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COMMENT

Comment on ’Fault tolerance analysis for stochastic systems using switching

diffusion processes’ by Yang, Jiang and Cocquempot

Henrik Schioler and John J. Leth
Institute for Electronic Systems, Aalborg University, Aalborg, Denmark

(Received 00 Month 200x; final version received 00 Month 200x)

Results are given in Yang et al. (2009) regarding the overall stability of switched diffusion processes based on
stability properties of separate processes combined through stochastic switching. This paper argues two main
results to be empty, in that the presented hypotheses are logically inconsistent.
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In Yang et al. (2009) stability results are presented for so called switching diffusion processes as
indicated by the title. Such systems evolve in a hybrid state space, i.e. including both continuous
and discrete state variable components. In each discrete state δ evolution of the continuous state
x ∈ Rn is governed by a diffusion process, i.e.

dx = f(x, u) + g(x, u)dW (1)

where W is a Brownian motion, u ∈ Rm is a control and f and g are appropriate mappings
satisfying suitable smoothness conditions to ensure unique solutions to (1).
Evolution of the discrete state δ ∈ M is governed by a continuous time Markov chain with
an infinitesimal generator matrix Γ = {ρij , i, j ∈ M} modelling stochastic transition between
nominal and various faulty states.
The concept of input-to-state stability (ISS) is used in the presented analysis, where a stochastic
system is said to be ISS iff

E[α(|x(t)|)] ≤ β(|x(0)|, t) + γ(||u||[0,t)) ∀t ≥ 0 (2)

where α, γ : [0,∞)→ [0,∞) are strictly increasing and continuous. In Yang et al. (2009) stochas-
tic Lyapunov analysis is applied along with the infinitesimal generator L, i.e. for the process (1)

LV (y) = lim
h→0

E[V (x(t+ h))|x(t) = y] (3)

yielding the following sufficient stochastic ISS criterion

LV (x(t)) ≤ −α3V (x(t)) + γ1(|u|) (4)

for α3 > 0. Combining a finite number of diffusion processes through Markovian switching
naturally poses the question about overall stability. In Yang et al. (2009) three different situations
are analyzed: all separate processes fulfil (4), only some do and lastly all processes fulfil (4). Our
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comment pertains primarily to results given for the first and last cases.
We repeat the main result for the first case given in Theorem 2 of Yang et al. (2009)

Theorem 0.7 : Let λ̄ = maxi ρii, λ̃ = maxij ρij and µ > 1 If

LVq(x(t)) ≤ −λ0Vq(x(t)) + γ1(|u|) ∀q ∈M (5)

Vq(x) ≤ µVp(x) ∀p, q ∈M (6)

and

µ <
λ̃

λ̄
(7)

Then the overall system is ISS

We do not argue the proof of the theorem, however we claim the theorem to be empty, since
the hypothesis can never be fulfilled. From the definitions of λ̃ and λ̄ as well as the structure of
the generator matrix Γ we get (since all ρii ≤ 0))

λ̄ = maxi|ρii| = maxi(sumj 6=i(ρij))

≥ maxi(maxj 6=i(ρij)) = maxi,j 6=i(ρij)

= maxi,j(ρij) = λ̃

which together with (7) yields µ < 1.
We cannot disprove the theorem nor can we give counter examples, since no examples would
fulfil the hypothesis. However in the accompagning interpretation in Yang et al. (2009) it is
stated: Roughly speaking, if each mode is ISS, and the fault occurrence transition rate maxij ρij
is large enough, then the ISS of the stochastic system is guaranteed.
We find this statement highly counter intuitive, since stability arguments for switched systems
under (5) and (11) would rely on long dwell times of separate systems to ensure sufficient decay
of individual Lyapunov functions in between shifts.
Turning to the last situation, where no separate systems are assumed ISS, condition (5) is in
Theorem 5 in Yang et al. (2009) replaced by

LVq(x(t)) ≤ λ1Vq(x(t)) + γ1(|u|) (8)

where λ1 > 0 and (7) by

µ <
λ̃− λ1

λ̄
(9)

which is equally inconsistent since λ1 > 0.
Like in the former case the theorem cannot be disproved. However in the accompagning inter-
pretation it is stated: Theorem 5 shows that if the fault occurrence transition rate maxij ρij is
larger than that of any previous cases (all ISS modes, partial ISS modes) and the ISS of SDP
is achieved without any ISS mode. This result implies that, under the condition (9), we do not
need to design the stabilising controller even if the stochastic system is not stable separately in
the healthy and faulty situations.
This statement can be met by a simple counterexample, where two identical unstable systems
are combined by stochastic swiching. (In this case we may choose Vq = Vp, so u = 1 can be
used and there are only 2 states λ̃

λ̄
= 1, so we are as close as possible to fulfilling (7)). However

switching between identical unstable systems does not make the overall system stable. The above
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statement is not only counter intuitive and wrong, it is also potentially harmful, to the extent
that it may lead readers to refrain from safety related counter measures.

1 New result

Theorem 1.1 : If ∃L > 0 so that ∀x, where |x| ≥ L

LVq(x(t)) ≤ λqVq(x(t)) ∀q ∈M (10)

Vq(x) ≤ µVp(x) ∀p, q ∈M (11)

(11)

Then

Proof: Let the sequence {tj} be the transition instants of the switching process σ, such that
σ(t) = qi for t ∈ [ti, ti+1) Define the process U by

d

dt
U(t) = λqi

U(t) (12)

for all t ∈ [ti, ti+1) and

U(ti+1) = µU(t−i+1) (13)

and finally

U(0) = E[Vσ(0)(x(0))] (14)

then

E[Vσ(t)(x(t))] ≤ U(t) (15)

Proof:
First consider the case conditioned a fixed realization σ̄ of the switching process. Assume
E[Vqi

(x(ti))] ≤ U(ti). Then from (10) and (12) E[Vqi
(x(t))] ≤ U(t) for all t ∈ [ti, ti+1).

Since x and V are continuous Vqi+1(x(ti+1)) ≤ µVqi
(x(ti+1)) = µVqi

(x(t−i+1)). Thus
E[Vqi+1(x(ti+1))] ≤ µE[Vqi

(x(t−i+1))] ≤ µU(t−i+1) = U(ti+1). Thus (15) is proved for all
conditions σ̄ and in turn unconditionally.

From (15) we have immediately

E[Vσ(t)(x(t))] ≤ E[U(t)] (16)

Define the processes γq by γq(t) = Iσt=qU(t) and rewrite (12)

d

dt
U(t) =

∑
q

λqIσt=qU(t) =
∑
q

λqγq(t) (17)
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thus

γl(t+ h) = Iσt+h=l[h
∑
j

λjIσt=j + µ
∑
j 6=l

Iσt=j + Iσt=l]U(t) (18)

taking expected values gives

E[γl(t+ h)] = h
∑
j

λjE[Iσt+h=lIσt=jU(t)] + µ
∑
j 6=l

E[Iσt+h=lIσt=jU(t)] + E[Iσt+h=lIσt=lU(t)]

= h(h
∑
j 6=l

λjρjlE[Iσt=jU(t)] + λl(1− h
∑
j 6=l

ρlj)E[Iσt=lU(t)])

+ hµ
∑
j 6=l

ρjlE[Iσt=jU(t)] + (1− h
∑
j 6=l

ρlj)E[Iσt=lU(t)]

≈ hλlE[Iσt=lU(t)] + hµ
∑
j 6=l

ρjlE[Iσt=jU(t)] + (1− h
∑
j 6=l

ρlj)E[Iσt=lU(t)]

so subtracting E[Iσt=lU(t)] and taking limits for h→ 0 gives

d

dt
E[γl(t)] = λlE[γl(t)] + µ

∑
j 6=l

ρjlE[γj(t)]− E[γl(t)]
∑
j 6=l

ρlj

in general for ε > 0 we may write

γεl (t+ h) = (Iσt+h=l[h
∑
j

λjIσt=j + µ
∑
j 6=l

Iσt=j + Iσt=l]U(t))ε

= (Iσt+h=l[h(
∑
j 6=l

λjIσt=j + λlIσt=l) + µ
∑
j 6=l

Iσt=j + Iσt=l]U(t))ε

= (Iσt+h=l[
∑
j 6=l

(hλj + µ)Iσt=j + (hλl + 1)Iσt=l]U(t))ε

= Iσt+h=l[
∑
j 6=l

(hλj + µ)εIσt=j + (hλl + 1)εIσt=l]U
ε(t)

≈ Iσt+h=l[
∑
j 6=l

(µε + hεµε−1λj)Iσt=j + (1 + hελl)Iσt=l]U
ε(t)

(19)

taking expectations, subtracting E[γl(t)ε] and taking limits for h→ 0 gives

d

dt
E[γl(t)ε] = µε

∑
j 6=l

ρjlE[γj(t)ε] + (ελl −
∑
j 6=l

ρlj)E[γl(t)ε]

or more compactly

d

dt
E[γl(t)ε] = µε

∑
j 6=l

ρjlE[γj(t)ε] + (ελl + ρll)E[γl(t)ε]

Leaving stability to the eigenvalues of the matrix ΛS(µ, λ1, .., λM , ε), where ΛSjl = µερjl for j 6= l
and ΛSll = ελl + ρll. Since ΛS(µ, λ1, .., λM , 0) = Λ, ΛS(µ, λ1, .., λM , 0) has (for an irreducible Λ)
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an eigenvalue in 0 of multiplicity 1, and all other eigenvalues in the left complex plane.
A sufficient criterion for the existence of an ε > 0 such that ΛS(µ, λ1, .., λM , ε) is stable is that
the root locus of ΛS for positive epsilon takes the unique root in 0 to the left half plane. Let
D(s, ε) be the determinant of sI − ΛS then a first order approximation would give

D(s, ε) = D(0, 0) +
∂D

∂s
|0,0s+

∂D

∂ε
|0,0ε = 0

or

s = −[
∂D

∂s
|0,0]−1∂D

∂ε
|0,0ε

Thus a sufficient stability criterion is

∂D

∂s
|0,0

∂D

∂ε
|0,0 > 0 (20)

Now since

D(s, ε) =
M∑
i=0

di(ε)si

we get in (20)

d1(0)d′0(0) > 0 (21)

Now for the process U in (12)

U(t) = U(0) ∗ exp(
∫ t

0
λσ(t)dt) ∗ µN(t)

Taking logarithms

log(U(t)) = log(U(0)) +
∫ t

0
λσ(t)dt+ log(µ)N(t)

Now from ergodicity of Λ, w.P.1
∫ t

0 λσ(t)dt = t
∑M

i=1 πiλi+O(t) and N(t) = −t
∑M

i=1 πiρii+O(t).
Thus an exact criterion for allmost sure convergence of U to 0 is

M∑
i=1

πi(λi − log(u) ∗ ρii) < 0 (22)

It is readily shown that (20) conincides with (22) for M = 2. However for larger values (of M)
this question is still unanswered (to me).
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