room, and

Product Room.

IV. SOUND FIELD MAGNITUDE RECONSTRUCTION

In the previous sections we have introduced the prob-
lem of reconstructing sound fields on two-dimensional
grids in rectangular rooms, as well as introduced a real-
world dataset specifically for evaluation of estimators
solving such problem. In recent work, (Llúıs et al., 2020)
showed that the problem fits within the context of deep
learning-based methods for image reconstruction. Specif-
ically, the tasks of inpainting, (Bertalmio et al., 2000; Liu
et al., 2018), and super-resolution, (Dong et al., 2016;
Ledig et al., 2017), which can be paralleled to the tasks
of filling in the grid points that are not measured in the
sound fields DL,P

o \So, as well as upsampling the grid res-
olution to achieve fine-grained variations in sound fields.
One realization is that these methods are designed to
work with real-valued images. To accommodate this,
(Llúıs et al., 2020) propose to reconstruct only the mag-
nitude of the sound field, i.e. |s(r, ω)|, using a U-Net-like
architecture, (Ronneberger et al., 2015).

To this end, the sampled grids are defined as ten-
sors together with masks specifying which positions
are measured (Llúıs et al., 2020). As an example,
{|s(r, ωk)|}r∈DL,P

o ,k can be constructed as a tensor of the

form Smag ∈ RIL×JP×K . The network is trained using a
large number of simulated realizations of rooms, as will
be described in the following section. For the experi-
ments, we are interested in assessing the ability of the
model to generalize to a wide range of real rooms.

A. Simulation of Sound Fields for Training Data

Green’s function can be used to approximate sound
fields in rectangular rooms that are lightly damped, (Ja-

cobsen and Juhl, 2013). The function provides a solution
as an infinite summation of room modes in the three di-
mensions of a room, x, y, and z. It is defined as follows

G(r, r0, ω) ≈ − 1

V

∑
N

ψN (r)ψN (r0)

(ω/c)2 − (ωN/c)2 − jω/τN
(9)

where
∑

N =
∑∞

nx=0

∑∞
ny=0

∑∞
nz=0, for compactness,

denotes summation across modal orders in the three di-
mensions of the room, and similarly the triplet of inte-
gers (nx, ny, nz) are represented by N . Furthermore, V
denotes the volume of the room, ω2

N represents angular
resonance frequency of a mode associated with a specific
N , the shape of the mode is denoted ψN (·), τN is the time
constant of the mode, and c is the speed of sound. As-
suming rigid boundaries, the shape is determined using
the expression (Jacobsen and Juhl, 2013)

ψN (x) = ΛN cos
nxπx

lx
cos

nyπy

ly
cos

nzπz

lz
. (10)

Here, ΛN =
√
εxεyεz are constants used for normalization

with ε0 = 1, ε1 = ε2 = · · · = 2. Using Sabine’s equation,
the absorption coefficient is calculated and used to de-
termine time constants of each mode.This is done by as-
suming that surfaces of a room have uniform distribution
of absorption.

In the following experiments, two sets of training
data are used. The first dataset is introduced in (Llúıs
et al., 2020) and consists of 5,000 rectangular rooms. The
room dimensions are sampled randomly in accordance
with the recommendations for listening rooms in ITU-R
BS.1116-3 (ITU-R BS.1116-3, 2015). The dataset uses a
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Room B

VR Lab
List. Room

Prod. Room

FIG. 2. NMSE in dB of U-Net-based magnitude reconstruc-

tion in the four measured rooms with nmic = 15 using the

original pretrained model presented in (Llúıs et al., 2020).

Room B

VR Lab
List. Room

Prod. Room

FIG. 3. NMSE in dB of U-Net-based magnitude reconstruc-

tion in the four measured rooms with nmic = 15 using the

model presented in (Llúıs et al., 2020) trained using the ex-

tended dataset.

constant reverberation time T60 of 0.6 s and only includes
room modes in the x and y dimensions, i.e. nz = 0.

The second dataset consists of 20,000 rectangular
rooms. Room dimensions are uniformly sampled with
V ∼ U(50, 300)m3, lx ∼ U(3.5, 10)m, lz ∼ U(1.5, 3.5)m,
and ly = V/lxlz. Compared to the first dataset, the room
dimensions span a larger range and allow us to represent
e.g. the Product Room, which is not included in the orig-
inal training data. The dataset uses reverberation times
T60 sampled from U(0.2, 1.0)s and includes room modes
in all three x-, y-, and z-dimensions.

For both datasets, a grid DL,P
o is defined with I =

J = 8 and L = P = 4, which effectively divides a sound
field into 32x32 uniformly-spaced microphone positions.
Using this grid, the magnitude of the sound field is re-
constructed at 1/12 octave center-frequencies resolution
in the range [30, 300] Hz. Simulations are specified to
include all room modes with a resonance frequency be-
low 400 Hz, which means that there is a total of K = 40
frequency slices.

B. Experiments on the ISOBEL Sound Field Dataset

The U-Net-like architecture has shown promising re-
sults on simulated data and on measurements from a sin-
gle real room (Llúıs et al., 2020). In the following experi-
ments, we expose the model to the ISOBEL Sound Field
dataset. We include results from the original model, as
well as a model built around a similar architecture but
using the extended training data with a larger range of
room dimensions and reverberation characteristics. We
investigate the performance of the model trained with
the two different simulated datasets in the four rooms
included in the real-world dataset. Special attention is
paid to the number of available samples, i.e. the number
of microphones nmic. We are mainly interested in set-
tings with a very low number of microphones. In partic-
ular, we show results for 5, 15, and 25 microphones in the
rooms with a total of 32× 32 = 1024 available positions.
In each room, a total of 40 different and randomly sam-
pled realizations of microphone positions So are used for
each value of nmic. We report the average performance
across the 40 realizations, and use the source located in
one of the corners of each room.

Fig. 2 and Fig. 3 show NMSEk results for 15 mi-
crophones of model trained with the original and the
extended datasets, respectively. It is clear that the
model trained with the original dataset does not gener-
alize well to all the rooms. This behavior is expected,
since the training data are not designed to represent
rooms that fall outside the recommendations for listening
room dimensions. On the contrary, the extended training
data are motivated in encompassing a wider selection of
rooms, which also shows in the results for e.g. the Prod-
uct Room. One important observation in this regard is
that performance does not decrease in rooms that are
already represented in the simulated data when more di-
verse simulated rooms are included, which can e.g. be
seen from the performance in Room B. This result in-
dicates that the capacity of the model is sufficient for
generalizing to a wide range of diverse rooms and room

TABLE II. MNMSE in dB with M = 40 different and ran-

domly sampled realizations of So for each room in the ISOBEL

SF dataset. A lower score is better.

nmic

Room Model 5 15 25

Room B
Orig. -6.33 -8.71 -9.62

Ext. -6.27 -8.84 -10.25

VR Lab
Orig. -4.01 -5.08 -5.63

Ext. -4.12 -6.78 -8.05

List. Room
Orig. -4.38 -6.92 -7.94

Ext. -5.00 -7.61 -8.44

Prod. Room
Orig. -3.89 -4.91 -5.55

Ext. -5.18 -6.67 -7.73

Deep Sound Field Reconstruction in Real Rooms: Introducing the ISOBEL Sound Field Dataset 5



80 80
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SM

128128 16

256 256 8
512 512 4 1024 1024 2

1536 1536 4 512 512 4

768 768 8 256 256 8

384 384 16 128128 16

208208
32

80 80
32PConv 5x5 PConv 3x3 Upsample 2x2 Skip/concat

Ŝ

Encoder Decoder

FIG. 4. Architecture of the U-Net-like convolutional neural network proposed for complex sound field reconstruction. S is the

tensor with real and imaginary sound fields concatenated along the frequency-dimension, M is the mask tensor, and Ŝ is the

reconstructed sound field tensor.

acoustic characteristics, given that the model is provided
with ample training samples.

Table II details MNMSE results, which are the
NMSE results averaged across frequencies K = 40 and So
realizations M = 40. The MNMSE results for nmic = 15
are the condensed results shown for the NMSEk in Figs. 2
and 3. The scores in the table reiterate the observa-
tions from the figures, performance is improved with
the extended training data for some rooms in particu-
lar, while performance is maintained in the other rooms.
Interestingly, there seems to be a tendency of more pro-
nounced improvements with a larger number of micro-
phones. We attribute this effect to similar observations
within classical methods that as the number of micro-
phones increase, relative improvement for reconstruction
is higher at low frequencies as opposed to the high-
frequency range, (Ajdler et al., 2006; Llúıs et al., 2020).

In summary, the deep learning-based model is con-
firmed to possess the ability to generalize to a diverse
set of real rooms for sound field magnitude reconstruc-
tion. Based solely on training with simulated data, these
promising results motivate further investigations, e.g. of
reconstructing the complex-valued sound fields.

V. COMPLEX SOUND FIELD RECONSTRUCTION

We propose to extend the U-Net-based model
to work with complex-valued room transfer functions
(RTFs). Reconstruction of both magnitude and phase
of sound fields enable new opportunities, such as the ap-
plication of sound zones. A topic, which we investigate
in Section VI.

The proposed model is based on the model de-
signed to work with the magnitude of sound fields.
Note that deep learning-based models that work di-
rectly on complex-valued inputs have been introduced,
e.g. within Transformers (Kim et al., 2020; Yang et al.,
2020), but in this paper we instead choose to process

the sound fields such that the U-Net-based model re-
ceives real-valued inputs. Specifically, we present the
model to real and imaginary parts of sound fields sep-
arately. That is, where the magnitude-based model re-
ceive as input {|s(r, ωk)|}r∈DL,P

o ,k in the tensor form

Smag ∈ RIL×JP×K , the complex-based model in-
stead receives a concatenation of the real and imagi-
nary sound fields. Specifically, using the real sound
field {sRe(r, ωk)}r∈DL,P

o ,k with the tensor form SRe ∈
RIL×JP×K , and similarly the imaginary sound field ten-
sor SIm ∈ RIL×JP×K , we define the concatenated input:

S := [SRe SIm] , (11)

where S ∈ RIL×JP×2K is the resulting tensor with
real and imaginary sound fields concatenated along the
frequency-dimension. Note that the complex-valued
sound field is easily recovered from this tensor form. In
addition, we define a mask tensor M ∈ RIL×JP×2K com-
puted from So and DL,P

o .
We follow the pre- and postprocessing steps as de-

scribed in (Llúıs et al., 2020), which entails comple-
tion, scaling, upsampling, mask generation, and rescal-
ing based on linear regression. These steps are, however,
adjusted such that they operate on a tensor that has
doubled in size from K to 2K in the third dimension.
Furthermore, we have observed significant improvements
by changing the min-max scaling of the input to a max
scaling that takes into account both real and imaginary
parts for each frequency slice. Specifically:

sRe,s(r, ωk) :=
sRe(r, ωk)

maxr∈So (|sRe(r, ωk)|, |sIm(r, ωk)|)
(12)

sIm,s(r, ωk) :=
sIm(r, ωk)

maxr∈So (|sRe(r, ωk)|, |sIm(r, ωk)|)
(13)

for each ωk. Note that this alters the scaling operation
from working in the range [0,1] to working in [-1,1]. The
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motivation in doing so, is that values can be negative, in
contrast to the real values from the magnitude. By using
max scaling we ensure that zero will not shift between
realizations.

The architecture of the proposed neural network, as
illustrated in Fig. 4, is based on a U-Net (Ronneberger
et al., 2015). We employ partial convolutions (PConv) as
proposed for image inpainting in (Liu et al., 2018). In the
encoding part of the U-Net, we use a stride of two in the
partial convolutions in order to halve the feature maps,
while doubling the number of kernels in each layer. The
decoder part acts opposite with upsampling feature maps
and reducing the number of kernels to reach an output
tensor Ŝ with matching dimensions to the input tensor
S. We use ReLU as activation function in the encoding
part, and leaky ReLU with a slope coefficient of -0.2 in
the decoder. We initialize the weights using the uniform
Xavier method (Glorot and Bengio, 2010), initialize the
biases as zero, and use the Adam optimizer (Kingma and
Ba, 2014) with early stopping when performance on a val-
idation set stops increasing. Due to the increased input
and output sizes, we double the number of kernels in all
layers compared to the U-Net for magnitude reconstruc-
tion. We also do not use a 1x1 convolution with sigmoid
activation in the last layer, since the range of our output
is not constrained to [0,1] but instead [-1,1]. We have
not experienced any decreases in performance from not
including this layer.

A. Experiments

In this section, we assess the complex-valued sound
field reconstruction. The simulated extended dataset in-
troduced in Section IV A is used to train the model. It
is important to note that NMSE scores are not directly
comparable between magnitude and complex reconstruc-
tion, for which reason it is not possible to scrutinize dif-
ferences between the two types of models. That is, the
results presented in the following experiments will stand
on their own, and only indicative parallels can be drawn
to the results from magnitude reconstruction.

First, we test how the model performs on the sim-
ulated data associated with the training data, but held
out specifically for evaluation. This test set consists of
190 simulated rooms, the validation set contains approx-
imately 1,000 rooms, and the training set holds the re-
maining rooms from the 20,000 available rooms. In each
room, three different realizations of So are used for each
value of nmic. Results in terms of NMSE are shown in
Fig. 5. Some tendencies are similar to those observed
for magnitude reconstruction, such as improvements in
performance with an increasing number of available mi-
crophones. At the same time, as frequency increases,
performance degrades.

Next, we evaluate the complex reconstruction model
on the ISOBEL Sound Field dataset. The approach is
similar to the experiment in Section IV B, except the use
of the complex-valued sound fields instead of the mag-
nitude. As can be seen from the results in Fig. 6, per-

FIG. 5. NMSE in dB for complex reconstruction of simulated

sound fields in the test set with 190 different rooms and three

realizations of So in each room (M = 570 for each value of

nmic). The solid lines indicate average NMSEk shown with

95% confidence intervals. Colors indicate different values of

nmic in the range [5, 55].

Room B

VR Lab
List. Room

Prod. Room

FIG. 6. Average NMSEk in dB of complex reconstruction in

the four measured rooms with nmic = 15.

formances in the real rooms are not comparable to those
from simulated data. Moreover, although it is not pos-
sible to compare directly, performance seems worse than
what is achieved with the magnitude-based reconstruc-
tion in the same rooms, see Fig. 3. That is, the complex
reconstruction model is not transferring useful knowledge
as successfully from the simulations-based training to the
real world. Given that the network is able to reconstruct
the simulated sound fields, it appears that the complex
simulation model is a worse match for the real rooms than
the magnitude simulation model. The outcome is that
the framework is able to reconstruct sound fields which
are close to fields included in the training data, it is indi-
cated that the complex simulations are a poor match for
the real rooms. Two apparent differences are the iden-
tical boundary conditions at all surfaces and perfectly
rectangular geometry assumed in the simulations, but
which are not true in the real rooms. To provide insights
into how the network behaves relative to rooms which
does not match the training data set we now present the
following simulations.
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Train↓
Test→ Simulated

List. Room

Simulated

List. Room

lx + U(−0.25, 0.25)m

Simulated

List. Room

lx + U(−1.0, 1.0)m

Simulated

List. Room

Simulated

List. Room

lx + U(−0.25, 0.25)m

Simulated

List. Room

lx + U(−1.0, 1.0)m

FIG. 7. NMSE in dB for complex reconstruction of simulated sound fields in rooms with no or small variations in the room

dimensions. Rows: Training data. Columns: Test data. Four random realizations of So are used in each of the 11 test rooms

(M = 44). The solid lines indicate average NMSEk shown with 95% confidence intervals. Colors indicate different nmic values,

i.e., nmic = 5 (blue), nmic = 15 (orange), nmic = 25 (green), nmic = 35 (red), nmic = 45 (purple), and nmic = 55 (brown).

B. Discussion of Experiments

Several optimizations and fine-tuning approaches
have been investigated for the complex reconstruction
in real rooms without achieving notable improvements.
Instead, we take another approach, and show what hap-
pens to the model, when it is exposed to data that are not
represented in the training data. To this end, we are in-
terested in assessing the performance of room specialized
models. That is, if room dimensions and reverberation
time are known, how well will a model trained specifi-
cally for that room perform. For this, we introduce new
datasets each with 824 realizations for training, 165 for
validation, and 11 for testing. Each simulated realiza-
tion has a randomly positioned source. In total, three
such datasets are generated according to the procedure
described in Section IV A. The first dataset assumes that
room characteristics are known perfectly, we use the pa-
rameters of the Listening Room. The second and third
datasets introduce uncertainty in the room dimensions.
In particular, we alter the length and width of rooms,
while keeping the aspect ratio (lx/ly) of the room con-
stant. We accomplish this by uniformly sampling an er-
ror, which is added to the length of a room, and cor-
rect the width to achieve the original aspect ratio. The
two datasets sample errors in the range [-0.25, 0.25] m
and [-1, 1] m, respectively. The results for the three
models evaluated on each of the test sets are shown in
Fig. 7. The first column shows how the three models per-
form on the dataset with no added uncertainties. Even

with small variations of the 0.25 m scale, performance
rapidly degrades with increasing frequency. On the di-
agonal, training data match test data, and once again
high frequencies see a significant performance decrease
with increasing uncertainty. In general, the models do
not perform well on datasets with more variation than
what is included in their own training data, which can
be seen in the three upper right figures.

Further experiments showed that the three models
do not generalize to the real-world measurements of the
Listening Room. This result indicates that the simplifi-
cations imposed during the simulations of rooms causes
the simulated sound fields to not represent the exact real
rooms we intend it to. That is, a model trained with
simulated data generated using exact parameters of a
real room will not be able to reconstruct the sound field
accurately in the real room. As suggested by our results,
neither will a model trained with ±1 m uncertainty. This
calls for inclusion of diverse room parameters when train-
ing a model with simulated data if the intended purpose
is to use the reconstruction in real rooms.

We showed in Section IV how magnitude reconstruc-
tion recovered performance in some of the real rooms
by using an extended training dataset with more diverse
simulated rooms. The same effect is not observed for
complex reconstruction. We believe two factors are the
main reasons: 1) the boundary conditions in the simu-
lations assume nearly rigid walls and do not include e.g.
phase shifts of real wall reflections; 2) the simulations
assume perfectly rectangular rooms with a uniform dis-
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tribution of absorption. Thus, we hypothesize that the
model does not see representative data during training,
analogous to not having the correct room dimensions rep-
resented in the training data.

VI. THE SOUND ZONES APPLICATION

One potential application for the sound field recon-
struction presented in this paper, is in the process of set-
ting up sound zones. Sound zones generally refers to the
scenario where multiple loudspeakers are used to repro-
duce individual audio signals to individual people within
a room (Betlehem et al., 2015). To control the sound
field at the location of the listeners in the room, it is nec-
essary to know the RTFs between each loudspeaker and
locations sampling the listening regions. If the desired lo-
cations of the sound zones change over time, it becomes
labor intensive to measure all the RTFs in situ. As an
alternative, a small set of RTFs could be measured and
used to extrapolate the RTFs at the positions of interest.

1. Setup

For this example, we will explore the scenario where
sound is reproduced in one zone (the bright zone) and
suppressed in another zone (the dark zone).5

The question posed in a sound zones scenario, is how
the output of the available loudspeakers should be ad-
justed to achieve the desired scenario. A simple formula-
tion of this problem in the frequency domain is typically
denoted acoustic contrast control and relies on maximiz-
ing the ratio of mean square pressure in the bright zone
relative to the dark zone (Choi and Kim, 2002). This
ratio is termed as the acoustic contrast and can be ex-
pressed as

Contrast(ω) :=
‖HB(ω)q(ω)‖22
‖HD(ω)q(ω)‖22

(14)

where HB(ω) ∈ CM×L is a matrix of RTFs from L loud-
speakers to M microphone positions in the bright zone
and HD(ω) ∈ CM×L are the RTFs from the loudspeak-
ers to points in the dark zone. The adjustment of the
loudspeaker responses q(ω) ∈ CL can be determined as
the eigenvector of (HH

D(ω)HD(ω)+λDI)−1HH
B (ω)HB(ω)

which corresponds to the maximal eigenvalue (Elliott
et al., 2012), where ·H denotes the Hermitian transpose.
In this investigation, the regularization parameter is cho-
sen as

λD = 0.01‖HH
D(ω)HD(ω)‖2. (15)

This choice is made to scale the regularization relative
to the maximal singular value of HH

D(ω)HD(ω), thereby,
controlling the condition number of the inverted matrix.

2. Sparse Reconstruction method

An alternative method for estimating the RTFs at
positions of interest can be obtained by a sparse recon-
struction problem inspired by (Fernandez-Grande, 2019).

Here, the sound pressure observed at the physical micro-
phone locations are modeled as a combination of imping-
ing plane waves

s(r1, ω)
...

s(rM , ω)


︸ ︷︷ ︸

s(ω)

=


φ1(r1) · · · φN (r1)

...
. . .

...

φ1(rM ) · · · φN (rM )


︸ ︷︷ ︸

Φ


b1(ω)

...

bN (ω)


︸ ︷︷ ︸

b(ω)

(16)

where s(·, ·) is defined in (2), φn(rm) = ejk
T
n rm is the

candidate plane wave, propagating with wave number
kn ∈ R3, to observation point rm ∈ R3, and bn(ω) ∈ C is
the complex weight of the nth candidate plane wave. The
candidate plane waves can be obtained by sampling the
wave number domain in a cubic grid. Note that the eigen-
functions of the room used in Green’s function can be ex-
panded into a number of plane waves whose propagation
directions in the wave number domain equals the charac-
teristic frequency of the eigenfunction (‖kn‖22 = (ω/c)2).
This fact was used in (Fernandez-Grande, 2019) to reg-
ularize the sparse reconstruction problem as

min
b(ω)

‖s(ω)−Φb(ω)‖2 + λ‖L(ω)b(ω)‖1 (17)

where λ ∈ R+ and L(ω) ∈ RN×N is a diagonal matrix,
where the diagonal elements express the distance between
the characteristic frequency associated with the nth can-
didate plane wave and the angular excitation frequency
ω as |‖kN‖22 − (ω/c)2|.

Note that the sparse reconstruction model is not di-
rectly comparable to the proposed sound field reconstruc-
tion. This is due to the sparse reconstruction relying on
knowledge of the absolute locations of the microphone ob-
servations. The proposed algorithm, on the other hand,
only requires the relative microphone locations on a unit-
less observation grid.

3. Experiments

For the experiments, we use the simulated Listening
Room from the previous section, with eight loudspeakers
placed at the corners of the floor and halfway between
the corners. We have two predefined zones in the middle
of the room, which are bright and dark zone respectively.
We now, sample random positions in the 32 by 32 x,y-
grid 1 m above the floor and use those observations to
estimate the RTFs within the zones.

We compare the sparse reconstruction method to the
deep learning-based model trained in the previous sec-
tion. Specifically, the room specialized models are used.

The resulting performance is evaluated in terms of
the acoustic contrast over 50 random microphone sam-
plings for each number of microphones. In Fig. 8 the
results are based on evaluations using the true RTFs
when the loudspeaker weights are determined using ei-
ther the true RTFs, estimated RTFs based on the model
trained with simulated room with no added uncertain-
ties, or estimates based on the sparse reconstruction. It
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FIG. 8. Contrast results for the dataset with no added uncer-

tainty to the simulated Listening Room (50 different obser-

vation masks). (blue): Perfectly known TFs. (black): Deep

learning model. (red): Sparse reconstruction. (dashed): ±1

standard deviation.

is observed that the deep learning-based model performs
better than the sparse reconstruction below 150 Hz for 5
and 15 microphones. Above 150 Hz, both models strug-
gle to provide sufficiently accurate RTFs to create sound
zones.

In Fig. 9, the model specialized for the Listening
Room with lx+U(−1.0, 1.0) m, is compared to the sparse
reconstruction. As expected, the resulting performance
is reduced for the model. However, it is observed that
there is still a benefit when using 5 microphones. At
15 microphones, on the other hand, the performance is
comparable for both methods.

These results indicate that sound zones could be cre-
ated based on sound fields extrapolated from very few
microphone positions. However, at this stage it requires
models which are specialized to the particular room or
a narrow range of rooms. Alternatively, it would be re-
quired to increase the number of microphones to improve
the accuracy of the estimated RTFs.

VII. CONCLUSION

In this paper, deep learning-based sound field recon-
struction is evaluated using a new set of extensive mea-
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FIG. 9. Contrast results for the simulated Listening Room

with lx + U(−1.0, 1.0) m (50 different observation masks).

(blue): Perfectly known TFs. (black): Deep learning model.

(red): Sparse reconstruction. (dashed): ±1 standard devia-

tion.

surements from real rooms, which are released alongside
the paper. The focus of the work is threefold: exam-
ine performance of simulation-based learning of magni-
tude reconstruction in real rooms, extend reconstruction
to complex-valued sound fields, and show a sound zone
application taking advantage of the reconstructed sound
fields. Experiments for each of the three directions indi-
cate promising aspects of data-driven sound field recon-
struction, even with a low number of arbitrarily placed
microphones.

In the future, it would be of interest to investigate
whether transfer learning can help bridge the discrep-
ancies between simulated and real data. With the ad-
dition of more rooms, some could be used in the train-
ing phase. Furthermore, three-dimensional reconstruc-
tion can be achieved using available convolutional models
designed specifically to solve three-dimensional problems.
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1The data are collected under the Interactive Sound Zones for Bet-
ter Living (ISOBEL) project, which aims to develop interactive
sound zone systems, responding to the need for sound exposure
control in dynamic real-world contexts, adapted to and tested in
healthcare and homes. The ISOBEL Sound Field dataset can be
accessed at https://doi.org/10.5281/zenodo.4501339.

2Further details of the experimental setup and protocol, e.g. equip-
ment, are available in the measurement reports included with the
dataset.

3See footnote 2.
4Room B has measurements at a single height: 1 meter above the
floor.

5The use case with multiple individual audio signals can be realized
using superposition of this solution and one where the role of bright
and dark zone are reversed.
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