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Hypoglycemia event
prediction from CGM using
ensemble learning
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This work sought to explore the potential of using standalone continuous

glucose monitor (CGM) data for the prediction of hypoglycemia utilizing a large

cohort of type 1 diabetes patients during free-living. We trained and tested an

algorithm for the prediction of hypoglycemia within 40 minutes on 3.7 million

CGMmeasurements from 225 patients using ensemble learning. The algorithm

was also validated using 11.5 million synthetic CGM data. The results yielded a

receiver operating characteristic area under the curve (ROC AUC) of 0.988 and

a precision-recall area under the curve (PR AUC) of 0.767. In an event-based

analysis for predicting hypoglycemic events, the algorithm had a sensitivity of

90%, a lead-time of 17.5 minutes and a false-positive rate of 38%. In conclusion,

this work demonstrates the potential of using ensemble learning to predict

hypoglycemia, using only CGM data. This could help alarm patients of a future

hypoglycemic event so countermeasures can be initiated.

KEYWORDS

diabetes, machine learning, hypoglycaemia, type 1 diabetes, continuous glucose
monitoring (CGM), event prediction, Dexcom G4 platinum, blood glucose (BG)
Introduction

Hypoglycemia is related to both increased physical, and mental health problems and

is a major risk factor for mortality (1, 2). Hypoglycemia can result from exogenous or

endogenous insulin excess alone. The clinical manifestation is often characteristic, but the

neurogenic and neuroglycopenic symptoms of hypoglycemia are nonspecific and

relatively insensitive (3). Consequently, many episodes of hypoglycemia are not

recognized or treated late in the progression (3). It is very important to prevent,

identify and treat hypoglycemic events secondary to the use of insulin. Additionally, it

is safer for the patients and more effective to prevent hypoglycemia than to treat it after it

occurs (4).

Hypoglycemia is common among patients with insulin dependent diabetes. Patients

who aim for a strict glycemic target experience frequent episodes of asymptomatic
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hypoglycemia and severe hypoglycemia (5). Studies suggest that

plasma glucose levels may be less than 60 mg/dL (3.3 mmol/L)

up to 10% of the day (6, 7). Furthermore, patients with type 1

diabetes suffer from an average of two weekly incidents of

symptomatic hypoglycemia (6, 7).

However, newer studies on patients utilizing continuous

glucose monitoring (CGM) have shown that time below range

(< 3.9 mmol/L) was estimated to be 5.4% with a mean HbA1c of

7.0% (52 mmol/mol) (8).

Blood glucose prediction is about forecasting a patient’s

future blood glucose levels using current and past information

and is also an important constituent of blood glucose anomaly

classification approaches. One potential method to reduce

episodes of hypoglycemia is prediction models that can alarm

patients early to begin countermeasures. Such models can be

implemented directly into the CGM systems or as an add-on in

the patient’s smartphone applications connected to the

systems (9).

We have in previous studies (10–13) investigated the

potential of using a continuous glucose monitor (CGM)

combined with heart rate variability (HRV) to predict

hypoglycemia for the purpose of early intervention. Also,

many others have reported the potential of predicting future

glucose levels using CGM combined with multiple data sources

such as insulin, physical activity, food intake, and stress

response (14, 15). Obtaining these multiple data in real time

is not always practical (9). Also, most studies that utilize only

CGM data as a more practical approach, are often based on

limited number of patients, short CGM wear-time, and are not

validated in external cohorts of patients (9, 14, 16). Therefore,

we sought to further explore the potential of using only CGM

data for the prediction of hypoglycemia in a proof of concept

analysis using a large cohort of type 1 diabetes patients during

normal daily living and validating the results in an external

CGM database.
Methods

The study cohort comprised CGM data derived from

individuals who were enrolled in the REPLACE-BG trial (17).

The REPLACE-BG study design was a 6-month parallel group

multicenter randomized clinical trial. A total of 225 patients ≥18

years of age (mean ± standard deviation or median (interquartile

range): age: 44 ± 14 years, duration of diabetes: 23 ± 12 years,

BMI: 27.7 ± 4.1, HbA1c: 7.1 ± 0.7% (54 mmol/mol), time in

range: 63 ± 13%, time below <70 mg/dL: 2.9% (1.5–5.1)) with

type 1 diabetes were enrolled from the diabetes clinics and used

CGM (Dexcom G4) for up to 6 months. The characteristics are

presented in Table 1.

We trained and tested an algorithm for the prediction of

hypoglycemia within 40 minutes on 3.7 million CGM

measurements from 225 patients using an ensemble learning
Frontiers in Clinical Diabetes and Healthcare 02
approach named RUSBoost (18). In short, ensemble learning is a

general meta-approach to machine learning that seeks better

performance by combining the predictions from multiple

models. RUSBoost has been reported to be a fast and robust

classifier for datasets with imbalanced data. For training, 70% of

the data were utilized (split on a patient level) and the remaining

30% were reserved for testing the performance of the

final model.

The hyperparameter estimation (learning cycles, learn rate,

max splits) were determined using 5-fold cross-validation on the

training data using a grid search strategy. A hyperparameter is a

parameter whose value is used to control the learning process of

the prediction model. Grid search is a specific tuning strategy

that attempts to compute the optimum values of the

hyperparameters. It is an exhaustive search that is performed

on the specific parameter values of a model. Cross-validation is

used in the process to ensure that the model is not over-tuned,

which could result in worse performance on new patient data.

Input to the model was CGM data one hour prior to the point

of prediction. Hypoglycemia was defined as CGM values below 70

mg/dL for 15 minutes or more (sustained hypoglycemia) – the

definition was based on the recommendations in previous studies

(19, 20). The algorithm was implemented usingMATLAB R2020b

(The Mathworks Inc., Natick, Massachusetts).

In addition to the data from real patients the algorithm was

also tested on 11.5 million synthetic CGM data from the publicly

available SCGMS database (18). The database mimics CGM data

from type 1 patients and healthy individuals with different

HbA1c levels using a Conditional Generative Adversarial

Network (CGAN) (21). In short, CGAN is a novel method to

construct a neural network which can be used to generate

realistic biological signals. The external validation was

conducted to determine the generalizability of the model in

people with different glycemic control.

To evaluate the performance of the trained model we

conducted a sample-based assessment that comprised every

datapoint in the test dataset (real patients) and synthetic

dataset. The sample-based performance was assessed using
TABLE 1 patients characteristics presented as mean ± standard
deviation for parametric characteristics or Median (interquartile
range) for non-parametric.

Age (years) 44 ± 14

- range 19-78

Diabetes duration (years) 23 ± 12

- range 2-64

BMI (kg/m2) 27.7 ± 4.1

HbA1c (%) 7.1 ± 0.7

Female sex (%) 50

Time in range (%) 63 ± 13

Time below <70 mg/dL (%) 2.9 (1.5–5.1)

Mean glucose (mg/dL) 162 ± 22
fro
ntiersin.org

https://doi.org/10.3389/fcdhc.2022.1066744
https://www.frontiersin.org/journals/clinical-diabetes-and-healthcare
https://www.frontiersin.org


Fleischer et al. 10.3389/fcdhc.2022.1066744
Receiver operating characteristic (ROC) and precision-recall

curve with (PR curve) with accompanying area under the

curve (AUC). The metrics from the sample-based assessment

are important for between model comparison. However, from a

clinical or patient perspective, an event-based assessment is

more useful for evaluating the performance.

Therefore, we conducted an event-based assessment that was

conducted on each episode of hypoglycemia to test how many

episodes of hypoglycemia was detected, the lead-time

(prediction time) and the number of false positives. The event-

based assessment was included to assess the performance on

clinical in-use situations.
Results

Sample-based test results

From 1,110,000 samples in the test dataset the performance

of the algorithm was a receiver operating characteristic areal

under the curve (ROC AUC) of 0.988 and a precision-recall area

under the curve (PR AUC) of 0.767. The ROC and PR curves are

illustrated in Figure 1.

From the 11,500,000 samples of synthetic data the

assessment yielded an operating characteristic areal under the

curve (ROC AUC) of 0.988 and a precision-recall area under the

curve (PR AUC) of 0.879.
Event-based test results

The results from the event-based assessment yielded a

sensitivity of 90%, a lead-time of 17.5 minutes and a false-
Frontiers in Clinical Diabetes and Healthcare 03
positive rate of 38%. Due to the class imbalance (few events

compared to non-events) the specificity and negative-predictive-

value are both high >99%. The prediction was on average

triggered with glucose levels of 83 mg/dL.

Translated to round estimates this would mean that 9 out of

10 hypoglycemia events were detected on average 17 minutes

prior to the first CGM value below 70 mg/dL and with 2/3

alarms being true. The metrics are calculated from a total of 3725

hypoglycemic events in the test dataset. The test dataset

comprised of 5,456,905 minutes of CGM wear time during

daily living.

Figure 2 shows an example of prediction from three days of

CGM wear. The patient would be alarmed three times, where the

first two alarms are true positives, while the last is a rapid decline

in glucose levels that does not lead to hypoglycemia.
Discussion

The event-based assessment shows that it is possible to

predict a large proportion of hypoglycemic events with a lead-

time which makes it possible for the patients to reverse the

situation and potentially avoid severe hypoglycemia. Especially

during nights and rapid dips in glucose it is extremely important

to be aware of the risk and start timely treatment with ingestion

of fast absorbable carbohydrates or potentially glucagon to avoid

severe hypoglycemia related complications. Early prediction of

hypoglycemia and herby earlier intervention could also

potentially aid in reducing the time in hypoglycemia.

In comparison, the commercial system Dexcom 6G advertise

hypoglycemia prediction up to 20 minutes prior to

hypoglycemia defined at a lower threshold of 55 mg/dL (18).

However, without data on the average lead-time, sensitivity and
FIGURE 1

ROC and PR curves of the sample-based performance from the test dataset (real patients).
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false-positive it is difficult to compare the predictive capabilities.

However, improving on the prediction capability as in our study

with event prediction up to 40 minutes a-head (average lead-

time 17.5 minutes) prior to an event (<70 mg/dL) would enable

faster action to avoid mild hypoglycemia/sever hypoglycemia.

Accurate prediction models could also be used in a closed-loop

system to suspend insulin dosing in order to avoid

severe hypoglycemia.

Recent studies by Darpit et al. (15, 22) have reported

interesting results on the multisource prediction of hypoglycemia

using a battery of features from CGM, insulin, meal intake and

demographic data. They reported from a cohort of 110 pediatric

patients an accuracy of predicted events with >97% sensitivity and

specificity and false alert rate <25%. However, due to the difference

in sensor model, methodically assessment and cohort

characteristics between the studies it is challenging to compare

results head-to-head and conclude if the use of additional data is

worth the practical implications. CGM based hypoglycemic event

prediction seems like an attractive approach due to the simplicity

of implementing it into already running commercial CGM sensors

or analytic platforms for CGM data.

Additionally, Seo et al. (23) proposed a model for predicting

postprandial hypoglycemia using CGM and meal announcement.

The study explored retrospective CGM datasets of 104 people who

had experienced at least one hypoglycemia event during a three-

day CGM session. The best performance reported in the study was

an average AUC of 0.966, average sensitivity of 89.6%, and average

specificity of 91.3%. Marcus et al. (24) published results from 11

patients with type 1 diabetes - they proposed a prediction model

for hypoglycemia with a sensitivity of 64% and a low false-positive
Frontiers in Clinical Diabetes and Healthcare 04
rate of 4%.

This study has some limitations; the proposed model in this

study, still needs to be tested in a broader spectrum of patients

and CGM sensors. One limitation in this study is that we cannot

generalize the performance to all CGM sensors. Many new

sensors are emerging from different manufacturers with better

accuracy and decision support, such as trend arrows.

Alarm fatigue is a relevant challenge, which is why false

alarm needs to be low. In our study, the proposed model, if

implemented, would result in one alarm each ~10 days of wear

time. This is dependent on the population and degree of

glycemic control, so we cannot extrapolate this finding to a

group of patients with severe glycemic control. However, the

results from external validation on synthetic CGM data from

people with different HbA1c levels could indicate that the model

is generalizable.

In future perspectives, models such as the one proposed in

this study need to be evaluated in a clinical impact study to assess

the effects and clinical implications. The hypothesis is that the

accurate prediction of hypoglycemic events could lead to better

glycemic control with fewer events, increased time in range and

less glycemic variability.

In conclusion, this work demonstrates the potential of using

ensemble learning to predict hypoglycemia, using only CGM

data, in a large and heterogeneous group of patients with type

1 diabetes.
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