

Aalborg Universitet

Glasses across chemistries and length scales

Invited Talk

Smedskjær, Morten Mattrup

Creative Commons License Unspecified

Publication date: 2023

Document Version Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

Smedskjær, M. M. (2023). Glasses across chemistries and length scales: Invited Talk. Abstract from 18th Aarhus Winter Meeting, Aarhus, Denmark.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Glasses across chemistries and length scales

Morten M. Smedskjær, Department of Chemistry and Bioscience, Aalborg University

Glasses are non-equilibrium materials that exhibit a glass transition and have a non-crystalline structure. Glass materials can therefore be found across a variety of chemical compositions, from oxides to metal-organic frameworks. They feature heterogeneity and exhibit varying degree of structural disorder on different length scales, which has profound consequences for their properties. In this talk, I will discuss how we attempt to decipher their structure-property relations using topological data analysis, constraint theory and machine learning methods. I will then highlight how this knowledge can be used to design more fracture-resistant glasses.