Data Driven Smart Building Symposium 2023 AALBORG UNIVERSITY IEA EBC Annex 81 - C3 DENMARK **Building-to-Grid Applications** 

Hicham Johra, Aalborg University, Denmark

Flavia Andrade, University College Dublin, Ireland



Energy in Buildings and Communities Programme



IEA: International Energy Agency

EBC: Energy in Buildings and Communities Programme

Annex 81: Data-Driven Smart Buildings

Subtask C: Applications and Services

Activity C3: Building-to-Grid (B2G) Applications

 $\rightarrow$  ~20 active participants and contributors

## IEA EBC Annex 81 - C3



Active participants and contributors:

- Hicham Johra
- Han Li
- Flavia de Andrade Pereira
- Tianzhen Hong
- Jérôme Le Dréau
- Anthony Maturo
- Mingjun Wei

- Zoltan Nagy
- Bing Dong
- Donal Finn
- Shohei Miyata
- Kathryn Kaspar
- Kingsley Nweye
- Zheng O'Neill

- Ali Saberi-Derakhtenjani
- Anna Marszal-Pomianowska
- Yicheng Li
- Zhelun Chen
- Lasitha Chamari
- Ekaterina Petrova
- Yapan Liu
- Fabiano Pallonetto







Massive deployment of smart building-to-grid services to improve sustainability and reliability of energy grids dominated by intermittent renewable energy sources.



"Develop an online platform to gather, evaluate, compare, present and promote building-to-grid services, such as demand response, allowing users to assess their building datasets based on multiple energy flexibility KPIs".



### A81 - C3: Workflow





# **Review of Energy Flexibility Literature**



Distribution of the reviewed studies using data-driven energy flexibility KPIs





Review of 81 data-driven energy flexibility KPIs for buildings in the operational phase:

- > Туре
- > Scale
- Building types
- > Baseline requirements
- > Complexity
- > Data requirements



48 data-driven KPIs in 12 main energy flexibility KPI categories:

- Peak power shedding
- Energy / average power load shedding
- Peak power / energy rebound
- > Valley filling
- Load shifting
- Demand profile reshaping

- Energy storage capability
- Demand response energy efficiency
- Demand response costs / savings
- Demand response emission / environmental impact
- Grid interaction
- Impact on indoor environmental quality

+ 29 generic KPIs in 4 categories associated with energy flexibility studies





Distribution of the baseline-required energy flexibility KPIs





Distribution of the baseline-free energy flexibility KPIs



| KPI                                                     | Formula                                                                                                      | Туре        | KPI                   | Formula                                                                                                                                                                      | Туре       |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Energy<br>Efficiency<br>of Demand<br>Response<br>Action | $\eta_{ADR} = 1 - \frac{\int_{0}^{\infty} (Q_{ADR} - Q_{ref}) dt}{\int_{0}^{length} (Q_{ADR} - Q_{ref}) dt}$ | Baselin     | Flexibility<br>Factor | $FF = \frac{\int q_{non  peak} \cdot dt - \int q_{peak} \cdot dt}{\int q_{non  peak} \cdot dt + \int q_{peak} \cdot dt}$                                                     | Base       |
| Flexibility<br>Savings<br>Index                         | $FSI = \frac{Cost  of  flexible  operation}{Cost  of  baseline  operation}$                                  | e- required | Flexibility<br>Factor | $FS = \frac{\int q_{heating (low price)} \cdot dt - \int q_{heating (high price)} \cdot dt}{\int q_{heating (low price)} \cdot dt + \int q_{heating (high price)} \cdot dt}$ | line- free |
| Peak Power<br>Shedding                                  | $\Delta P = P_{baseline, peak} - P_{flexible, peak}$                                                         |             | Load Factor           | $LF = \frac{AVG_L}{max_L}$                                                                                                                                                   |            |

Most popular energy flexibility KPIs

### **Review of Demand Response Datasets**



Open dataset repository (Kaggle, Data in Brief, etc) Dataset collection process

Communities Programme



Collection of 16 open datasets performing B2G services:

- > Building types
- Load shape strategies
- > Flexibility resources
- > Data availability

## **Review of Demand Response Datasets**



KPIs' required variables **vs** datasets' available variables:

- Required variables are not always the most common ones
- Additional modelling and calculations can be used to estimate variables such as event timing and power demand
- Providing identification for key variables that would facilitate future research

| Primitive variables  | % required by KPIs | % available in datasets |  |  |
|----------------------|--------------------|-------------------------|--|--|
| Event timing         | 37.66%             | 18.75%                  |  |  |
| Energy consumption   | 35.06%             | 81.25%                  |  |  |
| Power demand         | 32.47%             | 6.25%                   |  |  |
| Event request action | 24.68%             | 37.50%                  |  |  |
| Price signal         | 16.88%             | 50.00%                  |  |  |
| Energy generation    | 12.99%             | 25.00%                  |  |  |
| Event request size   | 11.69%             | 0.00%                   |  |  |
| Indoor temperature   | 5.19%              | 93.75%                  |  |  |
| Thermostat setpoint  | 5.19%              | 62.50%                  |  |  |
| Emission signal      | 3.90%              | 12.50%                  |  |  |
| Storage volume       | 2.60%              | 0.00%                   |  |  |
| Monetary incentives  | 2.60%              | 0.00%                   |  |  |
| Occupancy            | 1.30%              | 56.25%                  |  |  |
| Indoor CO2           | 1.30%              | 12.50%                  |  |  |



### Scalability of KPIs calculation

Lack of **shared knowledge** for characterization and quantification

 $FF = \frac{\int q_{non \, peak} \cdot dt - \int q_{peak} \cdot dt}{\int q_{non \, peak} \cdot dt + \int q_{peak} \cdot dt} \qquad t = \frac{\overline{P}_{wm,P} - \overline{P}_{wm,R}}{\sqrt{\frac{(N_P - 1)s_{wm,P}^2 + (N_R - 1)s_{wm,R}^2}{(N_P + N_R - 2)}} \cdot \sqrt{\frac{1}{N_P} + \frac{1}{N_R}}$   $RIB = \frac{\sum_{i=1}^{n} (E_{el}^i \cdot p^i) - \sum_{i=1}^{n} (E_{el}^i \cdot p_{min})}{\sum_{i=1}^{n} (E_{el}^i \cdot p_{max}) - \sum_{i=1}^{n} (E_{el}^i \cdot p_{min})} (-) \qquad P_l^{res} = \frac{\sum_{i=2}^{i=d_l} u_{l+i} - y_{l+i}}{n_l(d_l - 1)}$ 

### Scalability of dataset use

Characterized by heterogeneous data representation

cerc\_templogger\_1

Building90\_TZ0

Indoor\_Tind\_avg

Summer\_Ambient\_Temperature

Need for manually mapping required variable from every dataset to every KPI

→ Repeated effort → Time consuming → Error-prone



Semantic principles provide guidance and best practices on how to structure and represent information in a meaningful and consistent way

**Ontologies** are one of the information models used to implement semantic principles:

- define the **meaning** and **relationships** of concepts within a specific domain in an **unambiguous** way
- **formal**, well-defined, precise language
- shared understanding and communication of information among different systems and users





Represent and normalize the meaning and relationships of concepts (variables) from the KPIs formulation and the collected datasets:

- > Facilitate application portability, improve cross-domain understanding
- > Guide data retrieval, reuse of datasets and applications
- Link data points to applications, disambiguation, faster and easier use, less prone to errors



## **Reusing EFOnt Semantic Ontology**



**EFOnt**: developed by LBNL, USA (*Han Li & Tianzhen Hong, 2022*)



### **Energy Flexibility Ontology**





Ontology ecosystem: alignment between EFOnt, Brick and other ontologies



Key questions:

- What variables are needed to calculate the KPIs and how to keep the calculation process agnostic to different datasets?
- How do we standardize and automate the data collection from different datasets?

How do we standardize the definitions of different concepts (e.g., evaluation window, operation conditions such as DR event start time and duration)?



### Standardization of data & variable definitions for data-driven quantification

| Verieble                                 | Princitius Turce     |            | l la it | Management Canditian  | Data Source        | Ontological Definition |               |
|------------------------------------------|----------------------|------------|---------|-----------------------|--------------------|------------------------|---------------|
| variable                                 | Primitive Type       | value type | Unit    | weasurement Condition |                    | EFOnt URI              | Brick URI     |
| baseline electric power profile          | power demand -       | Serial -   | kW -    | baseline -            | electricity meter  |                        | Power sensor  |
| flexible electric power demand profile   | power demand 🔹       | Serial -   | kW 👻    | flexible -            | electricity meter  |                        | Power sensor  |
| baseline electricity consumption profile | energy consumption   | Serial -   | kWh 👻   | baseline -            | electricity meter  |                        | Energy sensor |
| baseline natural gas consumption profile | energy consumption • | Serial -   | kWh 👻   | baseline 🔹            | natural gas meter  |                        |               |
| flexible electric power profile          | power demand -       | Serial -   | kW -    | flexible -            | electricity meter  |                        | Power sensor  |
| flexible electricity consumption profile | energy consumption - | Serial -   | kWh 👻   | flexible -            | electricity meter  |                        | Energy sensor |
| flexible natural gas consumption profile | energy consumption 🔹 | Serial -   | kWh 👻   | flexible -            | natural gas meter  |                        |               |
| generic electric power profile           | power demand 🔹       | Serial -   | kW -    | N.A                   | electricity meter  |                        | Power sensor  |
| generic electricity consumption profile  | energy consumption   | Serial -   | kWh 👻   | N.A. •                | electricity meter  |                        | Energy sensor |
| generic natural gas consumption profile  | energy consumption • | Serial -   | kWh 👻   | N.A. 🔻                | natural gas meter  |                        |               |
| load profile peak timestamp              | timestamp *          | Single -   | N.A     | N.A                   | time - meter       |                        |               |
| load profile valley timestamp            | timestamp -          | Single •   | N.A     | N.A                   | time - meter       |                        |               |
| grid peak timestamp                      | timestamp -          | Single •   | N.A     | N.A                   | time - grid signal |                        |               |
| high-price start timestamp               | timestamp -          | Single 🔹   | N.A     | N.A. •                | time - grid signal |                        |               |
| high-price end timestamp                 | timestamp -          | Single 🔻   | N.A     | N.A                   | time - grid signal |                        |               |
| high-emission start timestamp            | timestamp -          | Single -   | N.A     | N.A                   | time - grid signal |                        |               |
| high-emission end timestamp              | timestamp -          | Single 🔹   | N.A. 🔻  | N.A                   | time - grid signal |                        |               |

| KDL (list)                        | Data requirement                         |   |                                          |   |                              |                            |  |  |  |
|-----------------------------------|------------------------------------------|---|------------------------------------------|---|------------------------------|----------------------------|--|--|--|
|                                   | Input Variable 1                         |   | Input Variable 2                         |   | Input Variable 3             | Input Variable 4           |  |  |  |
| Flexibility factor                | generic electricity consumption profile  | • | high-price start timestamp               | - | high-price end timestamp     | ·                          |  |  |  |
| Load factor                       | generic electric power profile           | Ŧ | load profile peak timestamp              | Ŧ | Ŧ                            | ·                          |  |  |  |
| Peak power reduction              | baseline electric power profile          | - | flexible electric power profile          | Ŧ | grid peak timestamp *        | ·                          |  |  |  |
| Peak energy shedding?             | baseline electricity consumption profile | • | flexible electricity consumption profile | Ŧ | grid peak timestamp 🔹 👻      | *                          |  |  |  |
| Building energy flexibility index | baseline electric power profile          | Ŧ | flexible electric power profile          | Ŧ | evaluation start timestamp * | evaluation end timestamp 🔹 |  |  |  |

### **Python Package**





# **Energy Flexibility Assessment Service**



#### **IMPORT DATASET**

→Upload/connect to time series raw data (CSV/API)

#### **FILTER KPI SEARCH (optional)**

- →Define stakeholder
- →Define performance goals
- $\rightarrow$  Define flexibility modes

#### **SPECIFY KPI SETTINGS**

- →Define evaluation window
- →Select utility function for DR event time definition (optional)



User interface Manual

### IMPORT METADATA

#### UPLOAD METADATA

→Upload semantic model (e.g., Brick)



#### DEFINE METADATA MANUALLY

 →Download data mapping template
→Fill out/upload required identifiers for time series data



User interface + EFOnt + Brick/Config file Semi-automated/Manual

### METADATA ANALYSIS

- →Verify metadata/semantic sufficiency based on EFOnt
- →Query EFOnt for required variables
- →Query semantic model or data mapping file for required time series data identifiers

#### TIME SERIES DATA ANALYSIS

- →Query time series data based on KPI settings and required identifiers
- →Verify data quality and features (e.g., sampling rate, data gap distribution)

#### **KPI ANALYSIS**

→Filter suitable KPIs







#### **KPI SELECTION**

→Selection of KPI to calculate

#### PROCESS DATA

- →Clean time series data
- →Aggregate time series data (e.g., average, maximum)

### **GENERATE BASELINE (optional)**

→Generate baseline

#### **COMPUTE KPI**

→Calculate KPI
→Visualize KPI results



User interface + Python package Semi-automated

### **Energy Flexibility Assessment Service**





USE CASE 2



Simulation environment





energy\_flexibility\_kpis package





- Publish Python package for energy flexibility assessment based on the EFOnt ontology and standardized variables and procedures
- Implement Python package into Dash-based web-app to ease and spread use of KPIs
- Exemplify concrete applications of the EFOnt ontology
- Deeper analyses of energy flexibility KPIs by systematic computation on collected datasets of building performing demand response



- Shared definition of energy flexibility KPIs is essential for comparing and benchmarking energy flexibility applications at scale
- Collecting datasets is hard: low response rate, confidentiality concerns, and lack of dataset documentation:
  - We continue to collect more datasets and encourage researchers to share their data
- Semantic interoperability is a persisting issue that needs to be evolved into a practical solution
- We hope that open tools like the present will help the standardization of demand response assessment and enhance the large-scale development of B2G services





- Data-driven key performance indicators and datasets for building energy flexibility: A review and perspectives (Applied Energy, 2023): <u>https://doi.org/10.1016/j.apenergy.2023.121217</u>
- State-of-the-Art Report on Data-Driven Smart Buildings IEA EBC Annex 81: Report (soon published)
- IEA EBC Annex 81 Data-Driven Smart Buildings: Building-to-Grid Applications (accepted to IBPSA Building Simulation Conference: Shanghai 2023)

### Data Driven Smart Building Symposium 2023

## Thank you!



Energy in Buildings and Communities Programme