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An Empirical Analysis of the Impact of Continuous Assessment
on the Final Exam Mark
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Abstract: Since the Bologna Process was adopted, continuous assessment has been a cornerstone in
the curriculum of most of the courses in the different degrees offered by the Spanish Universities.
Continuous assessment plays an important role in both students’ and lecturers’ academic lives. In
this study, we analyze the effect of the continuous assessment on the performance of the students
in their final exams in courses of Statistics at the University of Almería. Specifically, we study if the
performance of a student in the continuous assessment determines the score obtained in the final
exam of the course in such a way that this score can be predicted in advance using the continuous
assessment performance as an explanatory variable. After using and comparing some powerful
statistical procedures, such as linear, quantile and logistic regression, artificial neural networks and
Bayesian networks, we conclude that, while the fact that a student passes or fails the final exam can
be properly predicted, a more detailed forecast about the grade obtained is not possible.

Keywords: continuous assessment; Bayesian networks; artificial neural networks; classification

MSC: 62P25

1. Introduction

The interest in the Assessment for Learning (AFL) [1,2] which started in the last
decades of the 20th century has grown during the 21st century, especially in European
Higher Education due to the Bologna Process. The adaptation of the universities to the
European Higher Education Area as well as the increasing interest of the different govern-
mental agencies in learning outcomes [3,4] causes the effective assessment of the students
to become particularly important for academic institutions. In this framework, Continuous
Assessment (CA) is considered to be a useful tool to assess what students know and the
competencies that they have achieved.

The main principle of the AFL is that any assessment should help students to learn
and to succeed [2] and some research papers have highlighted this formative function of
the continuous assessment. Nair and Pillay [5] assert that continuous assessment “makes
teaching, learning and assessment part of the same process”, highlighting the capacity to
collect more evidence of the students learning in different ways and paces. Day et al. [6]
point out two main benefits of continuous assessment: the first one is the enhancement
of the retention of knowledge when it is repeatedly tested; the second benefit is that this
retention is enlarged when the study period is spread by the CA. Some research in the
bibliography concludes that CA helps the students to improve their understanding of the
course content by removing the stress involved in the final exams [7–9] and helping them
to manage their workload [5,8] or engaging them with the course materials [10,11]. Other
researchers claim that CA improves students’ motivation for learning [12] and increases
the students’ engagement throughout the course and the class attendance [11,13].

The advantage most emphasized in the literature is the feedback that CA offers to
students and teachers [11,12,14,15]. Lopez-Tocón [16] found that Moodle quizzes let the
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teachers know failures in the students’ understanding as well as information about students’
learning processes while students are provided with self-assessment from the quizzes.
Carles et al. [17] state that learning skills are developed thanks to the feedback provided
by iterative assignments. Deeley et al. [18] and Scott [19] affirm that feedback brings the
students’ performance close to the one required by the assessment criteria. Timing is the
main factor to make the feedback valuable [18] because if it is given too late, the students
are not able to identify their weaknesses and change what is needed to improve the quality
of their work. Timely feedback is challenging for the instructors [20], especially when
teaching in large groups.

The positive perception of the students about CA has been indexed in the literature [21].
In Holmes’ research [11], students affirmed that the improvement in their learning and
understanding were a consequence of the continuous assessment while students surveyed
by Scott [19] and Deeley et al. [18] reported that feedback given by their continuous assess-
ment enhanced their understanding of the assessment processes, boosted their confidence
and enabled them to improve the quality of their work.

Almost all the authors agree on the significant effect of continuous assessment on
student behavior. Gibbs [22] and Bloxham and Boyd [10] found that CA has more impact
on the learning process than teaching.

However, this effect is not always positive. Bloxham and Boyd [10] warn of strategic
students who avoid making an effort in activities that do not contribute to their marks.
Moreover, it has been reported [14,23] that students reduce their work once they obtain a
satisfactory mark in their CA part and this attitude has consequences on the final exam.
Finally, Dejene [20] found that some students perceive the CA as “continuous testing” that
makes them busy and tired.

Another drawback of the CA lies in an increase in the workload for teachers, as well
as the time required to plan and mark the CA [10,12,24], especially in large groups where
individualized attention is highly time-consuming for teachers [14,18,20]. Deeley et al. [18]
describe how staff could feel demotivated when their feedback is not taken into consid-
eration by their students whereas the students feel disengaged when feedback does not
provide clear and personalized information.

In the literature, we can find studies where CA enhances student performance in the
final exams [15,24]. Nair and Pillay [5] assert that CA increases the percentage of students
completing their studies in the minimum stipulated time while reducing the drop-out
volume. Lopez-Tocón [16] finds that online tests help students to pass the exam in the
ordinary call and the study of González et al. [25] reveals a positive effect of CA on students’
success as well as a positive statistically significant correlation between the grades got in
the CA and the final exam marks.

However, opposing conclusions about whether CA enhances student performance
in the final exams can also be found in the literature [6,14,23]. The analysis carried out
by Day et al. [6] concludes that students’ results do not depend on whether CA has been
used or the type of assessment followed in the course; even the positive correlation found
by Gonzalez et al. [25] are low (below 0.4 in eight of the nine subjects studied) and the
researchers did not find a significant relation between the continuous assessment grades
and the final exam marks in the tail ends of the distribution.

Facing the number of studies yielding opposing conclusions, the goal of this study
is to find statistical evidence of a significant effect of the CA on the performance of the
students in the final exam of a course. In particular, we try to determine to what extent
the final mark of a student can be predicted by their performance in the CA activities.
We have collected the outcomes of 2397 students enrolled in courses of Statistics taught
at the University of Almería. In an attempt to obtain as many heterogeneous students
as possible we have selected courses of Statistics in seven degree programs belonging to
different branches (Science, Technology, Economy and Social Sciences), taught in different
semesters, shifts and with different methodologies (in-person, online or blended teaching).
All these variables have been included in the models as explanatory variables. Moreover,
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as Reina et al. [24] found that the weight of the CA in the final grade has a significant
influence on the final exam, we have also added this variable to the models. Our initial
attempt was to predict the final mark by using linear and quantile regression to predict the
highest and lowest scores. The poor quality of the predictions led us to use artificial neural
networks for regression, also getting unreliable results. As a solution, we transformed the
regression problem into a classification problem where, given the explanatory variables,
we try to determine the range of grades in which the student will score in the final exam by
using artificial neural networks and Bayesian networks. Finally, we simplify the problem
by trying to predict whether a student will pass or fail the final exam.

2. Methods

We have recorded the performance of 2397 students enrolled in courses of Statistics in
seven degree programs of the University of Almería:

• Economy: 1104 students;
• I.T. Engineering: 453 students;
• Industrial Engineering: 109 students;
• Mathematics: 288 students;
• Public Management: 188 students;
• Labor Relations: 166 students;
• Physical Activity and Sport Science: 89 students.

For each student, the following variables are studied:

• Degree program;
• Shift: Morning or Afternoon;
• Teaching: type of teaching( in-person, e-learning or blended);
• Weight of the CA in the final grade of the course;
• Continuous: performance of the student in the CA, measured as the percentage out of

the maximum mark possible (values between 0 and 100);
• Exam: mark of the student in the final exam of the course, measured as the percentage

out of the maximum mark possible (values between 0 and 100). When a student,
following the CA, does not sit the final exam, we have entered a zero in this variable
to take into account the failure in finishing the course.

We consider the shift of the course of interest because when the same course is taught
in different shifts, students choose their shift in an order determined by their marks, so
students with higher marks are expected to choose morning shifts whereas students usually
choose the afternoon shifts only when the morning course is full or if they combine study
with work. Therefore, the performance of students in morning shifts is typically better than
in afternoon shifts.

Table 1 displays the number of students in each category.

Table 1. Frequency distribution of some explanatory variables in the data set.

Shift Type of Teaching Weight

Morning 1236
Afternoon 1161

In-person 1239
E-learning 781
Blended 377

20% 47
30% 800
40% 166
50% 1192
60% 192

To assess the performance of the model, we have randomized the data set and divided
it into a training set and a test set with 70% and 30% of the data, respectively.

We have carried out two analyses: Firstly, we try to predict the score in the final exam
of a generic student, that is, without using the variable Degree as an explanatory variable.
In the second part of the study, we use the same statistical procedures applied in the first
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analysis but include the degree of the student in order to assess if more precise results
are obtained.

The task of predicting the numeric value of the mark obtained in an exam was ap-
proached by using linear regression. We also used quantile regression, since it does not
make any previous assumption (such as homoscedasticity in the linear model) and to
predict the marks in the tails. In order to handle potential nonlinearities, we used artificial
neural networks. The task of predicting the qualitative value of the mark obtained in an
exam was approached using two state-of-the-art classification methods, namely artificial
neural networks and Bayesian networks [26], taking as a benchmark for comparison a
standard logistic regression model.

2.1. Regression Analysis
2.1.1. Linear Regression and Quantile Regression

Our first aim is to predict the target variable Exam as a function of the explanatory
variables Shift, Teaching, Weight and Continuous.

The first method used has been a linear regression model. However, a first analysis of
the data set reveals problems in terms of heteroscedasticity (Breusch–Pagan’s p-value lower
than 0.001) and normality (Shapiro–Wilk’s p-value lower than 0.001). We have checked
several transformations of the response variable (Box–Cox transformations, log(y + λ2)

where λ2 = smallest non-zero value/2 or λ2 =
Q2

1
Q3

or the arc-sin-square root transforma-
tion) but they got a higher dependency between the variance and the mean except for the
arc-sin-square root transformation that got similar results than the raw data (Figure 1), so
we decided to keep the original response variable for the sake of simplicity, taking into
account the limitations of the regression model given the non-constant variance.

Figure 1. Standardized residuals versus fitted values with the original data and after transforming by
arc−sin−square root.

On the other hand, the QQ plot of the standardized residuals (see Figure 2) shows
non-normal errors with the apparently long-tailed distribution. To address this problem, we
have used robust regression models [27,28]. To choose the most suitable robust method for
the estimation of the coefficients, we have compared the RMSE (root mean squared error) of
the models fitted by using Huber’s M-estimator [29], the least trimmed squares (LTS) robust
(high breakdown point) regression [30], least-absolute-deviations (LAD) regression [31]
and the S-estimators proposed by Koller and Stahel [32]. We have used the MASS [33] and
robustbase [34] R packages to fit the models.
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Figure 2. QQ—plot of the standardized residuals.

Due to the problems with the requirements of the linear regression, we propose the
use of quantile regression [35–37] which makes no assumption on the errors. Quantile
regression estimates the conditional median (or any other quantile) of the response variable
instead of the conditional mean estimated by linear regression. However, not only can the
median be predicted but also any quantile from the response variable’s distribution, so we
will try to predict the lowest (lower quartile) and highest marks (upper quartile, 80th and
90th percentile) in the final exam. As goodness of fit measurement, we have computed the
coefficient proposed by Koenker and Machado [38], defined as one minus the ratio between
the sum of absolute deviations in the fully parameterized model and the sum of absolute
deviations in the null (non-conditional) quantile model.

2.1.2. Artificial Neural Networks

Our last attempt for the prediction of the mark obtained in the final exam was the
use of Artificial Neural Networks (ANN). ANNs [39,40] are computational models which
consist of nodes connected by links. The nodes, called neurons , are distributed in layers
that can be divided into three classes: the first layer, called input layer, contains the
nodes that represent the explanatory variables for the model; the last layer called output
layer produces the result of the model; between the input and output layers the nodes are
distributed in layers called hidden layers where the processing of the information is carried
out. The nodes in each hidden layer are connected with all the neurons in the previous
and next layers but there is no link between the nodes in the same layer. The number of
hidden layers and the number of nodes in each one are hyperparameters that can be fixed
by the research before training the ANN. Figure 3 shows the structure of an ANN with one
hidden layer and three nodes in it.

The processing of the information in the hidden layers is performed inside each
neuron as follows: each link connecting two neurons i and j has associated a numerical
parameter called weight and denoted wij, which determines how strongly the neuron i
affects the neuron j. So, the information that a neuron j receives is the value taken by the
neurons in the previous layer multiplied by the weights of the links plus a bias to adjust the
information along with the weighted sum of the inputs to the neuron. Figure 4 illustrates
the information received by the first neuron in the hidden layer of the ANN in Figure 3.
The weights are estimated in the training of the ANN in such a way that the error of the
output of the ANN is minimized.
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Figure 3. An example of an ANN with one hidden layer.
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A function is applied to the weighted sum of the inputs with the bias to produce the
output of the neuron. This function is called the activation function and it decides whether
the information in the neuron is important enough to be incorporated into the process. The
activation function must be chosen by the researcher among a wide range of functions such
as the identity, the logistic or sigmoid, the hyperbolic tangent, Rectified Linearity Units
(ReLu) or Softmax functions, introducing the non-linearity in our model.

In this work, we used the most common type of ANN, the multilayer perceptron
(MLP) [39]. We have trained nine different MLPs with one hidden layer and a total of
527 MLPs with two hidden layers varying the number of neurons in the layers. To learn
each MLP, we used three activation functions: identity, ReLU and Softplus. The explanatory
variable SHIFT was transformed into a 0–1 variable, whereas TEACHING was converted
into three binary variables and the numeric variables were re-scaled to the interval [−1,1].
The assessment measure to choose the best model is the RMSE.

2.2. Multiclass Classification

As it is shown in Section 3, we were not able to accurately predict the mark in the final
exam due to the high errors obtained in both regression models and ANNs so we decided to
approach the problem as a classification task where the target variable EXAM is categorized
into four classes: Fail, PassingGrade, GradeB and GradeA. As we did when training the
ANNs for regression, the variable SHIFT is transformed into a 0-1 variable, TEACHING
into three binary variables and WEIGHT and CONTINUOUS have been re-scaled to the
interval [−1,1].

The first method used to classify the exam score of a student was an MLP with a
logistic activation function. We trained different MLPs with one and two hidden layers
varying the number of nodes in them. To assess the accuracy of the ANNs we computed
the following performance metrics, where TP denotes the number of true positives, TN the
number of true negatives, FP the false positives and FN the number of false negatives:

• Classification ACCURACY: ratio between the number of correct predictions and the
total number of predictions

Accuracy =
TP + TN

TP + TN + FP + FN
; (1)

• GEOMETRIC MEAN (GM): tries to measure the equilibrium between the performance
on classifying both the majority and the minority classes

GM =

√
TP

TP + FN
· TN

TN + FP
; (2)

• MATTHEW’S CORRELATION COEFFICIENT (MCC): takes on values in the range
[−1, 1]. A value of MCC = −1 indicates that the model predicts all negatives as
positives and vice versa (perfect negative correlation), MCC = 0 indicates that the
model predicts randomly (no correlation), and MCC = +1 indicates perfect agreement.
It is computed as

MCC =
TN · TP− FP · FN√

(TN + FN)(FP + TP)(TN + FP)(FN + TP)
; (3)

• YOUDEN’S INDEX (J): aggregates the values of specificity and sensitivity. It ranges
between 0 and 1. J = 0 indicates that the classifier is useless whereas J = 1 indicates
perfect agreement.

J =
TP

TP + FN
+

TN
TN + FP

− 1; (4)

• COEH’S KAPPA SCORE (K): measures how much better the classifier is performing
with respect to random classification according to the frequency of each class. It takes
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on values under or equal to 1, considering that the classifier is useless when J ≤ 0 and
as acceptance criterium, we can consider a good performance when J > 0.6 [41]. Its
formula is

K =
Po − Pe

1− Pe
, (5)

where Po is the ratio of observed agreements and Pe the expected agreements.

GM, MCC and J are computed for each class of the response variable and the measure
given is the weighted mean, using as weights the relative frequency of each class in the test
data set.

Unlike Accuracy, the metrics GM, MCC, J and K take into account the difference in
the size of the classes of the response variable in the test data set. As Table 2 shows, the
Fail class contains over eight times more items than GradeB class and over 33 times more
items than GradeA. Therefore, Accuracy can be misleading, for instance, if the model only
classifies properly the Fail class.

Table 2. Frequency distribution of the categorized variable EXAM in the test data set.

Class ni

Fail 504
PassingGrade 106

GradeB 62
GradeA 15

Besides ANNs, we have also addressed the classification problem using Bayesian
networks.

Bayesian Networks

In what follows, we will use uppercase letters to denote random variables and low-
ercase letters to denote a value of a random variable. Boldfaced characters will be used
to denote sets of variables. The set of all possible combinations of values of a set of
random variables X is denoted as ΩX. A Bayesian Network (BN) [42] with variables
X = {X1, . . . , Xn} is formally defined as a directed acyclic graph with n nodes where each
one corresponds to a variable in X. Attached to each node Xi ∈ X, there is a conditional
distribution of Xi given its parents in the network, Pa(Xi), so that the joint distribution of
the random vector X factorizes as

p(x1, . . . , xn) =
n

∏
i=1

p(xi|pa(xi)), (6)

where pa(xi) denotes a configuration of the values of the parents of Xi.
An example of a BN representing the joint distribution of the variables X = {X1, . . . , X5}

is shown in Figure 5. It encodes the factorization

p(x1, x2, x3, x4, x5) = p(x1)p(x2|x1)p(x3|x1)p(x5|x3)p(x4|x2, x3).

A remarkable feature of BNs is their modularity, in the sense that the factorization
simplifies the specification of large multivariate distributions that are replaced by a set of
smaller ones (with a lower number of parameters to specify). For example, the factorization
encoded by the network in Figure 5 replaces the specification of a joint distribution over
5 variables with the specification of 5 smaller distributions, each one of them with at most
3 variables. Another advantage is that the network structure describes the interaction
between the variables in the model, in a way that can be easily interpretable, according to
the d-separation criterion [42]. As an example, the structure in Figure 5 determines that
variables X1 and X5 are independent if the value of X3 is known, and likewise, X2 and X3
are independent if X1 is known.
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Building a BN from data involves two tasks: (i) learning the network structure and
(ii) estimating the conditional distributions corresponding to the selected structure. Assum-
ing that all the variables in the network are discrete or qualitative, maximum likelihood
estimations of the conditional distributions can be obtained from the relative frequencies
in the data of each combination of possible values of the variables involved. Structure
learning [43] can be cast as an optimization problem, where the space of possible network
structures is traversed trying to maximize some score function that measures how accu-
rately a given structure fits the data. In this work, we have used the BIC score, which is a
typical choice in the literature [44], defined as

BIC(M|D) =
N

∑
l=1

ln p(xl |θ̂)−
1
2

d ln N, (7)

where D = {x1, . . . , xN} is the dataset, M is the network under evaluation, and p(xl |θ̂)
is the joint distribution corresponding to network M, with parameters θ̂ estimated by
maximum likelihood. The idea of using the BIC score is to obtain networks that fit the data
accurately while prioritizing simple networks. That is why the number of parameters, d,
necessary to specify the probability distributions in the network, is used as a penalty factor.
Other popular choices are the AIC and BDE scores [44]. In this paper, we have used the
Hill Climbing (HC) optimization procedure with BIC score as a metric to optimize, using
the implementation in the bnlearn [45] R package.

It is also possible to fix a given network structure beforehand, and only estimate the
conditional distributions from data. This choice is typically adopted in practice when the
network is going to be used for prediction purposes, where one could be more interested
in the value of a target variable than in the interactions between the other variables. An
example of such a fixed structure is the so-called Naive Bayes (NB) [46], where the variable
whose value we want to predict is the root of the network and the only existing links go
from that variable to the rest of the variables in the network (see Figure 6 for an example of
such a structure).
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NB structures impose a strong independence assumption (all the variables are condi-
tionally independent given the root variable C), but in practice, it is compensated by the
low number of parameters that need to be estimated from data. Notice that, in this case,
the factorization encoded by the network results in

p(c, x1, . . . , xn) = p(c)
n

∏
i=1

p(xi|c), (8)

meaning that n one-dimensional conditional distributions must be specified, instead of one
n-dimensional conditional distribution.

A BN can be used for classification by computing the posterior distribution of the class
variable given an observed value {x1, . . . , xn} of the predictive variables so that the result
would be the value c∗ ∈ ΩC such that

c∗ = arg max
c∈ΩC

p(c|x1, . . . , xn).

Since p(c|x1, . . . , xn) ∝ p(c, x1, . . . , xn), in the case of an NB structure, and taking into
account Equation (8), it amounts to computing

c∗ = arg max
c∈ΩC

p(c)
n

∏
i=1

p(xi|c).

Unlike the learning of MLPs, to train the BNs, the variable TEACHING is a unique
variable with three categories: the rest of the variables (SHIFT, WEIGHT, CONTINUOUS
and EXAM) are the same as the variables used with the MLPs.

2.3. Binary Classification

In an attempt to improve the reliability of the predictions, we have compared the
performance of MLPs and BNs with a logistic regression model where the mark in the
final exam is categorized into two classes: Fail and Pass. As in the previous section, the
input variables for training the MLPs are: SHIFT (a 0–1 variable), TEACHING (split into
three binary variables), WEIGHT and CONTINUOUS, both re-scaled to the interval [−1,1].
Twelve MLPs with one hidden layer have been learned varying the number of nodes in the
intermediate layer from 3 to 14. The activation function used was the logistic.

To get the models based on BNs, we have trained a Naive Bayes model, as well as a BN
with structure, learned using the HC optimization procedure with BIC score as a metric.

Finally, we compared the performance of the aforementioned classifiers with the
results obtained by the logistic regression where the input variables are the same as those
used with the MLP.

2.4. Prediction Using Degree as Explanatory Variable

In the last part of this study, we repeated the steps followed in the previous sections
but introduced the degree program as an explanatory variable in an attempt to improve
the quality of the predictions.

For the regression analysis, we fitted a linear model for each degree program in the
study. We kept the rest of the explanatory variables with the following exceptions:

• In the linear model fitted for students enrolled in Industrial Engineering, Labor Relations
and Physical Activity and Sport Science we have removed the variable WEIGHT from the
model because it takes the same value in all the courses analyzed (30% in Industrial
Engineering and 50% in both, Labor Relations and Physical Activity and Sport Science).

• In the linear model fitted in Industrial Engineering and Physical Activity and Sport Science
the variable TEACHING is not used because the courses in these degrees were taught
with the same methodology (in-person and eLearning, respectively).
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The analysis of the standardized errors show lack of normality (Shapiro–Wilk’s p-
value lower than 0.001) in all the degrees with exception of Mathematics, Public Management
and Physical Activity and Sport Science (Shapiro–Wilks’ p-value = 0.1888, 0.1824 and 0.0575,
respectively). Neither is the homoscedasticity requirement accomplished in all the de-
grees (Breusch–Pagan’s p-value under 0.001) except for I.T. Engineering (Breusch–Pagan’s
p-value = 0.6045). Therefore, the coefficient of each model has been computed both by
Least Squared Error and robust estimators and the RSME compared.

To learn the MLP the degree is entered as 7 binary variables while for the BNs the
degree is one variable with 7 categories.

3. Results
3.1. Regression Results

Regarding the use of robust estimators to fit the linear model to our data, the resulting
values of RMSE yield by the models estimated by Huber’s M-estimator, Least Trimmed
Squares (LTS) robust regression, Least-Absolute-Deviations (LAD) regression and the S-
estimator proposed by Koller and Stahel are displayed in Table 3. All the models except the
one fitted by the LTS method are similar, getting the minimum RMSE with the estimations
proposed by Koller and Stahel, so we will use this linear model to study the relationship
between the explanatory variables and the mark obtained in the final exam. The results of
this estimation are shown in Table 4.

Table 3. Comparison of the RMSE obtained by the different methods of estimation: Huber = Huber’s
M-estimator, LTS = least trimmed squares robust regression, LAD = least-absolute-deviations regres-
sion and KS = S-estimator proposed by Koller and Stahel.

Method of Estimation RMSE

Huber 20.44772
LTS 40.45228
LAD 20.49332
KS 20.43824

Table 4. Estimations of the regression coefficients using the KS estimator.

Parameter Value Std.Error t Value p-Value

Intercept −45.76676 3.61698 −12.653 <2 × 10−16

SHIFTMorning 10.16746 1.09684 9.270 <2 × 10−16

TEACHINGe-learning 0.64087 1.58107 0.405 0.685
TEACHINGIn-person 18.69717 1.66811 11.209 <2 × 10−16

WEIGHT 0.70788 0.06454 10.968 < 2 × 10−16

CONTINUOUS 0.69939 0.01883 37.143 <2 × 10−16

Since the reference level for TEACHING is blended learning, the fitted regression within
this group is

EXAM = −45.76676 + 10.16746 · SHIFT + 0.70788 ·WEIGHT + 0.69939 · CONTINUOUS, (9)

where SHIFT takes on the value 0 for the afternoon shift and 1 for courses in the morn-
ing shift.

When the course is taught online, there is no significant change in the model
(p-value = 0.685) and the regression model when the course is taught face to face is

EXAM = −27.06959 + 10.16746 · SHIFT + 0.70788 ·WEIGHT + 0.69939 · CONTINUOUS. (10)

From these regression models, we can deduce that when the teaching is not in-person,
students score lower in the final exam and, as was expected, students on the morning shift
score higher than students on the afternoon shift.
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The variable with the highest weight in the explanation of the mark obtained in the
final exam (Table 5) is the score in the continuous evaluation followed by whether the type
of teaching is “In-Person” and the shift. The percentage of the continuous evaluation in the
assessment of the subject (WEIGHT) is the predictor with the lowest impact on the result of
the final exam.

Table 5. Standardized coefficient estimated by the S-estimator proposed by Koller and Stahel.

Intercept SHIFT TEACHING
e-Learning

TEACHINGIn-
Person WEIGHT CONTINUOUS

−0.5254 0.3435 0.0217 0.6318 0.2550 0.6682

The robust residual standard error of the models in Equations (9) and (10) is 20.13 that,
together with the RMSE obtained when validating the model in the test data set (20.44),
indicates that the regression model fails at predicting accurately the mark in the final exam
(which takes on values between 0 and 100). Thus, we tried quantile regression in an attempt
to obtain better predictions of the mark in the final exam by predicting its median instead
its mean as well as predictions for the lower and higher estimated marks.

The values of the goodness of fit measurement proposed by Koenker and Machado are
shown in Table 6, suggesting that neither quantile regression model explains appropriately
the scores in the final exam, especially for quantiles under the median.

Table 6. Goodness of fit of quantile regression for determined percentiles.

P10 P20 P25 P50 P75 P80 P90

0.0002697 0.1134626 0.1761121 0.3841547 0.3940505 0.3801269 0.3402591

The values of the coefficients, their standard error and p-values of the fitted models
for the lower and upper quantiles (P25 and P75), the median (P50) and the 80th and 90th
percentiles are displayed in Table 7.

Table 7. Coefficients of the quantile regression for P25, P50, P75, P80 and P90.

Intercept SHIFT TEACHINGe-
Learning

TEACHINGIn-
Person WEIGHT CONTINUOUS

P25

Value −28.15909 8.45455 −0.81818 9.18182 0.34136 0.45455
Std.Error 3.52704 0.78454 0.85138 1.44456 0.06642 0.02121
p-value <0.001 <0.001 0.33669 <0.001 <0.001 <0.001

P50

Value −37.01504 8.31228 −1.81706 13.00710 0.57015 0.72903
Std.Error 4.30834 0.98214 1.29218 1.64289 0.07828 0.02158
p-value <0.001 <0.001 0.15985 <0.001 <0.001 <0.001

P75

Value −40.59302 4.07737 1.84492 18.05048 0.75142 0.90754
Std.Error 2.98465 0.86038 1.59524 1.27903 0.05460 0.01913
p-value <0.001 <0.001 0.24763 <0.001 <0.001 <0.001

P80

Value −38.15904 4.24812 1.42903 16.12104 0.73460 0.95913
Std.Error 5.38077 1.58888 2.17907 2.08862 0.10189 0.02961
p-value <0.001 0.00757 0.51204 <0.001 <0.001 <0.001

P90

Value −39.51856 7.91199 14.70176 28.41365 0.79037 0.92436
Std.Error 7.51783 1.97941 2.27543 2.81211 0.14375 0.03541
p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

The linear models to estimate the different percentiles for the mark in the exam of
courses taught in-person are:
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P25 = −18.97727 + 8.45455 · SHIFT + 0.34136 ·WEIGHT + 0.45455 · CONTINUOUS (11)

P50 = −24.00794 + 8.31228 · SHIFT + 0.57015 ·WEIGHT + 0.72903 · CONTINUOUS (12)

P75 = −22.54254 + 4.07737 · SHIFT + 0.75142 ·WEIGHT + 0.90754 · CONTINUOUS (13)

The linear models to estimate the different percentiles for the mark in the exam of
blended courses taught (there are no significant differences between the models of online
courses and blended courses except for the 90th percentile) are:

P25 = −28.15909 + 8.45455 · SHIFT + 0.34136 ·WEIGHT + 0.45455 · CONTINUOUS (14)

P50 = −37.01504 + 8.31228 · SHIFT + 0.57015 ·WEIGHT + 0.72903 · CONTINUOUS (15)

P75 = −40.59302 + 4.07737 · SHIFT + 0.75142 ·WEIGHT + 0.90754 · CONTINUOUS (16)

where SHIFT takes on the value 0 for the afternoon shift and 1 for courses in the morn-
ing shift.

Notice that the magnitude of the coefficients of variables WEIGHT and CONTINUOUS
increases along with the percentile, whereas the higher the percentile is the lower the
coefficient of SHIFT.

However, the RMSE for these models (Table 8) remains very large considering that
the fitted models offer accurate predictions, particularly if we are interested in predicting
low or high percentiles. This result is in line with the analysis made by Gonzalez et al. [25]
in which no significant relation between the scores in CA and the final exam was found
in the tails of the distribution. Neither does the estimate of the median by the quantile
regression improve the accuracy of the estimation of the mean by the robust regression
used in Equations (9) and (10).

Table 8. Root mean square error (RMSE) of quantile regression models for P25, P50, P75, P80 and P90.

P25 P50 P75 P80 P90

26.09989 20.49223 24.42311 26.12923 34.35438

Finally, we used MLPs for regression. More precisely, we trained nine MLPs with one
hidden layer varying the number of nodes in the layer from 1 up to 21 and 527 MLPs with
two hidden layers; the activation function used in all of them was the identity. The RMSE
barely changes among all the MLPs achieving the minimum value (0.4082447) for the MLP
with two neurons in the first hidden layer and 10 neurons in the second one. As the target
variable EXAM was scaled to the interval [−1, 1], the RMSE obtained is the worst among
the three methods of regression used in this study. When we used ReLU or Softplus as an
activation function, the procedure did not converge.

Thus, the results indicate that it is not possible to predict in an accurate way the mark
in the final exam from the explanatory variables selected in this study.

Our next attempt is to transform the regression problem into a classification problem.

3.2. Classification Results

In the fist attempt, we address a multiclass classification problem where the target
variable is categorized into four classes (Fail, PassingGrade, GradeB and GradeA).

Table 9 displays the values of the performance measures obtained with the one hidden
layer MLPs trained. MLPs with two hidden layers do not usually converge when six or
more neurons are used in one of the layers while for structures with a low number of
neurons the MLP is not able to classify classes either GradeB or GradeA. The low values
of MCC, J and K indicate very poor performance of the classifier. The measure Accuracy
reaches an acceptable value, but it is misleading because, as it is shown in the confusion
matrix in Table 10, the MLP only predicts correctly the class Fail.
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Table 9. Performance 1 of MLP with one hidden layer.

Neurons Accuracy GM MCC J K

4 0.7423581 0.3767619 0.1912527 0.1126921 0.2307464
5 0.7379913 0.4528189 0.2253644 0.16143641 0.2574133
6 0.7336245 0.3500356 0.1491623 0.08828901 0.2047303
7 0.7423581 0.3556055 0.1814024 0.10156554 0.2145427
8 0.7365357 0.3506387 0.1600189 0.09149303 0.2081272
9 0.7481805 0.4758372 0.2611203 0.18915434 0.2929113

10 0.7190684 0.4247192 0.1597665 0.12140248 0.2293730
15 0.7350801 0.4675948 0.2243916 0.1694903 0.275774

1 GM = Geometric, MCC = Matthew’s correlation coefficient, J = Youden’s Index and K = Coeh’s Kappa Score.

Table 10. Confusion matrix obtained from the one-hidden layer MLP with 9 neurons.

Predicted
Fail PassingGrade GradeB GradeA

Observed

Fail 472 27 3 2
PassingGrade 75 25 4 2
GradeB 37 13 6 6
GradeA 6 6 1 2

To compare the performance of the MLP with the BNs at classifying the exam mark,
we trained a Naive Bayes structure and a BN with a structure determined using the HC
algorithm. Tables 11 and 12 display the performance values and the confusion matrix,
respectively, for the Naive Bayes model. The BN trained with the HC method was not able
to predict any category but Fail.

Table 11. Performance 1 of the Naive Bayes classifier.

Accuracy GM MCC J K

0.7263464 0.3564184 0.1386113 0.08551829 0.1859933
1 GM = Geometric, MCC = Matthew’s correlation coefficient, J = Youden’s Index and K = Coeh’s Kappa Score.

Table 12. Confusion matrix obtained from the Naive Bayes classifier.

Predicted
Fail PassingGrade GradeB GradeA

Observed

Fail 477 19 1 7
PassingGrade 83 18 2 3
GradeB 38 14 3 7
GradeA 11 3 0 1

The performance of the Naive Bayes classifier is even worse than the MLP when
predicting PassingGrade, GradeB and GradeA categories.

In the last attempt to improve the prediction of the students’ performance in the final
exam, we ask if, at least, the fact of failing or passing the exam can be predicted from the
continuous evaluation and the other variables considered. We have trained MLPs with one
hidden layer and the logistic activation function, modifying the number of neurons in the
hidden layer from 3 up to 14. Additionally, we trained a Naive Bayes classifier as well as a
BN learned by the HC algorithm. Finally, we also tried logistic regression. Tables 13 and 14
show the measures of performance and the confusion matrix of the three classifiers: the
MLP with six neurons in the hidden layer (best performance achieved among the MLPs
trained), the NB model and the results from the logistic regression. The BN learned by the
HC algorithm was not able to predict the Pass category. In this case, the MLP accomplishes
almost acceptable results and shows more superior behavior than the NB and the logistic
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regression. Logistic regression classifies better the Fail category but does not succeed in
predicting the Pass category. NB has a similar performance to the MLP when predicting the
fails but, as the logistic regression does, is unsuccessful with the students passing the exam.

Table 13. Assessment 1 of the classifiers MLP, NB and logistic regression.

Accuracy GM MCC J K

MLP 0.8195051 0.7660164 0.5414379 0.5451470 0.5413786
NB 0.7787482 0.6759694 0.4128719 0.3956219 0.4113708
Log.Reg. 0.7947598 0.6390402 0.4252452 0.365242 0.4102143

1 GM = Geometric, MCC = Matthew’s correlation coefficient, J = Youden’s Index and K = Coeh’s Kappa Score.

Table 14. Confusion matrices obtained from the classifiers MLP, NB and logistic regression.

MLP NB Log.Reg.

Predicted Predicted Predicted
Fail Pass Fail Pass Fail Pass

Observed Fail 437 67 Observed Fail 439 65 Observed Fail 465 39
Pass 70 113 Pass 87 96 Pass 102 81

To finish the study, we have added the degree to which the student is enrolled as an
explanatory variable.

3.3. Improvement in the Accuracy When the Degree is Added to the Previous Models

When the degree is introduced as a predictor in the linear models, the variable WEIGHT
cannot be included for Industrial Engineering (whose value is 30% in all the cases), Labor
Relations (50%) and Physical Activity and Sport Science (50%) as well as variable TEACHING
neither can be included for Industrial Engineering (only in-person) nor Physical Activity
and Sport Science (only e-learning). Only Economy and Mathematics have the three types
of teaching, the rest (I.T, Labor Relations and Public Management) have been only taught by
e-learning and in-person, taking as reference the e-learning group.

Table 15 shows the RSME of the different linear models depending on the estimator
used to compute the coefficients of the linear model. Now, the robust estimators of the
coefficients that minimize the RMSE depend on the degree program considered. If we
compare the RMSE of the best choice with the results in Table 3 we can notice that the
change in RMSE depends strongly on the degree: whereas in Economy the RMSE decreases
about 20%, in others as I.T. or Mathematics it barely changes. In any case, the RMSEs
remain high enough to consider the predictions reliable.

Table 15. Comparison of the RMSE obtained by the different methods of estimation in each degree:
Huber = Huber’s M-estimator, LTS = least trimmed squares robust regression, LAD = least-absolute-
deviations regression and KS = S-estimator proposed by Koller and Stahel.

Method of Estimation
Degree Huber LTS KS LAD

Economy 16.25501 31.41839 16.23750 16.54850
I.T. 22.30481 31.54442 22.30931 23.04748
INDUS 14.81322 20.37739 14.76142 14.50819
Mathematics 19.65349 42.74780 19.70359 20.22910
Public Management 18.23688 28.85815 17.99737 31.80174
Labour Relations 12.72984 33.55746 12.47861
Sports 19.07092 18.70723 19.07724 21.53974

In Table 16, we can observe how the mark obtained in the CA contributes in a positive
and significant way, no matter the degree. However, the weight of the CA in the assessment
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of the course has a negative effect on the degrees of Economy and Mathematics, being
positive in the rest of the degrees. Moreover, it is remarkable that Mathematics is the
only degree for which in-person teaching has a negative effect on the performance of the
students in the final exam. This could be due to the sharpest peak in performance during
the COVID pandemic in comparison with the rest of the degrees.

Table 16. Coefficients of the regression model fitted for each degree. Inside the parenthesis not
significant coefficients.

Degree Intercept Teaching Teaching Weight Continuouse-Learning In-Person

Economy 13.70546 −3.89268 (1.36264) −0.40290 0.64196
I.T. −33.2755 - 19.2129 0.7942 0.5798
INDUS (0) - - - 0.40710
Mathematics 272.1077 15.9608 −49.8121 −5.7813 1.0668
Public Management −70.39375 - 20.32998 1.04353 0.88170
Labour Relations −8.99644 - 5.04751 1.04353 0.89074
Sports (−1.9231) - - - 1.1134

Regarding the multiclass classification task, Table 17 displays the performance mea-
sures of the MLP with eight neurons in the hidden layer (structure with the best perfor-
mance among the twelve one-hidden-layer MLPs trained) and the NB classifier (BN learned
with the HC method keeps on being unable to classify classes different from Fail. There
is a noticeable improvement in the performance of both classifiers, especially in the MLP,
although the assessment measures are still low.

Table 17. Assessment 1 of the multiclass classifiers MLP and NB when degree is entered in the model.

Accuracy GM MCC J K

MLP 0.7583697 0.6247160 0.3795430 0.3470143 0.4080537
NB 0.7292576 0.3983517 0.1689443 0.1145226 0.23902

1 GM = Geometric, MCC = Matthew’s correlation coefficient, J = Youden’s Index and K = Coeh’s Kappa Score.

If we reduce the problem to determine whether a student will pass or fail the final
exam, Table 18 shows the performance of the three classifiers and the logistic regression.
In this case, the BN learned with the HC algorithm is able to predict the passing students
although its performance is poor. The results show how the MLP and the logistic regression
improve their accuracy while the NB loses precision as a classifier.

Table 18. Assessment 1 of the classifiers MLP, NB and logistic regression when degree is entered in
the model.

Accuracy GM MCC J K

MLP 0.8529840 0.7737900 0.6077984 0.5733802 0.6038537
NB 0.7947598 0.6223217 0.4193111 0.3478402 0.39845
HC 0.7554585 0.3443093 0.2337671 0.1063297 0.14525
Log.Reg. 0.8107715 0.7120422 0.4926073 0.4636352 0.4891726

1 GM = Geometric, MCC = Matthew’s correlation coefficient, J = Youden’s Index and K = Coeh’s Kappa Score.

4. Discussion

From the results detailed in Section 3, the prediction of the student performance in the
final exam of a course is a difficult task. The variables used to explain the score in the final
exam: shift, type of teaching, the weight of the continuous evaluation in the assessment of
the subject and the performance of the students in the continuous evaluation, turn out to
be insufficient to explain the score obtained in the final exam. The first issue that we face
when trying to fit a linear model to the data is the difference in variability. This problem
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remains even when one regression model is fitted for each degree. The measures of error
(Robust Residual Standard Error and RMSE) indicate that the regression model has no
acceptable predictability, so there must be important variables in explaining the efficiency
of the students when taking the final exam, that this study has not taken into account. These
results are in agreement with the conclusions obtained in the studies of Bjælde et al. [23]
and Day et al. [6]. However, the regression model shows that the student achievements in
the continuous assessment play an important role in the final exam mark. Actually, it is
the explanatory variable with the highest weight in the prediction of the final exam score
followed by the fact of teaching the course face to face. This result agrees with findings
in [25], Gidado [47], Onihunwa et al. [48] or Santos et al. [49]. Actually, every course at the
University of Almeía has a mandatory CA in its assessment procedure which implies that
the positive effect of the CA remains even when the rest of the courses taken by students
have CA, as opposed to what Perez-Martínez et al. [50] infer from their studies.

From the regression models, we can also deduce that when the teaching is not in-
person, students score lower in the final exam. This conclusion is opposed to the find-
ings in the literature about the better performance of students during the COVID-19
outbreak [51–53]. A possible explanation for this different behavior could be that during
the COVID-19 lockdown, the University of Almería fixed a mandatory 50% of CA in all the
courses; the marks in the CA part are significantly higher in e-learning teaching (50.51%
for e-learning against 36.5% got in in-person taught courses) lowering the motivation for
exam preparation in some students as have been reported in [10,14,23]. This rise in online
CA was also reported by De Santos Berbel et al. [54] but the authors also found a growth
in the dropout rate, which could have a negative effect on the variable Exam because the
student’s withdrawal is recorded in this variable with zero. Another possible explanation
could be that there is more room for cheating in online CA: instructors could have made a
bigger effort to avoid cheating in the online final exam by, for example, increasing the bank
of questions or setting a tight completion time whereas in blended teaching the final exam
is face to face. This could cause a larger gap between the marks obtained in the continuous
assessment and in the final exam.

Neither quantile regression offers an accurate forecast of the final exam outcomes. The
low values of the Koenker and Machado R index, especially in low percentiles, denote that
the quantile model also fails in explaining the variability in the response variable. The
RMSE of the forecast of the percentiles are high, particularly when fitting high percentiles
in line with what was stated by Gonzalez et al. [25].

The use of ANNs to predict the mark in the final exam yields the worst result in
comparison with the linear model and the quantile regression, almost doubling the RMSE
of the estimations.

Splitting the grades in the final exam into four intervals to use classification procedures
in an attempt to make predictions about the results of the exam neither improves the
outcomes. The MLP with one hidden layer outperforms the NB increasing by more than
50% the assessment measures MCC and K and doubling the Youden’s index. Accuracy
measure is similar in both methods because NB is able to properly predict the Fail category
(more than 94.6% of agreements) but fails for higher categories, likely due to the limited
number of cases in the dataset.

If the problem is reduced to just predicting whether a student will pass or fail the final
exam, we obtain more accurate results, particularly by using the MLP, which outperforms
both, NB and logistic regression, being able to rightly predict 61.7% of the students passing
the exam (against the 52.5% of the NB and the 44.3% of the logistic regression). The three
methods are accurate when predicting the failures: MLP predicts this class 86.7% of the
time, NB 87.1% of the time and logistic regression 92.3%.

The inclusion of the degree read by the student barely improves the accuracy of
the methods studied, which is in line with Pérez Martínez et al. [50] who suggest the
improvement in the student’s performance does not depend on the degree.
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5. Conclusions

Continuous evaluation has been adopted by most of the courses taught in Spanish
universities due to, either academic decisions or because colleges or accreditation agencies
make a percentage of CA in the assessment of the courses mandatory. There is no doubt
about the benefits of including a CA in a course playing both roles: as summative and
formative assessment, mainly when the continuous evaluation offers feedback to the
students and they take advantage of that feedback. However, what is less clear is the
magnitude of this positive effect on the learning of the students as well as on their results in
the final exam of the course in that case. Furthermore, there is no evidence about whether
the benefits of the CA outweigh the increase in the workload of students and teachers.

There is a number of papers in the literature studying the relationship between the
continuous assessment and the final exam mark [21,23–25,47–49], but the statistical proce-
dures used are traditional: descriptive Statistics, T tests, Pearson’s correlation test, ANOVA
or linear regression. In this study, we have tried to find statistical evidence about whether
the effect of the CA is a determinant in students’ performance on the final exam by using
and comparing state-of-the-art methods as it is suggested by [55]. Although it has been
shown that CA has actually an effect on the final exam score, this effect is not decisive to
predict how a student will perform in the final exam.

The results obtained seem to encourage the instructors to move CA activities closer
to the final exam requirements. Given that the weight of the CA in the assessment of the
course has a positive effect on the fitted regression model, the increase in this percentage
could enhance students’ performance in the final exam. Moreover, the type of CA used in
the course could be a variable to take into account when it comes to improving the students’
learning, despite there is no agreement in the literature about this point: Day et al. [6]
found no differences in the students’ scores on courses with different assessment types
while Deeley et al. [18] assert that diverse assessment with a more flexible approach and
assessment method that let the students be actively involved in making choices about their
assessment would increase students’ motivation. The large differences in the regression
models fitted for each degree suggest that the design of the assessment must be customized
to match the student’s characteristics.
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