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On the Rudin-Shapiro Transform

A. la Cour-Harbo 1

Aalborg University, Department of Control Engineering, Fredrik Bajers Vej 7C, 9220
Aalborg East, Denmark.

Abstract

The Rudin-Shapiro transform (RST) is a linear transform derived from the remarkable
Rudin-Shapiro polynomials discovered in 1951. The transform has the notable property of
forming a spread spectrum basis for RN , i.e. the basis vectors are sequences with a nearly
flat power spectrum. It is also orthogonal and Hadamard, and it can be made symmetric.
This presentation is partly a tutorial on the RST, partly some new results on the symmetric
RST that makes the transform interesting from an applicational point-of-view. In particular,
it is shown how to make a very simple O(N logN) implementation, which is quite similar
to the Haar wavelet packet transform.

Key words: Rudin-Shapiro polynomials, spread spectrum, Haar transform
PACS:

The Rudin-Shapiro transform was originally conceived as a series of coefficient se-
quences from a set of trigonometric polynomials discovered by Shapiro and Rudin
in the 1950’s. Since then the transform has come to exist in its own right. This
is because the transform has a series of nice properties among which the spread
spectrum property of the basis elements is the most noticeable one. The transform
proves useful for designing signals in low-cost hardware, not least due to the exis-
tence of a fast and numerically robust implementation.

The Rudin-Shapiro polynomials are categorized as flat polynomials. This refers
to the fact that the amplitude of the complex polynomials are, on the unit circle,
bounded by a constant times the energy of the polynomial. There exists many other
examples of flat polynomials besides the Rudin-Shapiro polynomials, and the his-
tory of the development in the field of flat polynomials is quite interesting. This is
in no small part due to the fact that a number of seemingly simple questions within
the field have remained unanswered for several decades.

1 This work is supported by the Danish Technical Science Foundation (STVF) Grant no.
9701481
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Flat polynomials are also interesting for applications. The author has demonstrated,
see la Cour-Harbo [23] that a spread spectrum transform has a role to play in the
attempt to increase the robustness of active sensors. In that context the aim of this
presentation is to show the mathematical background for properties exploited in
real applications.

The paper is divided into four parts (sections). Section 1 reviews some of the im-
portant definitions and notions in the field of flat polynomials. This is followed by a
short historical background listing some of the major contributions in this field. In
Section 2 the classical Rudin-Shapiro polynomials are presented along with some
previously known results on the crest factor and auto and cross correlation proper-
ties of RS polynomials.

A matrix formulation of the recursive construction of the RS polynomials leading
to a transform matrix is presented in Section 3. As the title suggests the author
has denoted this transform Rudin-Shapiro Transform for obvious reasons. The RST
has also been named PONS (Prometheus Orthonormal Set) by Byrnes, see for in-
stance [9].

Section 4 holds the main result. Here a matrix formulation of the recursive con-
struction of the symmetric RST is given in Definition 9, followed by Theorem 10,
which shows that this construction yields a symmetric transform with all the de-
sired properties inherited from the non-symmetric transform. The definition of the
symmetric RST also contains a factorization of the transform matrix, which enables
an O(N logN) implementation of the matrix multiplication. This is presented and
discussed in Section 4.2 and 4.3.

Finally, three conjectures on RS polynomials that the author has been unable to
prove are stated in Section 4.4.

1 SEARCH FOR FLAT POLYNOMIALS

The construction of flat polynomials dates back to the beginning of 20th century.
Of course, at that time the purpose was not to design signals for use in digital
transmission systems. The incitement then was rather a mathematical interest in
certain ‘nice’ trigonometric series. One of the early examples of flat polynomials is
a discovery by in 1916 by Hardy and Littlewood [19]. They investigated the series

∞∑
n=1

eikn logn einξ

n1/2+α
, k, α �= 0. (1)

as part of a study of so-called elliptic Theta-functions. When α = −1/2 the par-
tial sum |sN(ξ)| is uniformly bounded by C

√
N on [0; 2π] with C depending only

on k (Zygmund [40]). This makes the polynomial flat in some sense because there
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Fig. 1. The polynomial (1) with α = −1/2 and k = 1, here shown with the first 1000 terms
of the sum. The coefficient set is normalized to have �2 norm 1.

is a limit to how concentrated the energy can be in the Fourier domain. No ex-
plicit bound is given by Zygmund, but a few numerical experiments reveals that
C > 3

√
2π for k = 1. This is somewhat high compared to limits for other series

discovered since then. The polynomial is shown in Fig. 1, which incidentally it be-
low 3. This is due to the resolution of the calculations and the graph. Zooming in
on the third top reveals that it, with sufficiently many terms of the sum, does reach
above 3.

The interest in flat polynomials still exists today, though the interest is now in gen-
eral fuelled by the need for pseudo random sequences suitable for application in
fields such as transmission and encryption. Therefore it is research in information
theory rather than pure mathematics that produces new results in the field of flat
polynomials, and many interesting results have indeed emerged. This is not to say
that recent mathematical results do not exist. For instance, in the field of wavelets,
a construction of Coifman et al. [13] called Noiselets is based on the idea of gener-
ating sequences, which are uncompressible by a Haar-Walsh wavelet packet trans-
form, i.e. the transform coefficients exhibits no decay. The result is sequences of
±1 and ±i that have the same type of flatness as Rudin-Shapiro sequences (see
later).

This presentation of the RST is also of mathematical nature. For applications of the
RST, see for instance Byrnes et al. [11,10], Byrnes [9], Tseng [39], Nazarahty et
al. [28], la Cour-Harbo [23].

1.1 Notation

Before venturing into a search for flat polynomials it is convenient to fix the nota-
tion. First unimodular sequences are defined. They will become the coefficients in
the flat polynomials.
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Definition 1 (Unimodular sequences) Define the sets of unimodular sequences
as

S p
N =

{
β ∈ C

N
∣∣∣ βk ∈ {ei2πm/p}m=0,...,p−1

}
, p = 2, 3, . . . ,

which means the set of N dimensional vectors with entries in a set of equidistantly
sampled points on the unit circle in C. Define also the natural extension

S ∞
N =

{
β ∈ C

N
∣∣∣ βk ∈ {ei2παk}αk∈[0;1)

}

for p = ∞.

The polynomials are defined on the unit circle in the complex plane, and takes co-
efficients from the set of unimodular sequences. Note how the defined polynomials
are the Fourier transform of the unimodular sequences, and thus that the �2 norm of
such a sequence equals the length of the sequence.

Definition 2 (Trigonometric Polynomials) Define the sets of complex trigono-
metric polynomials

H p
N =

{
fN : R �→ C

∣∣∣∣∣ fN (ξ) =
N−1∑
k=0

βke
i2πkξ

}
, β ∈ S p

N , ξ ∈ [0; 1)

for p = 2, 3, . . . ,∞. Define also

H p =
∞⋃
n=1

H p
n.

Note that in most literature, see for instance Littlewood [26], only the two sets H 2

and H ∞ are mentioned, and they are typically referred to as F and G .

It is also interesting to note that the set H 2 differs from the rest in being the only
one with exclusively real coefficients (±1’s). This makes it by far the most inter-
esting set from an applicational point of view. The Rudin-Shapiro polynomials are
examples of H 2 functions.

Finally, one should note that it is only a matter of taste whether the lower and upper
bound on the sum should be 0 and N − 1, respectively, 0 and N , or 1 and N . There
seems to be no preference in the existing literature, and here the bounds are chosen
to correspond with the general notion that, as default, the first index in a vector
is 0, and that the dimension of the sequence spaces (to which β belongs) should
correspond to the ‘dimension’ of the function spaces H p.
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1.2 Flatness of Polynomials

It is surprising that the set H p, which is simply a collection of Fourier transformed
sequences taken from the unit circle, has been subject to extensive investigations
throughout the past 50 years, and that some seemingly simple questions are rather
difficult to answer. The Fourier transform is arguable the best understood and most
popular tool in harmonic analysis, and thus one is inclined to believe that a set such
as H p would be well-described by now.

The search for flat polynomials is basically a search for an answer to the question:
How close can a function fN ∈ H p come to satisfying |fN | =

√
N for arbitrarily

large N? The question is quite intriguing because on the one hand the equality is
never reached for finite N . This can be seen in the following way. Let fN ∈ H p

N ,
p ≥ 2. Since ‖fN‖2 = ‖c‖2 =

√
N , c being the Fourier coefficients of fN , and

since ‖fN‖2 ≤ ‖fN‖∞ on the unit interval, we have that ‖fN‖∞ ≥ √
N . Assuming

now that |fN(ξ)| =
√
N then, for |βk| = 1,

N = |fN(ξ)|2 =
∣∣∣∣
N−1∑
m=0

βme
i2πmξ

∣∣∣∣2 =
N−1∑

m=−N+1

(β ∗ β)meimξ

⇒ (β ∗ β)m = δ[m] ⇒ β0βN−1 = 0,

which is a contradiction. On the other hand, the Rudin-Shapiro polynomials intro-
duced in Section 2 demonstrate that for H 2 (and indeed for H 2p and H ∞) there
is a uniform upper bound for the deviation of |fN | from

√
N . From (7) it is seen

that this bound is
√
2, since |Pn(ξ)| ≤

√
2
√
2n.

The question of how close a function fN ∈ H p can come to
√
N might also

involve a lower bound. Moreover, there may even exist polynomials such that
fN(ξ)/

√
N → 1 uniformly in ξ for N → ∞. The latter would certainly qual-

ify as a flat polynomial. In the course of this presentation it becomes necessary to
distinguish between four different types of flatness.

Definition 3 (Flat Polynomials) Define for a function fN ∈ H p the following
terms associated with the given inequalities.

Flatness Condition

Semi-flat |fN | ≤ B
√
N

Near-flat 0 < |fN | < B
√
N

Flat A
√
N ≤ |fN | ≤ B

√
N

Ultra-flat (1− |o(1)|)√N ≤ |fN | ≤ (1 + |o(1)|)√N

The constants A and B are independent of N and satisfy 0 < A ≤ B.

In many scenarios, particularly in real applications, this distinction is less important
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as even the semi-flat polynomials exhibits spread spectrum properties (at least for
reasonably small B). The discussion of the properties of the trigonometric polyno-
mials in H p in respect to different types of flatness is thus of a more academical
nature.

While the type of flatness is often of minor interest in real applications it is often
interesting to know the ratio between the sup norm and the L2 norm. This is know
as the crest factor, and can be computed for any sequences c ∈ CN . As shown
above this factor is always > 1 for finite sequences. To fix notation the following
definition is provided.

Definition 4 (The Crest Factor) For any sequence c ∈ CN define the polynomial

P (ξ) =
N−1∑
n=0

cne
i2πnξ, ξ ∈ [0; 1).

The crest factor C for any sequence c ∈ CN is defined as

C(c) ≡ ‖P‖∞
‖P‖2

=
‖P‖∞
‖c‖2

,

where the later equality follows from Parseval’s equation.

Since the crest factor quantifies the amplitude of the Fourier transform of c it is an
indicator for the ‘frequency flatness’ or ‘frequency spreading’ of the sequence c.
In some literature the crest factor is known as peak-to-mean ratio or peak-to-mean
power envelope ratio.

Before turning to the Rudin-Shapiro transform, the author would like to give a very
short historical presentation of the quest for flat polynomials.

1.3 Historical Background

Many people have contributed to the development of flat polynomials, and many
papers have been written on the subject. Some publications are hard to come by,
either because their date back many decades, or because they are local journals of
universities, academies, and the like. Consequently, this presentation is not exhaus-
tive and serves only as background information for interested readers. A summary
is found in Table 1. Thanks are due to the library at Department of Mathematics at
KTH, Stockholm, for assistance in locating some of the papers referred below.

The first clue to Rudin-Shapiro polynomials came in 1949 when Golay published
a paper entitled ‘Multislit spectrometry’ [16] introducing the notion of pairs of
complementary sequences. Although the definition from then does not immediately
reveal it, complementary sequences are coefficients in flat polynomials. The theory
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was further develop in 1951 [17] and 1962 [18]. Since then others have further
refined the theory to include whole classes of complementary sequences and to
include multiphase series instead of just ±1’s.

In the mean time, the same idea was discovered by mathematicians and formed a
independent line of investigation. Harold Shapiro had studied extremal problems
of trigonometric series in his Master’s thesis from 1951 [36], and from this derived
examples of complementary sequences (although he does not refer to them by this
name). On page 39 in the thesis the definition of Rudin-Shapiro polynomials is
given, and the crest factors

√
2 for length 2n and 2 + 2

√
2 for arbitrary length

are deduced. These results were rediscovered in 1959 by Rudin [33] who, with
the accept of Shapiro published the paper ‘Some theorems on Fourier coefficients’
which introduced the construction as it is shown in the next section.

In 1957 Paul Erdös presented at a symposium at Assumption University of Windsor
a list of 28 so far unsolved problems [14]. Number 22 reads: If fN ∈ H ∞, does
there exist a universal constant c > 0 such that ‖fN‖∞ > (1 + c)

√
N? This is

the opposite of conjecturing than there exists ultra-flat polynomials fN ∈ H ∞.
The existence of such polynomials was confirmed in 1980 by Kahane [21]. And in
1989 Fredman et al. [15] proved that ‖fN‖4 > 1.10481/4

√
N when β = β̄. Erdös

claimed that he had an unpublished proof that

∥∥∥∥
N∑
k=0

βk cos kθ

∥∥∥∥∞ > (1 + c)
√
N/2 ,

which is a variation on the theme. He did not reveal the value of the constant c,
though. He also mentioned, as problem number 26, one of the hardest questions to
settle, that is, the question of whether there exists a flat fN ∈ H 2.

While the engineers who took an interest in flat polynomials were looking for bi-
nary sequences with nice autocorrelation properties, the interest on the mathemati-
cians’ part was in peak values of polynomials defined with a set of restrictions.
These typically included unimodular coefficients (as defined above) and restriction
to the unit circle in C. Many other restrictions have been applied, probably due to
the difficulty in achieving any significant results.

In 1965 Newman [29] investigated the problem of creating a truly flat polynomial
in L1 norm. He presents a certain construction which yields flat polynomials in L1

as well as in L4. The same challenge was also taken up by Littlewood in 1962 [25],
though he attempted the construction in L2 norm. He showed that the function

N−1∑
m=0

exp
(1
2
m(m+ 1)θπi/N

)

tends to 1 uniformly for N → ∞ on N−1/2+δ ≤ |θ| ≤ π (but fails outside this
interval). Littlewood states explicitly that he has made extensive, although futile

8



attempts to modify the construction to achieve uniform convergence for all θ.

In 1980 Körner [22], using a construction by Byrnes [7], proved that there exists
flat polynomials fN ∈ H ∞. Soon after Kahane [21] significantly improved this by
disproving problem number 22 by Erdös and thus showing the existence of ultra-
flat polynomials. This is one of the major results in the field of flat polynomials.

The existence of ultra-flat polynomials with real, unimodular coefficients have been
very difficult to settle. A number of mathematicians have actually published works
proving as well as disproving the existence. The author has not been able to deter-
mine whether the question has indeed been settled definitively.

2 CLASSICAL RUDIN-SHAPIRO POLYNOMIALS

The first discovery of systematic construction of sequences that are somewhat flat
in the frequency domain was made by Golay in 1949 [16], as was stated in the pre-
vious section. He introduced the notion of complementary sequences. A pair of bi-
nary complementary sequences is defined as a pair of equally long, finite sequences
of +1’s and −1’s such that the sum of the aperiodic autocorrelation coefficients of
the two sequences is zero for all but the zero shift. Later he further developed the
theory of such pairs, see Golay [18], showing that one set of sequences could pro-
duce several others.

The idea of complementary sequences was discovered independently by Shapiro
in his 1951 Master’s thesis [36]. According to Shapiro, he ‘accidentally’ made the
discovery as he was working on extremal problems for polynomials. He thus had a
mathematical approach to the subject whereas Golay took a more engineering ap-
proach. The Shapiro result was rediscovered by Rudin and published in 1959 [33],
and is now known as the Rudin-Shapiro polynomials. The construction is recursive
and generates a pair of semi-flat polynomials, though with difference crest factor
for polynomial order equal to and different from a power of 2. Actually, the coeffi-
cients in these polynomials are the very same as the binary Golay complementary
sequences. This is easily verified once the Rudin-Shapiro polynomials have been
defined, see Section 2.2.

2.1 Rudin-Shapiro Polynomials

The Rudin-Shapiro polynomials are defined recursively as

Pn+1(ξ) = Pn(ξ) + ei2π2
nξQn(ξ), P0 = 1 , (2)

Qn+1(ξ) = Pn(ξ)− ei2π2
nξQn(ξ), Q0 = 1 , (3)

9



for ξ ∈ [0; 1). The coefficients of the first few polynomials are

P0 : 1

Q0 : 1

P1 : 1 1

Q1 : 1 −1

P2 : 1 1 1 −1

Q2 : 1 1 −1 1

P3 : 1 1 1 −1 1 1 −1 1

Q3 : 1 1 1 −1 −1 −1 1 −1

(4)

It is obvious that the sequences are generated by a simple ‘append rule’. We will
refer to the coefficients of the RS polynomials as RS sequences. The ingenuity of
these polynomials is the combination of fixed sized coefficients and the alternating
sign in the recursive construction of P and Q. The former property gives

‖Pn‖22 =
2n−1∑
k=0

(±1)2 = 2n, (5)

while the latter property gives

|Pn(ξ)|2 + |Qn(ξ)|2 = 2|Pn−1(ξ)|2 + 2|Qn−1(ξ)|2 = 2n+1, (6)

since |ei2π2nξ| = 1. This leads to

|Pn(ξ)| ≤
√
2 · 2n/2, ∀ξ ∈ [0; 1) ,

that is, a uniform upper bound for Pn. Now, combining (5) and (6) yields the
squared crest factor

‖Pn‖2∞
‖Pn‖22

≤ 2 . (7)

This means that |Pn(ξ)|2, ξ ∈ [0; 1), is a function that lies within the rectangle
[0; 1] × [0; 2n+1], and at the same time ‘covers’ exactly half of its area. This guar-
antees the polynomial to be somewhat flat. Two examples of |Pn| are shown in
Fig. 2. At this point it is important to realize that the term ‘flat’ should be under-
stood as ‘not excessively far from a constant function’, but not necessarily ‘close to
a constant function’. This was also hinted in Definition 3. To demonstrate the im-
portance of this concept the two lower most graphs in Fig. 2 show that neither the
well-known (an often used in applications) square wave nor a random ±1 sequence
can be considered flat.

10
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Fig. 2. The coefficients (left) and squared amplitude (right) of the Rudin-Shapiro polyno-
mials P4 and P5. Below the coefficients and squared amplitude of the Fourier transform of
a square wave and a random sequence. The horizontal dashed lines are the energy of the
signals.

2.2 Properties of Rudin-Shapiro Polynomials

The construction of the RS polynomial is such that the parallelogram law

|a+ b|2 + |a− b|2 = 2|a|2 + 2|b|2

is the only means needed for achieving the
√
2 crest factor. This property is in

fact essential for the relation between RS sequence and Golay complementary se-
quences. In terms of RS polynomials the law gives (6), i.e. that

Pn(ξ)Pn(ξ) +Qn(ξ)Qn(ξ) = 2n+1 .

Applying the inverse Fourier transform yields

(p ∗ p)[k] + (q ∗ q)[k] = 2n+1δ[k] , (8)

for −2n + 1 ≤ k ≤ 2n − 1, where p and q are the coefficients sequences of P and
Q, respectively, and p means the time reversed of p. Notice that (8) is exactly the
definition of a set of complementary sequences.

While the crest factor of
√
2 was easily derived the computations leading to that

result did not show whether in fact a smaller upper bound is possible. The follow-
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ing lemma demonstrates that for at least some RS polynomials the crest factor is
correct, i.e. the upper bound on the peak-to-mean ratio cannot be smaller.

Lemma 5 Let P and Q be defined by (2) and (3). Then

P2m(0) = 2m, P2m(1/2) = 2m, P2m+1(0) = 2m+1, P2m+1(1/2) = 0

Q2m(0) = 2m, Q2m(1/2) = −2m, Q2m+1(0) = 0, Q2m+1(1/2) = 2m+1.

Proof First note that

Pn+2(ξ) = Pn+1(ξ) + ei2π2
n+1ξQn+1(ξ)

= Pn(ξ) + ei2π2
nξQn(ξ) + ei2π2

n+1ξ
(
Pn(ξ)− ei2π2

nξQn(ξ)
)

= (1 + ei2π2
n+1ξ)Pn(ξ) + ei2π2

nξ(1− ei2
n+1ξ)Qn(ξ). (9)

Then for n = 2m− 2 we have

P2m(0) = (1 + 1)P2m−2(0) + 0 = · · · = 2mP0(0) = 2m,

P2m(1/2) = 2P2m−2(1/2) = 2mP0(1/2) = 2m,

and for n = 2m− 1

P2m+1(0) = 2P2m−1(0) = 2mP1(0) = 2m+1,

P2m+1(1/2) = 2P2m−1(1/2) = 2mP1(1/2) = 0.

Equivalent calculations yield the results for the Q polynomials. �

The idea to these calculation is from Brillhart [5]. Also, the P and Q polynomials
are anti-symmetric around 1/4, as this lemma demonstrates.

Lemma 6 Let p,q be two Rudin-Shapiro sequences. Then

|Pn(ξ)|2 = 2n+1 − |Pn(1/2− ξ)|2
|Qn(ξ)|2 = 2n+1 − |Qn(1/2− ξ)|2.

Proof The lemma obviously holds for n = 0. Then the result follows from an
induction argument.

|Pn+1(ξ)|2 = |Pn(ξ)|2 + |Qn(ξ)|2 + ei2π2
nξPn(ξ)Qn(ξ) + e−i2π2nξPn(ξ)Qn(ξ)

= 2n+1 − |Pn(1/2− ξ)|2 + 2n+1 − |Qn(1/2− ξ)|2
+ 2Re

{
ei2π2

nξPn(ξ)Qn(ξ)
}

= 2n+2 − |Pn(1/2− ξ)|2 − |Qn(1/2− ξ)|2
− 2Re

{
ei2π2

n(1/2−ξ)Pn(1/2− ξ)Qn(1/2− ξ)
}

= 2n+2 − |Pn+1(1/2− ξ)|2.
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Since P and Q are trigonometric polynomials the third equality is given by a cal-
culation that involves the equality cos(ξ) = − cos(π − ξ). �

The following lemma shows that the append rule presented for the Rudin-Shapiro
sequences, i.e. the rule used to produce longer sequences, actually results in a rather
nice property. Namely that the cross correlation of p and q is zero for even shifts,
and the autocorrelation is zero for even shifts except the zero shift.

Lemma 7 Let p,q ∈ CN be two vectors with the properties

〈τ2kp,q〉 = 0, 〈τ2kp,p〉 = 〈τ2kq,q〉 = Cδ[k],

where τm means a shift of index by +m. Define

p̃ =

⎡
⎢⎣p
q

⎤
⎥⎦ and q̃ =

⎡
⎢⎣ p

−q

⎤
⎥⎦ .

Then
〈τ2kp̃, q̃〉 = 0, 〈τ2kp̃, p̃〉 = 〈τ2kq̃, q̃〉 = 2Cδ[k].

Note that 〈τ2kp,q〉 = (p ∗ p̄)[−2k].

Proof From the definitions of p̃ and q̃ it follows that

〈τ2kp̃, q̃〉
〈τ2kp̃, p̃〉
〈τ2kq̃, q̃〉

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

±〈τ2k+Np,q〉 for k = −N + 1, . . . ,−N/2,

〈τ2kp,p〉 ± 〈τ2kq,q〉 ± 〈τ2k+Np,q〉 for k = −N/2 + 1, . . . ,−1,

〈τ2kp,p〉 ± 〈τ2kq,q〉 ± 〈τ2k−Np,q〉 for k = 1, . . . , N/2− 1,

±〈τ2k−Np,q〉 for k = N/2, . . . , N − 1.

All four expressions equal zero independently of the signs. For the zero shift

〈p̃, q̃〉 = 〈p,p〉 − 〈q,q〉 = 0 ,

and
〈p̃, p̃〉 = 〈q̃, q̃〉 = 〈p,p〉+ 〈q,q〉 = 2C .

�

An obvious consequence of this lemma is

Corollary 7.1 Any Rudin-Shapiro sequence set p,q have the property 〈τ2kp,q〉 =
0.

A more general statement about the autocorrelation of RS sequences is given in
Taghavi [38] and [37]. The results are presented in the following lemma.
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Lemma 8 Let p be a RS sequence of length 2N . Then∣∣∣〈τkp,p〉∣∣∣ ≤ 3.2134 · 20.7303N

for k = −N + 1, . . . , N − 1. Further there exists C such that∣∣∣〈τkp,p〉∣∣∣ > C20.73N .

In applications it is often very useful to have spread spectrum sequences with a
good autocorrelation, i.e. where only the zero lag is significantly different from
zero. Such sequences have been systematically constructed by No et al., see [30–
32].

3 THE RUDIN-SHAPIRO TRANSFORM

An interesting property of the RS sequences generated according to the appending
rule in (2) and (3) is that they are orthogonal. This is immediately evident from
the appending example shown. It is also worth noting that interchanging the + and
− in (2) and (3) would still produce sequences with all the previously presented
properties. In fact, arbitrarily interchanging the signs in each recursive step does
not affect the properties of the constructed sequences.

An elegant construction achieving all combinations of sign changes is found in
Benke [4] (Byrnes [8,10] gives a similar construction). In short,

⎡
⎢⎣Pn+1,ε(ξ)

Qn+1,ε(ξ)

⎤
⎥⎦ =

⎡
⎢⎣0 1

1 0

⎤
⎥⎦
εn ⎡

⎢⎣1 1

1 −1

⎤
⎥⎦
⎡
⎢⎣1 0

0 ei2π2
nξ

⎤
⎥⎦
⎡
⎢⎣Pn,ε(ξ)

Qn,ε(ξ)

⎤
⎥⎦ , (10)

where εn ∈ {0, 1} is chosen in each step. A total of 2n different P polynomials
are possible after n steps. Thus, two P polynomials with each two coefficients
are obtained after one steps, four P polynomials with each four coefficients are
obtained after two steps, and so on. The two and four polynomials have coefficients
(here inserted as rows) ⎡

⎢⎣1 1

1 −1

⎤
⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 −1

1 1 −1 1

1 −1 1 1

1 −1 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

14



and the eight P polynomials after the third step have coefficients
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 −1 1 1 −1 1

1 1 1 −1 −1 −1 1 −1

1 1 −1 1 1 1 1 −1

1 1 −1 1 −1 −1 −1 1

1 −1 1 1 1 −1 −1 −1

1 −1 1 1 −1 1 1 1

1 −1 −1 −1 1 −1 1 1

1 −1 −1 −1 −1 1 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that all rows in the matrices are orthogonal. Thus, the RS sequences of length
2J constitutes an orthogonal basis of R2J . Consequently, the matrices are called the
Rudin-Shapiro transform (RST). It is shown in Benke [4] that this construction can
be generalized in various ways.

The individual entries in the Rudin-Shapiro transform can be found by the follow-
ing equation, where P(N) ≡

[
p(N)
m,n

]
is the 2N × 2N RST matrix.

p(N)
m,n =

N∏
k=1

(−1)nk(mN−k+1+nk−1), n0 ≡ 0.

The nk and mk is the k’th binary digit of n and m respectively, with k = 1 as LSB.
This property is not proved at this points as a very similar equation is given and
proved in the next section.

Applying the RST decomposes a signal into a basis of elements with a spread spec-
trum property. This is in some sense the opposite of a Fourier transform which is
a decomposition into a narrow spectrum basis. The transform is orthogonal (up to
a scaling) and thus energy preserving, and the equal amplitude of all the entries
makes the transform numerical stable. In general, it is an appealing transform for
design and analysis of spread spectrum signals. However, at this point a fast im-
plementation is still missing. Matrix multiplication is a O(N 2) operation, and in
general it is preferable, if not desirable, to have an O(N logN) implementation,
especially for real time applications.

Note also that while the rows of the presented matrices do have a low crest factor,
this is not the case for the columns which exhibits a Walsh-like structure rather than
spread spectrum structure.

The problems mentioned here are addressed in the next section, where a slight
change of the recursive definition of the RS polynomials yields a symmetric RS
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transform. At the same time a fast implementation, actually O(N logN) with a
small constant, is also given.

4 THE SYMMETRIC RUDIN-SHAPIRO TRANSFORM

This section holds the main result in of this presentation; the recursive matrix con-
struction and factorization of the symmetric RST, and the subsequent fast imple-
mentation of the transform matrix. It is also proven that this matrix construction
inherits all the nice properties of the non-symmetric construction.

The construction starts with the observation that the Rudin-Shapiro transform can
indeed be made symmetric. The idea for this is communicated in Byrnes et al. [10].
There the polynomials are defined by a modification of the previously presented
definition in (2) and (3). The following equations have been slightly rewritten com-
pared to [10], to comply with the notation in this presentation (most significantly,
Byrnes have discarded the Q polynomials in favor of a more advanced indexing of
the P polynomials). The symmetric RST is derived from the following equations.

Pj+1,4m(ξ) = Pj,2m(ξ) + ei2π2
jξQj,2m+1(ξ),

Pj+1,4m+1(ξ) = Pj,2m(ξ) − ei2π2
jξQj,2m(ξ),

Pj+1,4m+2(ξ) = Pj,2m+1(ξ) + ei2π2
jξQj,2m+1(ξ),

Pj+1,4m+3(ξ) = −Pj,2m+1(ξ) + ei2π2
jξQj,2m+1(ξ),

Qj+1,4m(ξ) = Pj,2m(ξ) − ei2π2
jξQj,2m(ξ),

Qj+1,4m+1(ξ) = Pj,2m(ξ) + ei2π2
jξQj,2m(ξ),

Qj+1,4m+2(ξ) = −Pj,2m+1(ξ) + ei2π2
jξQj,2m+1(ξ),

Qj+1,4m+3(ξ) = Pj,2m+1(ξ) + ei2π2
jξQj,2m+1(ξ),

(11)

with

P1,0 = Q1,1 = 1 + ei2πξ ,

P1,1 = Q1,0 = 1− ei2πξ ,

and for j ≥ 1 and m = 0, . . . , 2j−1 − 1. Note that P and Q in (11) are equal to the
previous definition in (2) and (3) except for some changes of signs.

This section is dedicated to a rigorous proof of the symmetry (and the other de-
sirable properties of the symmetric RST). The proof is ‘constructive’ in that it pro-
vides a simple way of applying the transform, namely by means of the Haar wavelet
packet transform scheme.
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4.1 Deriving the Symmetric Transform

The equations (11) can be written more compactly as

Pj+1,m(ξ) = (−1)m1m2Pj,�m/2�(ξ) + (−1)m1(m2+1)ei2π2
jξQj,�m/2�(ξ), (12)

Qj+1,m(ξ) = (−1)(m1+1)m2Pj,�m/2�(ξ) + (−1)(m1+1)(m2+1)ei2π2
jξQj,�m/2�(ξ),

(13)

where m1 and m2 are the two least significant digits of the binary representation
of m, and �m/2� means the biggest integer less or equal to m/2. Rewriting to the
obvious matrix form yields

⎡
⎢⎣Pj+1,m(ξ)

Qj+1,m(ξ)

⎤
⎥⎦ =

⎡
⎢⎣(−1)m1m2 (−1)m1(m2+1)

(−1)(m1+1)m2 (−1)(m1+1)(m2+1)

⎤
⎥⎦
⎡
⎢⎣ Pj,�m/2�(ξ)

ei2π2
jξQj,�m/2�(ξ)

⎤
⎥⎦ . (14)

This latter form of the RS equations shows the core of the transform; the 2 × 2
matrix. Incidentally, this is also the ‘secret’ of the easy implementation.

To have a solid basis for the derivation of the RST properties, the first thing to do
is to define exactly what the RST is.

Definition 9 (Symmetric Rudin-Shapiro Transform) Define the mappingPj,m :

R2j �→ R2j , j ≥ 1, as
⎡
⎢⎣ yk

yk+2j−1

⎤
⎥⎦ =

(−1)mk

√
2

⎡
⎢⎣ 1 (−1)k

(−1)m −(−1)k+m

⎤
⎥⎦
⎡
⎢⎣ x2k

x2k+1

⎤
⎥⎦ (15)

for k = 0, . . . , 2j−1 − 1 when mapping x to y. Define

P
(J)
j ≡

⎡
⎢⎢⎢⎢⎢⎣
Pj,0 0

. . .

0 Pj,2J−j−1

⎤
⎥⎥⎥⎥⎥⎦ , (16)

and finally defined the Rudin-Shapiro transform P(J) and the auxiliary transform
Q(J) as

P(J) ≡
J∏

j=1

P
(J)
j , and Q(J) ≡

J−1∏
j=1

P
(J)
j PJ,1. (17)

Note that (15) is the inverse of the transform proposed in (14). The 2 × 2 matrix
in (15) aside, it is not immediately obvious neither how this definition is linked to
(11), nor that it defines a symmetric transform. However, the following theorem
establishes that this definition does indeed provide the desired transform.
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Theorem 10 (Properties of the Rudin-Shapiro Transform) The Rudin-Shapiro
transform P(J) : R2J �→ R2J and the corresponding polynomials

P (J)
m (ξ) =

2J−1∑
n=0

p(J)m,ne
i2πnξ.

has the following properties:

(I) The rows ofP(J) are the coefficients of the polynomials defined in (11).
(II) The entries of P(J) =

[
p(J)m,n

]
are given by

p(J)m,n = 2−J/2
J∏

j=1

(−1)(mj+nJ−j+2)(mj+1+nJ−j+1), (18)

for m,n = 0, . . . , 2J − 1, where mj are the j’th digit in the binary
representation of m, with m1 LSB.

(III) It is an orthogonal and symmetric Hadamard matrix.
(IV) The non-zero even shifts of the auto correlation of p(J)

m equal zero,
that is, (

p(J)
m ∗ p(J)

m

)
[2k] = δ[k]

for k = −2J + 1, . . . , 2J − 1.
(V) It satisfies 2

0 < |P (J)
m (ξ)| <

√
2, m = 0, . . . , 2J − 1, (19)

on (0; 1/2). Moreover,

P2j(0) = P2j(1/2) = 1, (20)

and
P2j+1(0) =

√
2, P2j+1(1/2) = 0, (21)

and finally
Pj(1/4) = 1 . (22)

Proof To prove (I) first note

P(j) =
(
Pj,0

)� ⎡
⎢⎣P(j−1)

Q(j−1)

⎤
⎥⎦ , (23)

Q(j) =
(
Pj,1

)� ⎡
⎢⎣P(j−1)

Q(j−1)

⎤
⎥⎦ .

2 Only semi-flatness, and not near-flatness of the polynomials is actual proven here. How-
ever, the author feels sufficiently confident about the validity of the statement to include it
in the theorem.
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This follows from

(
Pj,0

)� ⎡
⎢⎣P(j−1)

Q(j−1)

⎤
⎥⎦

=
(
Pj,0

)� ⎡
⎢⎣Pj−1,0

Pj−1,1

⎤
⎥⎦
�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

P(j−2)

Q(j−2)

P(J−2)

Q(j−2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

...

=
1∏

k=j

(
P

(j)
k

)�

= P(j).

Note also that
(
Pj,0

)�
is the transform given as

⎡
⎢⎣ x2k

x2k+1

⎤
⎥⎦ =

1√
2

⎡
⎢⎣ 1 1

(−1)k −(−1)k

⎤
⎥⎦
⎡
⎢⎣ yk

yk+2j−1

⎤
⎥⎦

for k = 0, . . . , 2j−1 − 1 when mapping y to x. So

(
Pj,0

)�
=

1√
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

1 0

0 1

0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

−1 0

0 1

0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. . . . . .⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

1 0

0 1

0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

−1 0

0 1

0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
2j×2j
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Letting p(j)
m denote the m’th row of P(j), and likewise with Q(j), it follows that

P(j) =
(
Pj,0

)� ⎡
⎢⎣P(j−1)

Q(j−1)

⎤
⎥⎦ =

1√
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p
(j−1)
0 q

(j−1)
0

p
(j−1)
0 −q

(j−1)
0

p
(j−1)
1 q

(j−1)
1

−p
(j−1)
1 q

(j−1)
1

...
...

p
(j−1)
2j−2 q

(j−1)
2j−2

p
(j−1)
2j−2 −q

(j−1)
2j−2

p
(j−1)
2j−1 q

(j−1)
2j−1

−p
(j−1)
2J−1 q

(j−1)
2j−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (24)

which demonstrates the appending rule defined in the first four equations of (11).
A similar calculation will show the last four equations.

The proof of (II) goes by induction on (18). In the following the scaling 2−J/2 is
ignored. For J = 1

P(1) =

⎡
⎢⎣p

(1)
0,0 p

(1)
0,1

p
(1)
1,0 p

(1)
1,1

⎤
⎥⎦ =

⎡
⎢⎣(−1)(0+0)(0+0) (−1)(0+0)(0+1)

(−1)(1+0)(0+0) (−1)(1+0)(0+1)

⎤
⎥⎦ =

⎡
⎢⎣1 1

1 −1

⎤
⎥⎦ ,

which is correct according to (15). Assume that (18) is true for j. From (24) it
follows that

p(j+1)
m,n =

⎧⎨
⎩(−1)m2m1p

(j)
�m/2�,n for 0 ≤ n < 2j

(−1)(m2+1)m1q
(j)
�m/2�,n−2j for 2j ≤ n < 2j+1.

(25)

The first case can be rewritten

(−1)m2m1p
(j)
�m/2�,n = (−1)m2m1

j∏
k=1

(−1)(mk+1+nj−k+2)(mk+2+nj−k+1)

= (−1)(m1+nj+2)(m2+nj+1)
j+1∏
k=2

(−1)(mk+nj+1−k+2)(mk+1+nj+1−k+1)

=
j+1∏
k=1

(−1)(mk+nj+1−k+2)(mk+1+nj+1−k+1)

for n = 0, . . . 2j − 1. To rewrite the second case, the connection between p(j)m,n and
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q(j)m,n are derived. From (11) it is seen that

Qj+1,4k(ξ) = Pj+1,4k+1(ξ) ,

Qj+1,4k+1(ξ) = Pj+1,4k(ξ) ,

Qj+1,4k+2(ξ) = Pj+1,4k+3(ξ) ,

Qj+1,4k+3(ξ) = Pj+1,4k+2(ξ) .

(26)

Changing the sign in this manner can be accomplished by adding 1 to the LSB of
the row counter variable, that is to m1. Thus,

q(j)m,n = (−1)(m1+1)(m2+nj)
j∏

k=2

(−1)(mk+nj−k+2)(mk+1+nj−k+1) ,

and the second case of (25) can now be rewritten

(−1)(m2+1)m1q
(j)
�m/2�,n−2j = (−1)(m2+1)m1(−1)(m2+1)(m3+nj)

×
j∏

k=2

(−1)(mk+1+nj−k+2)(mk+2+nj−k+1)

= (−1)(m1+nj+2)(m2+nj+1)(−1)(m2+nj+1)(m3+nj)

×
j+1∏
k=3

(−1)(mk+nj+1−k+2)(mk+1+nj+1−k+1)

=
j+1∏
k=1

(−1)(mk+nj+1−k+2)(mk+1+nj+1−k+1)

for n = 2j, . . . 2j+1 − 1. The second last equality is due to nj+1 = 1 and nj+2 = 0.
This proves (18).

The orthogonality of P(J) stated in (III) follows immediately from orthogonality
of Pj,m, and according to (II) P(J) is a Hadamard matrix. The symmetry can be
established by interchanging m and n in the power of (−1) in (18) and substituting
k = J − j + 1. This yields

p(J)n,m = 2−J/2
J∏

j=1

(−1)(nj+mJ−j+2)(nj+1+mJ−j+1)

= 2−J/2
1∏

k=J

(−1)(nJ−k+1+mk+1)(nJ−k+2+mk)

= p(J)m,n

demonstrating that interchanging m and n in (18) is equivalent to reversing the
order of multiplication. It follows that the matrix P(N) is symmetric.

The property (IV) follows from Lemma 7 which apply unchanged to the symmetric
case (the calculations in the proof of the lemma are independent of the position of
the one minus in the definitions of p̃ and q̃).
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The near-flat polynomial property in (V) has already been demonstrated as far as
semi-flatness. However, despite a significant effort any attempt by the author to find
a proof of near-flatness of the polynomials on (0; 1/2) have been fruitless.

The equations (20) and (21) follows from a series of calculations equivalent to those
in the proof of Lemma 5. A rewriting of (12) in the same fashion as (9) yields

Pj+2,m(ξ)

Qj+2,m(ξ)

⎫⎪⎬
⎪⎭ =

(
±1± ei2π2

j+1ξ
)
Pj,u(ξ) + ei2π2

jξ
(
±1± ei2π2

j+1ξ
)
Qj,u(ξ)

where the two signs inside each of the parentheses will be the same in the one and
opposite in the other parenthesis, e.g. + + and + −. Thus,

Pj+2,m(1/4)

Qj+2,m(1/4)

⎫⎪⎬
⎪⎭ =

(
±1 ± ei2π2

j−1
)
Pj,u(1/4) + ei2π2

j−2
(
±1± ei2π2

j−1
)
Qj,u(1/4)

=

⎧⎨
⎩±2Pj,u(1/4) for some m

±2Qj,u(1/4) for the other m .

Then
|P2n,m(1/4)| = |Q2n,m(1/4)| = 2n−1|P2,u| = 2n−1|Q2,u| = 2n

and

|P2n−1,m(1/4)| = |Q2n−1,m(1/4)| = 2n−1|P1,u| = 2n−1|Q1,u| =
√
2 · 2n−1 .

This proves (22). �

The theorem established a close connection between the properties of the Rudin-
Shapiro polynomials and the transform. In particular, the spread spectrum property
which is an intrinsic attribute of the polynomials, is inherited by the transform. The
particular ‘distribution’ of signs in the construction makes the transform symmetric,
and thus its own inverse.

4.2 Fast Implementation

The definition of the RST given in Definition 9 is based on the recursive construc-
tion process of RS polynomials. When writing this process in matrix form the 2×2
matrix in (15) emerges along with the 2J × 2J matrix in (16). The combination of
these two matrices is the key to a fast implementation.

The matrices P(J)
j provide a factorization of the RST matrix, and the 2 × 2 matrix

gives a simple and easy O(N) implementation of each of the P
(J)
j matrices. The
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principle is here demonstrated with a size 8 × 8 transform, but easily applies to all
size 2J RSTs. The first factor to be applied in the 8×8 case is P(3)

3 = P3,0. That is,

P
(3)
3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 −1

1 −1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 −1 0 0

0 0 0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This is equivalent to a Haar wavelet transform except the filter taps are changing
during filtering. The result of transforming with this matrix can be considered as
two parts of length 4. In the Haar case the two parts can be identified as a low and
high pass part, respectively, while in the RST case the constant change of filter taps
results in two parts containing a mix of frequencies. The splitting into two signal
parts is also illustrated in Fig. 3 by the first (top) set of arrows. The next step in the
transform is

P
(3)
2 =

⎡
⎢⎣P2,0

P2,1

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0

0 0 1 −1

1 −1 0 0

0 0 1 1

1 1 0 0

0 0 −1 1

−1 1 0 0

0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

i.e. the same procedure is repeated (independently) on each of the two signal parts.
Notice that m = 0 when transforming the first part and m = 1 when transforming
the second part of the signal. The m makes the transform symmetric in the sense
that m = 0 throughout the transform steps would produce the non-symmetric RST.
This second step is shown as the second set of eight arrows (from the top) in Fig. 3.
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The final step is

P
(3)
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1,0

P1,1

P1,2

P1,3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1

1 −1

1 1

−1 1

1 1

1 −1

1 1

−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

As a result of the factorization the RST can be applied in J steps by multiply-
ing a signal with all of the P

(J)
j matrices (in the right order). Each multiplication

is an O(N2) operation, but the mapping given in (15) shows how to reduce the
multiplication to an O(N) filtering process. For any choice of m and k the 2 × 2
matrix contains three times +1 and one −1. Consequently, the output of the map-
ping is merely a sequence of sums and differences of sample pairs. A division by√
2 should be applied to every sum/difference, but since the mapping is linear this

scaling can be applied as division by 2 for every other step in the transform. Note
that division by 2 is equivalent to a binary shift of 1.

When implementing the RST according to this scheme it is obviously important to
get the 2 × 2 matrix correct. The m and k change constantly as the transform is
applied. In Fig. 3 these changes are shown along with the 2 × 2 matrix for each
sample pair in each step of the transform.

Applying a linear transform to a signal is basically a set of inner products with the
row vectors of the transform matrix. In the case of the RST these vectors are ±1’s
only, and consequently the RST is numerically very stable as all signal samples
are weighted equally. This property is preserved in the fast implementation where
each transform step also consists of ±1’s only. The fact that each intermediate
sample depends on only two other samples makes the fast implementation even
more stable than the matrix multiplication implementation. The normalization by 2
in every other transform step possess only negligible problems in the vast majority
of applications.

The actual implementation of the RST can be accomplished by a regular filtering
process divided into four steps, for even and odd k and m, which are used in the
order needed, as demonstrated in Fig. 3. By doing this it is possible to avoid the
computational demanding powers of (−1) in (15). For more details, see [24].
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[
1 −1
1 1

][
1 1
1 −1

][
1 −1
1 1

][
1 1
1 −1

]
k = 0 k = 1 k = 2 k = 3

m = 0

[
1 −1
1 1

][
1 1
1 −1

] [
−1 1
1 1

]

[
1 1

−1 1

][
1 1

−1 1

] [
1 1
1 −1

][
1 1
1 −1

]

k = 0 k = 1 k = 1k = 0

[
1 1

−1 1

]

k = 0 k = 0 k = 0k = 0
m

=
0

m
=

1

m
=

2

m
=

3

m = 0 m = 1

Fig. 3. This figure shows how the value of the variables change in the fast implementation
of a symmetric RST. Here applied to a vector in R

8.

4.3 Relation to the Haar Wavelet Packet Transform

Suppose that the same 2 × 2 matrix is used in all transform steps, i.e. suppose that
m and k equal zero in all cases. The result is then a full decomposition wavelet
packet Haar transform. The Haar transform is also its own inverse. If only m (but
not k) is fixed at zero the result is the non-symmetric RST presented in (10). This
is easily seen as ⎡

⎢⎣0 1

1 0

⎤
⎥⎦
εn ⎡

⎢⎣1 1

1 −1

⎤
⎥⎦ =

⎡
⎢⎣1 (−1)εn

1 −(−1)εn

⎤
⎥⎦ .

The relation to the Haar transform can also provide an explanation for the spread
spectrum property without involving the RS polynomials. The Haar transform is
a decomposition into a frequency localizing basis since the Haar filters are low
and high pass filters (with two filter taps). This means that each element in the
output from the (full decomposition) Haar transform represents the energy in a
certain frequency range of the original signal. The RST does in some sense the
exact opposite of this. Instead of applying the same filter to all samples pairs (and
thereby creating a output localized in frequency) the RST applies the low and high
pass filters alternately to sample pairs. The result is an output where the samples are
the same as in the Haar transform case, but where the low and high pass samples
are interleaved such that there is virtually no frequency localization in the resulting
signal.
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The close relation to the Haar wavelet packet transform provides another interest-
ing property; instead of doing all the steps in the RST one can choose do only some
of the steps and thereby obtain a different decomposition of the transformed signal.
This is equivalent to selecting a particular basis in the Haar wavelet packet decom-
position for representing the signal. Consequently, some of the theory regarding
wavelet bases for RN applies. For instance, the RST can be used to generate a
number of spread spectrum signals which is equal to the number of different pos-
sible representations in the wavelet packet decomposition. A lower bound for this
number is 22

J−1
, see Jensen and la Cour-Harbo [20]. And the best basis search

algorithm can be applied to find the best, in some defined sense, sequence.

4.4 Other Properties of RS Polynomials

The work with RS polynomials and sequences have led the author to believe in
some other properties for which no proofs have yet been devised. These results are
presented here as conjectures, and without any further explanations. So far, these
results have found no practical use.

The first conjecture states that although the individual RS polynomials are (suppos-
edly) near-flat on (0; 1/2) they are not flat on (0; 1/2).

Conjecture 1 Let Pj,m(ξ) be one of the polynomials defined in (11). Then

lim
j→∞ 2−j/2 max

ξ∈(0;1/2)
|Pj,m(ξ)| =

√
2

and the convergence is of order O(e−j).

It seems that polynomials are equal in equidistant points with a finer resolution for
longer polynomials

Conjecture 2 Let Pj,k(ξ) be one of the polynomials defined in (11). Then

2|Pj,k

(
m2−j

)
| = |Pj+2,k

(
m2−j

)
|, k,m = 0, . . . , 2j − 1 .

In the limit this ‘result’ becomes

Conjecture 3 The limits

lim
j→∞

2−jP2j,k(ξ) and lim
j→∞

2−jP2j+1,k(ξ)

converge pointwise on the dense subset
{
m2−n;m = 0, . . . , 2n

}
n∈N of the unit

interval.
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The recursive construction of the polynomials means that there are many different
relations between the various polynomials. A few has been conjectured upon here,
and others can easily be discovered by experiments.
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