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Abstract: The soil sorption coefficient (Kd) of glyphosate mainly controls its transport and fate in
the environment. Laboratory-based analysis of Kd is laborious and expensive. This study aimed
to test the feasibility of visible near-infrared spectroscopy (vis–NIRS) as an alternative method for
glyphosate Kd estimation at a country scale and compare its accuracy against pedotransfer function
(PTF). A total of 439 soils with a wide range of Kd values (37–2409 L kg−1) were collected from
Denmark (DK) and southwest Greenland (GR). Two modeling scenarios were considered to predict
Kd: a combined model developed on DK and GR samples and individual models developed on
either DK or GR samples. Partial least squares regression (PLSR) and artificial neural network (ANN)
techniques were applied to develop vis–NIRS models. Results from the best technique were validated
using a prediction set and compared with PTF for each scenario. The PTFs were built with soil
texture, OC, pH, Feox, and Pox. The ratio of performance to interquartile distance (RPIQ) was 1.88,
1.70, and 1.50 for the combined (ANN), DK (ANN), and GR (PLSR) validation models, respectively.
vis–NIRS obtained higher predictive ability for Kd than PTFs for the combined dataset, whereas PTF
resulted in slightly better estimations of Kd on the DK and GR samples. However, the differences
in prediction accuracy between vis–NIRS and PTF were statistically insignificant. Considering the
multiple advantages of vis–NIRS, e.g., being rapid and non-destructive, it can provide a faster and
easier alternative to PTF for estimating glyphosate Kd.

Keywords: visible near-infrared spectroscopy; alternative to wet chemistry analysis; modeling;
multivariate data analysis; pesticide sorption; soil contaminant

1. Introduction

Glyphosate [N-(phosphomethyl) glycine] is a post-emergent and non-selective her-
bicide used worldwide for weed control [1–5]. After application, it sorbs strongly to soil
compared to other pesticides such as 2,4-D, Lindane, and paraquat [6]. However, there is
still a risk that it can leach with soil colloids [7,8]. Hence, glyphosate can be found in ground
and surface water [4,9], presenting a potential threat to aquatic ecosystems [5]. The transfer
and dispersion of a pesticide from terrestrial to aquatic ecosystems are largely controlled by
its sorption to soil [9,10]. Therefore, the soil sorption coefficient (Kd) is an important input
parameter in pesticide fate modeling [11,12]. The Kd of a pesticide depends on the physical
and chemical properties of soil and pesticide [13,14]. Hence, a good understanding of the
pesticide sorption mechanism and consideration of associated soil properties involved in
sorption is required to accurately predict the pesticide retention in soil [15].

Containing three polar functional groups (amine, carboxylate, and phosphate), glyphosate
shows a unique binding mechanism with different components in soil [9,10]. It sorbs
strongly to the soil mineral fractions, having a high affinity for aluminum and iron ox-
ides [9,10,16,17]. In addition, glyphosate can also be adsorbed to the soil organic matter
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(SOM) by forming hydrogen bonds with humic substances [18]. However, several studies
reported that SOM could be a competitor of glyphosate for adsorption sites [19,20]. Apart
from SOM, phosphorous also competes with glyphosate for sorption sites, as the sorp-
tion mechanism for those two elements on clay minerals and amorphous oxides are the
same [10,21,22]. Other soil properties, such as pH and electrical conductivity (EC), may
also influence glyphosate sorption [16,17,22–24]. Hence, the risk of glyphosate leaching
may differ because of the spatial variation of soil properties.

The glyphosate Kd can be estimated using direct laboratory measurement techniques
such as the batch equilibrium test, soil column measurements, etc. [14]. However, those
methods are cost- and time-intensive and not suitable when the glyphosate Kd needs to be
measured on large spatial scales or at high spatial sample resolution. In this connection, a
few studies estimated the glyphosate Kd with a limited number of easily measurable soil
properties. As an example, Paradelo et al. [24] developed PTFs to predict the glyphosate
Kd for two loamy agricultural fields in DK as a function of the best four contributing
parameters (e.g., a combination of clay, Feox, Olsen P, and pH; or clay, OC, Olsen P, and EC).
In contrast to Paradelo’s field-scale study, Dollinger et al. [16] assembled a database of soil
properties (data obtained from 23 studies on soils and sediments of four different continents:
Europe, Asia, North, and South America) and established a PTF to predict the glyphosate
Kd by incorporating only two parameters: clay and cation exchange capacity (CEC).

Visible near-infrared diffuse reflectance spectroscopy (vis–NIRS: 400–2500 nm) is an
alternative to conventional soil testing techniques [25–28]. Soil properties such as clay
minerals, SOM, and iron and aluminum oxides have direct spectral responses in this
electromagnetic range [29]. Since those soil properties have been found to be some of the
main controllers of glyphosate sorption, successful estimation of the glyphosate Kd using
laboratory vis–NIRS has been shown [30]. Soil properties show a large variation across sites,
making laboratory vis–NIRS prediction less accurate, specifically for large spatial-scale
studies compared to field-scale studies [31]. Thus, vis–NIRS analysis requires sophisticated
statistical techniques to correlate soil spectra with soil properties of interest. Partial least
squares regression (PLSR) is a popular linear multivariate data analysis (MVDA) technique
for soil quantitative analysis from the perspective of being rapid and easy to derive and
interpret the outcomes [27]. However, the PLSR method has shortcomings in prediction
accuracy when the soil properties are not linearly correlated with spectral intensities.
Artificial neural network (ANN) is a machine learning technique that potentially can tackle
better non-linearity issues than the PLSR [32,33].

In comparison to a vast number of studies dedicated to the use of vis–NIRS for
the key soil properties’ estimation, so far, only two studies documenting the potential
of vis–NIRS to predict the Kd of the glyphosate have been published. These studies
represent rather small-scale investigations (field and regional) based on small numbers
of samples and with the use of only linear MVDA. Paradelo et al. [30] conducted a field-
scale investigation in a Danish agricultural field by incorporating vis–NIRS with the PLSR
technique. The authors reported successful estimations of Kd values but emphasized a need
for more research, including diverse soil types representing different geographical scales
and samples from both national and field investigations. Moreover, since only 45 samples
were used in their study, only a leave-one-out cross-validation model was developed,
and no validation of model performance was provided using a separate prediction set.
Later, Hermansen et al. [34] reported on a regional-scale study including 26 sites on New
Zealand’s South Island. Successful estimates of glyphosate Kd were obtained, yet as in
the case of the previous study, due to the limited sample number, only cross-validation
was possible. Thus, the results of the above-mentioned studies do not provide estimates
of the robustness of the developed models. To the best of the author’s knowledge, no
studies of vis–NIRS measurements have yet been reported to predict the glyphosate Kd
on soil samples originating from two countries and covering a wide range of Kd values.
Moreover, no studies were found to document the effect of applying models dedicated to
one geographic origin/country in comparison to applying a model combining both on the
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final predictive ability for glyphosate Kd. Moreover, the potential of non-linear modeling
techniques to predict glyphosate Kd has not been investigated yet.

Remote sensing (RS), including multispectral and hyperspectral imagery, is tested
for soil properties estimation on large spatial scales [35–37]. In general, poorer relation-
ships between soil properties and spectral features of satellite imaging spectroscopy as
compared to the relationships between soil properties and laboratory spectroscopy are
achieved due to, for example, the weather conditions, land cover, the spectral resolution
of the sensors, etc. [38]. A few studies reported a successful application of image process-
ing technology to overcome the limitation of using low-resolution images for land-cover
mapping [39,40]. Thus, there is a potential for hyperspectral (e.g., HYPERION), multispec-
tral (e.g., LANDSAT-8), and super spectral (e.g., SENTINEL-2) satellite optical data for
estimating and monitoring of the glyphosate Kd. However, it is crucial to gain a better un-
derstanding of the capabilities of laboratory spectroscopy for the estimation of glyphosate
Kd on a larger scale and to address the above-mentioned knowledge gaps before testing
the RS techniques.

The aim of this study was to test the feasibility of vis–NIRS to estimate the glyphosate
Kd for a wide range of soil types collected from Denmark (DK) and Greenland (GR) in
comparison with PTF. To serve the purpose of the study, predictive models were generated
considering two scenarios: (i) one general model based on the DK and GR soil samples
together and (ii) individual models based on the DK and GR soils separately. Both linear
(PLSR) and non-linear (ANN) techniques were applied to develop vis–NIRS models. A
comparison of the accuracy between those two spectral modeling techniques was carried
out, and the spectral model that resulted in the lowest prediction error was compared with
PTF for each scenario. Finally, a validation of the models was conducted using a subset of
samples not included in the calibration step.

2. Materials and Methods
2.1. Soil Samples

A total of 439 cultivated soil samples from DK (n = 296) and GR (n = 143) representing
different spatial scales (field sampling from 15 DK and GR fields and point sampling across
DK) were collected for this study (Figure 1). A wide variety of fields were included to cover
different agricultural soil types from DK. Soils from the DK fields were sampled from a
depth of 0–25 cm and in a grid of 15 by 15 m. Additionally, single-point sampling was
conducted from a depth of 0–25 cm across DK. The GR soils were sampled from the A
horizon of 0–15 cm depth and in rectangular grids with either 7.5 m or 15 m spacing. Two
of the GR fields were adjacent and, thus, represented by one location (marked with a red
circle in Figure 1b).

The two countries represent soils of different parent materials and the degree of their
variation. The parent material of DK samples is more variable than that of GR samples. It
consists of soils developed on Weichsel glacial deposits, mainly tills, Saale glacial deposits,
and the younger Weichsel outwash plain, marine, sand dune, and salt marsh deposits [41].
According to Moberg [42], illite is the dominant clay mineral for the DK soils. The soil
texture mainly ranges from sandy to silty clay loam. More information about the DK
soil types can be found in Breuning–Madsen and Jensen [41]. The geology of southwest
GR presents a much more uniform characteristic. The GR fields can be separated into
glaciofluvial deposits and aeolian deposits, where all soils are developed on granodioritic
gneiss and granites, and the soil texture mainly ranges from loamy sand to silty loam [43,44].
Since the two countries represent differences in geologies and, thus, differences in soils,
two separate datasets were developed and defined as follows. (i) A DK dataset, including
samples from DK, and (ii) a GR dataset, including samples from GR. Apart from these two
datasets, a combined dataset was also developed, which included samples from both DK
and GR.
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Figure 1. Sampling sites of the (a) Danish (DK) and (b) southwest Greenlandic (GR) soils. Red
squared area shows the location of four GR fields. Red circle denotes the location of two adjacent
fields represented by one location.

2.2. Laboratory Analysis

The soil samples were air-dried, crushed, and passed through a 2-mm sieve. Particle
size distribution was determined by a combination of wet sieving, pipette, and hydrometer
methods, as described by Gee and Or [45]. To determine the TOC on ball-milled samples,
an organic elemental analyzer was coupled with a thermal conductivity detector (Thermo
Fisher Scientific, Waltham, MA, USA) and oxidized the samples at 950 ◦C. As Kd is de-
pendent on both soil mineral and organic fractions, the texture and organic matter were
standardized to 100%. The soil pH was measured in water by following the procedure
described by Thomas [46]. The EC was measured in a soil/water extract of 1:9 by volume.
Oxalate extractable aluminum (Alox), iron (Feox), and phosphorous (Pox) were measured
using the method of Schoumans et al. [47]. The glyphosate Kd was measured with a batch
equilibration test following Soares et al. [48]. The measurements of glyphosate Kd for two
DK fields can be found in Paradelo et al. [24]. The remaining glyphosate Kd measurements
were not published previously.

2.3. Visible Near-Infrared Measurements and Analysis

The vis–NIRS measurements were performed on air-dried and 2-mm sieved samples
with a vis–NIR spectrometer (DS2500, Foss) covering a spectral range of 400–2500 nm with
0.5 nm resolution. A quartz sample cup with a diameter of 7 cm was used for measurement.
The cup was rotated inside the spectrometer and the bottom of the cup was scanned at
seven different positions to collect the reflectance (R). The scanning was performed four
times at each position. The 28 spectra for each soil sample were subsequently averaged
into one representative soil spectrum. The absorbance (A) spectrum for each sample was
calculated by A = [log(R−1)].
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2.4. Data Subdivision and Exploratory Analysis

A simple graphical representation of the data analysis process for predicting the Kd of
glyphosate is presented in Figure 2. The investigated dataset comprises both field and point
samples collected from two countries. As described above, soils collected from Denmark
represent soils developed on different parent materials, whereas Greenlandic samples
present soils of a more uniform geology. The samples within each of the included fields are
naturally of the same parent material; however, in order to avoid the issue of pseudorepli-
cates, they were selected to cover a wide range of soil texture or soil organic carbon and,
consequently, represent wide gradients in Kd values. As parent material affects the compo-
sition of the soil matrix, its effect is further manifested in spectral response. To enable a
selection of representative calibration samples covering this wide range of parent materials,
each dataset was sub-divided into calibration (80% of the total samples) and validation
subsets (remaining 20% of the total samples, samples not included, nor influencing the
calibration procedure) using the Kennard–Stone sample selection method [49] on the soil
spectral data prior to the development of models. Exploratory data analysis was conducted
on reference data for outlier detection and to understand the data structure, correlation
among soil properties, and the potential of each soil property to explain the variability of
Kd (by single linear regression analysis). Exploratory analysis of spectral data, e.g., visual
investigation of soil spectra for spectral outlier detection, and principal component analysis
(PCA) to identify sample groupings and the relationships among samples and variables,
was also carried out [50].
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Denmark; GR, Greenland.

2.5. Pedotransfer Function (PTF)

The simple PTF proposed by Dollinger et al. [16] could not be applied here due to
the unavailability of the CEC measurements for all samples. Hence, a PTF based on
available data in the current study was developed. Forward multiple linear regression
(MLR) analysis was conducted to find a subset of soil properties that best explained the
variation of Kd. Then, the PTFs were built using those soil properties (i.e., texture, OC, pH,
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Feox, etc.). However, a general PTF was generated with all soil samples prior to developing
the PTFs on the combined DK and GR calibration subsets. The purpose of generating a
general PTF was to compare the MLR models’ accuracy developed on the combined dataset
and the combined calibration subset.

2.6. Spectral Modeling

The Matlab program PLS Toolbox version 8.6.2 (Eigenvector Research Inc., Wenatchee,
WA, USA) was used to develop the vis–NIRS models using the combined, DK, and GR
calibration subsets separately. Spectral pretreatment techniques such as scatter corrections
(e.g., multiplicative scatter corrections—MSC and standard normal variate—SNV) and
spectral derivatives (e.g., Savitzky–Golay—SG polynomial derivative filters) were applied
to resolve the overlapping bands and to decrease the scatter and baseline effects [51]. A few
possible combinations of those techniques were also tested. The PLSR and ANN techniques
were used consecutively on both raw and pre-processed spectra for developing spectral
models on each calibration subset.

Partial least squares regression uses data compression techniques and compresses
the highly collinear predictor variables to a few orthogonal factors, designated as latent
variables (LVs) [52]. Those LVs were further used to develop a predictive linear model
by maximizing the covariance between spectral data and reference data of soil properties.
The optimal number of LVs in the PLSR calibration models was defined as the number
of LVs after which RMSE no longer decreased meaningfully [53]. In this study, the PLSR
regression coefficients (RC) were investigated to identify the important wavelength for
predicting glyphosate Kd.

Artificial Neural Network is a machine-learning algorithm designed to simulate how
a human brain analyzes and processes information [54]. An ANN comprises three layers of
interconnected nodes: the input layer (here, vis–NIR spectra), the hidden layer, and the
output layer (soil properties to be predicted). The nodes are called artificial neurons, and
the connections between two nodes are termed edges. Neurons and edges usually have a
weight that is adjusted by the network itself with the training process [32]. The vis–NIR
spectra were compressed with the PLSR to shorten the computation time for the current
study. Then, the ANN analysis was performed with the two nodes in the first layer. The
number of variables for each ANN model was equal to the number of LVs of the respective
PLSR model.

2.7. Models’ Validation

The most optimal spectral and PTF calibration models were validated using the predic-
tion set for each dataset. Further, validation results from the individual DK and GR models
were joined and models’ statistics (RMSEP and R2) were recalculated to compare with
the results of the combined validation model. This was performed for both the PTFs and
vis–NIRS models. The purpose was to enable a fair comparison of validation results using
the same range of Kd values in the validation dataset and understand whether developing
country-based models is more beneficial than using a combined calibration model.

To evaluate the models’ performance, the ratio of performance to interquartile distance
(RPIQ) values were also used along with R2 and RMSE. The RPIQ is generally used
to standardize the value of standard error with respect to the natural dispersion of the
samples [25]. Thus, the RPIQ value is useful for model performance evaluation when the
comparison of model performance is carried out among different datasets for the same
soil properties.

RPIQ = (Q3 − Q1)/RMSE (1)

Here, Q3 − Q1 is the interquartile range (IQR) and RMSE is the root mean square error
which can be calculated from the following equation.

RMSE =

√
∑N

i=1(Actuali − Predictedi)
2

N
(2)
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Here, Actuali and Predictedi are the reference and predicted values of glyphosate Kd,
respectively, for the same sampling unit, and N is the total number of samples.

3. Results
3.1. Exploratory Analysis
3.1.1. Soil Properties

Descriptive statistics of soil properties for the combined, DK, and GR datasets are
summarized in Table 1. Soil samples of the combined dataset encompassed a wide range of
soil properties, specifically in terms of texture (e.g., clay: 2–69%) and Kd (37–2409 L kg−1).
The high gradient in soil properties of the combined dataset was expected due to the wide
spatial distribution of the samples collected from different locations in DK and GR.

Table 1. Descriptive statistics of soil properties for all datasets, including their respective calibration
and validation subsets.

Statistical
Parameters

Clay Silt Sand TOC a Kd
b pH EC c Feox

d Alox
d Pox

d

% L kg−1 (-) mS cm−1 mmol kg−1

Combined dataset, n = 439
(Calibration, n = 351) (Validation, n = 88)

Mean
11 e

(11 f) (11
g)

11
(11) (12)

73
(74) (73)

2.6
(2.7) (2.0)

448
(452) (431)

6.3
(6.3) (6.4)

0.6
(0.7) (0.5)

54.4
(56.2) (47.2)

37.0
(38.5) (31.1)

15.9 (16.6)
(13.1)

Max 69
(69) (40)

43
(43) (42)

94
(94) (93)

8.4
(8.4) (7.6)

2409
(2409)
(2149)

8.3
(8.3) (7.7)

3.9
(3.9) (2.1)

300.0
(300.0)
(190.0)

130.0
(130.0)
(110.0)

52.0
(52.0) (41.0)

Min 2
(2) (2)

2
(2) (2)

11
(11) (13)

0.8
(0.8) (1.1)

37
(37) (93)

4.4
(4.4) (4.8)

0.1
(0.1) (0.2)

8.3
(8.3) (9.9)

11.0
(11.0) (16.0)

1.5
(1.5) (7.1)

Median 10
(9) (13)

11
(11) (14)

74
(75) (70)

2.1
(2.2) (1.9)

378
(369) (423)

6.4
(6.3) (6.6)

0.5
(0.6) (0.5)

44.0
(45.0) (44.0)

33.0
(35.0) (29.0)

12.0
(13.0) (11.0)

CV h 0.8
(0.9) (0.5)

0.6
(0.6) (0.5)

0.2
(0.2) (0.2)

0.5
(0.5) (0.4)

0.7
(0.8) (0.6)

0.1
(0.1) (0.1)

0.6
(0.6) (0.5)

0.8
(0.8) (0.5)

0.4
(0.4) (0.4)

0.5
(0.5) (0.5)

Q1 i 4
(4) (6)

6
(6) (5)

66
(66) (65)

1.6
(1.7) (1.6)

242
(238) (277)

5.7
(5.7) (5.9)

0.4
(0.4) (0.4)

33.0
(32.0) (36.0)

26.0
(26.0) (25.0)

9.9
(10.0) (9.5)

Q3 j 15
(15) (15)

16
(15) (16)

84
(84) (83)

3.0
(3.3) (2.1)

519
(546) (494)

6.8
(6.8) (6.8)

0.8
(0.8) (0.6)

60.0
(62.2) (50.0)

46.0
(48.0) (36.0)

20.0
(21.0) (13.0)

Denmark, n = 296
(Calibration, n = 228) (Validation, n = 68)

Mean
14 e

(15 f) (14
g)

13
(13) (15)

68
(69) (68)

2.2
(2.3) (2.0)

410
(406) (424)

6.6
(6.6) (6.6)

0.7
(0.7) (0.6)

47.4
(48.0) (45.3)

31.7
(32.5) (28.7)

13.1
(13.5) (12.0)

Max 69
(69) (40)

43
(43) (42)

91
(91) (90)

8.4
(8.4) (7.6)

2409
(2409)
(2149)

8.3
(8.3) (7.7)

3.9
(3.9) (2.1)

240.0
(240.0)
(190.0)

130.0
(130.0)
(110.0)

32.0
(32.0) (28.0)

Min 3
(3) (3)

3
(3) (3)

11
(11) (13)

0.8
(0.8) (1.1)

37
(37) (93)

4.9
(4.9) (5.5)

0.2
(0.2) (0.3)

8.3
(8.3) (9.9)

11.0
(11.0) (16.0)

3.9
(3.9) (7.1)

Median 13
(13) (14)

14
(13) (16)

69
(70) (66)

1.9
(1.9) (0.2)

345
(310) (408)

6.7
(6.6) (6.7)

0.5
(0.6) (0.5)

40.0
(39.0) (43.0)

28.0
(28.0) (28.0)

11.0
(11.0) (11.0)

CV h 0.6
(0.7) (0.3)

0.5
(0.5) (0.3)

0.2
(0.2) (0.1)

0.5
(0.5) (0.4)

0.8
(0.9) (0.7)

0.1
(0.1) (0.1)

0.6
(0.6) (0.5)

0.8
(0.9) (0.6)

0.5
(0.5) (0.4)

0.4
(0.4) (0.4)

Q1 i 10
(9) (12)

10
(9) (13)

64
(64) (65)

1.6
(1.6) (1.6)

208
(197) (272)

6.3
(6.2) (6.4)

0.4
(0.5) (0.4)

29.0
(28.0) (34.8)

23.1
(23.7) (22.8)

9.6
(9.8) (9.4)

Q3 j 16
(17) (15)

16
(16) (17)

76
(77) (72)

2.3
(2.4) (2.1)

485
(493) (477)

6.9
(7.0) (6.8)

0.8
(0.9) (0.6)

48.0
(49.0) (47.3)

35.3
(37.3) (30.0)

15.0
(16.0) (13.0)

Greenland, n = 143
(Calibration, n = 123) (Validation, n = 20)

Mean 4 e

(4 f) (3 g)
7

(8) (4)
84

(83) (90)
3.2

(3.4) (2.1)
526

(537) (455)
5.6

(5.6) (5.5)
0.5

(0.5) (0.3)
68.9

(71.4) (53.9)
48.1

(49.5) (39.4)
21.5

(22.3) (16.6)

Max 9
(9) (4)

30
(30) (9)

94
(94) (93)

7.8
(7.8) (4.7)

1414
(1414)
(757)

7.4
(7.4) (6.0)

1.4
(1.4) (0.7)

300.0
(300.0)
(82.0)

97.0
(97.0) (53.0)

52.0
(52.0) (41.0)

Min 2
(2) (2)

2
(2) (2)

58
(58) (80)

0.9
(0.9) (1.2)

57
(57) (197)

4.4
(4.4) (4.8)

0.1
(0.1) (0.2)

22.0
(22.0) (22.0)

18.0
(18.0) (30.0)

1.5
(1.5) (8.2)
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Table 1. Cont.

Statistical
Parameters

Clay Silt Sand TOC a Kd
b pH EC c Feox

d Alox
d Pox

d

% L kg−1 (-) mS cm−1 mmol kg−1

Median 3
(4) (3)

6
(7) (3)

84
(83) (91)

3.0
(3.1) (1.8)

472
(472) (469)

5.5
(5.5) (5.4)

0.4
(0.5) (0.2)

57.0
(60) (55.0)

46.0
(46.0) (38.0)

21.0
(22.0) (14.5)

CV h 0.3
(0.3) (0.2)

0.7
(0.6) (0.5)

0.1
(0.1) (0.0)

0.4
(0.4) (0.5)

0.5
(0.6) (0.4)

0.1
(0.1) (0.1)

0.6
(0.6) (0.5)

0.7
(0.7) (0.3)

0.3
(0.3) (0.2)

0.5
(0.5) (0.5)

Q1 i 3
(3) (2)

4
(4) (3)

79
(78) (89)

2.1
(2.4) (1.5)

321
(319) (376)

5.2
(5.2) (5.3)

0.3
(0.3) (0.2)

46.5
(46.5) (46.5)

38.0
(39.0) (35.3)

11.0
(12.0) (10.7)

Q3 j 4
(4) (3)

9
(9) (4)

90
(89) (92)

4.1
(4.3) (2.2)

656
(669) (517)

5.9
(5.9) (5.8)

0.7
(0.7) (0.3)

74.0
(77.0) (63.3)

54.0
(57.5) (42.0)

29.0
(30.0) (18.0)

a TOC, total organic carbon; b Kd, soil sorption coefficient of glyphosate; c EC, electrical conductivity; d Feox, Alox,
and Pox, oxalate-extractable iron, aluminum, and phosphorous; e statistics of all soil samples for each dataset;
f statistics for the calibration subsets; g statistics for the validation subsets; h CV, coefficient of variation; i Q1,
first quartile (25th percentile); j Q3, third quartile (75th percentile). The sum of the mineral fractions and organic
matter content equals 100%.

The trend of sample distribution demonstrated the presence of a few extreme samples,
especially for the combined and DK datasets. For example, the value of glyphosate Kd
for 50% of the samples fell between 242 and 519 L kg−1 for the combined dataset and
208 and 485 L kg−1 for the DK dataset; nonetheless, the range of glyphosate Kd was
37–2409 L kg−1 for both datasets (Table 1). Those few extreme samples might cause a high
error in predicting the glyphosate Kd and might influence the model statistics. However,
those extreme samples were not removed, as the study’s interest was to fit a calibration
model for soil samples with a wide range of Kd values.

3.1.2. Soil Spectra

Visual investigation on vis–NIR spectra for all soil samples showed no spectral outliers
and noise in any of the datasets (Figure 3a,b). Moreover, the distinction of the soil spectra,
e.g., the distinction between the DK and GR datasets, delineated the variability of soil
samples present in each dataset due to their different physicochemical properties and parent
materials. For example, a distinct feature around 2208 nm was observed for a few DK soil
samples, which was not present in the GR soil samples (Figure 3b). Absorption bands near
2200 nm are referred to as clay minerals such as kaolinite, illite, and smectite [27,28].

The principal component analysis (PCA) revealed that the first two principal compo-
nents (PC1 and PC2) together explained 95% of the spectral variation among soil samples
due to their differences in soil physicochemical properties (Figure 3c,d). Loading of the PC1
(Figure 3e) indicated that information along PC1 may be attributed to OM or clay minerals
that are dominant hydrated oxides of iron, such as goethite, manifested in a broad positive
absorption peak near 600 nm [28,55]. On the other hand, PC2 explained variability in clay
mineralogy with a broad absorption peak near 500 nm (presence of minerals containing
hydrated oxides of iron such as ferrihydrite and hematite), sharp absorption peaks near
1400 (overtones caused by O–H stretch in clay octahedral layer), 1900 (overtones caused
by molecular H2O), and at 2200 nm (combination vibration of water bound in the clay
interlayer lattice) [56,57]. Nevertheless, score plots revealed that the grouping of samples
according to OM or Feox along PC1 and sample groupings according to clay content along
PC2 could not be detected. Spectral responses to OM and clay content not only rely on the
quantity of OM and clay but also on the quality of OM (i.e., humic or fulvic acids) and clay
mineralogy. However, detailed information about clay mineralogy and the quality of OM
for each sampling location was not available for this study.
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Figure 3. Spectral response for (a) the calibration and validation subsets of the combined dataset and
(b) the Danish and Greenlandic datasets; score plots for (c) the calibration and validation subsets
of the combined dataset and (d) the Danish and Greenlandic datasets; and (e) loadings plot for all
soil samples.

3.1.3. Single Linear Regression (SLR) Analysis

The best three SLR model results of the calibration and validation subsets of each
dataset are shown in Figure 4. In general, the trend of correlation was the same for both the
calibration and validation subsets of each dataset (Table A1—see Appendix A). Among all
soil properties, Feox could explain more than 50% of the sorption variability of glyphosate
as a single predictor for all datasets (Figure 4a,d,g). Organic carbon showed a higher
positive correlation with the Kd for all datasets except the GR datasets (Figure 4b,e). Soil
texture was strongly correlated with Kd for the DK dataset compared to the other two
datasets (Table A1). de Jonge et al. [21] found a strong correlation between Pox and Kd,
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while Pox could explain nearly 30% of the variation of Kd of glyphosate only for the GR
dataset (Figure 4h). Other soil properties, such as Alox [18] and pH [17,22], were also
considered important sorbents of glyphosate. However, those two properties showed a
weak correlation with the Kd for this study (Table A1).
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Figure 4. The best three single linear regression models to predict the Kd of glyphosate for the
combined (a–c), Danish (d–f), and Greenlandic (g–i) datasets. TOC, total organic carbon; Kd, soil
sorption coefficient of glyphosate; Feox and Pox, oxalate-extractable iron and phosphorous; R2,
coefficient of determination at significance levels of * 0.05, ** 0.01 and *** 0.001; RMSE, root mean
square error; Symbology, open symbol represents samples from the calibration subset and closed
symbol represents samples from the validation subset for all datasets; Regression line, dashed line for
the calibration subset and solid line for the validation subset of each dataset.
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3.2. Prediction of the Kd of Glyphosate
3.2.1. Pedotransfer Functions

The forward stepwise MLR analysis, including all soil samples for the present study,
revealed that Feox had the highest contribution, followed by Pox, TOC, pH, sand, and EC to
predict the Kd of glyphosate (Table A2—see Appendix A). However, including EC in the
MLR model did not improve the model accuracy significantly. The contribution of other
soil properties was not significant at p < 0.05. Hence, the Kd was predicted using Feox, Pox,
TOC, pH, and sand with an R2 = 0.77 and RMSEC = 160.02 L kg−1 for all samples. The
general PTF developed on all samples is as follows, where the contribution of all variables
was significant at p < 0.001:

Kd = 1529.82 − (5.95 × sand) + (57.75 × TOC) − (132.03 × pH) + (4.71 × Feox) − (13.74 × Pox) (3)

The summary of the forward stepwise MLR analysis for the combined, DK, and GR
calibration subsets is presented in Table 2. The performance of PTF for the combined
calibration subset (Table 2) was nearly the same as the PTF developed on all samples
(Table A2—see Appendix A). For the DK calibration subset, the glyphosate Kd can be
predicted from the linear combination of all soil properties except silt, sand, and Alox (not
significant at p < 0.05). However, adding clay into the PTF did not improve prediction
accuracy significantly because RMSEC values only decreased by 1.6% if clay was included
in the PTF for the DK calibration subset (Table 2). Soil properties such as clay, silt, TOC, and
EC were not significant (at p < 0.05) in terms of predicting the Kd of glyphosate for the GR
calibration subset. Furthermore, pH was removed due to not improving the performance
of PTF significantly for the GR soils.

Table 2. Summary of the forward stepwise multiple linear regression (MLR) analysis to predict the
Kd (L kg−1) when more and more soil properties are added one by one. The MLR model statistics are
shown for the calibration subset of each dataset.

Combined Denmark Greenland

Variables R2 a RMSEC
b Variables R2 a RMSEC

b Variables R2 a RMSEC
b

Constant 344.00 Constant 358.29 Constant 298.92
Feox 0.59 220.15 Feox 0.61 225.18 Feox 0.57 197.24
Pox 0.64 206.68 Pox 0.70 197.36 Pox 0.72 159.21

TOC 0.71 185.21 TOC 0.78 169.07 Sand 0.79 138.13
pH 0.73 179.16 EC 0.81 156.71 Alox 0.80 135.40

Sand 0.76 168.15 pH 0.83 150.15 pH 0.81 133.56
EC 0.77 164.92 Clay 0.84 147.63

a R2, coefficient of determination for the calibration subsets; b RMSEC, root mean square error for the
calibration subsets.

The PTFs for all three calibration subsets are provided in Table A3. The highest
contributing two soil properties (Feox and Pox) in PTF were the same for all datasets
(Table 2). Additionally, the third highest contributor was TOC for all datasets except the GR
dataset (Table 2), which also agrees with the findings of the single linear regression model
(see previous section).

The PTF generated from the calibration subset of each dataset was used for validation
(Figure 5). The DK and GR calibration PTFs performed better than the combined calibration
PTF (RPIQ = 1.97, 2.58, and 1.83, respectively). However, GR validation PTFs had the lowest
RPIQ among all validation PTFs. Two samples with the highest Kd values influenced the
combined and DK validation PTFs’ performance (Figure 5d,e). The R2 and RMSEP values
decreased, and RPIQ increased when those two extreme samples were removed from the
two above-mentioned PTFs. As an example, R2, RMSEP, and RPIQ shifted from 0.84 to 0.45,
124.67 to 107.64 L kg−1, and 1.74 to 2.02, respectively, when those two extreme samples
were removed from the combined validation PTF.
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3.2.2. Spectral Model

While developing the vis–NIRS models, the effect of spectral pre-processing techniques
on both the PLSR and ANN calibration models was evaluated in comparison with the
respective model’s performance on raw spectra (Table 3). For the combined dataset, the best
PLSR model was obtained for the SG 1st derivative + SNV pretreatment with a reduction
of 9% RMSECV compared to the model based on raw spectra. On the contrary, the ANN
model performed the best on raw spectra compared to the pre-processed spectra. The
application of spectral pre-processing on the DK calibration subset did not improve the
model’s accuracy, and thus, the best PLSR and ANN models were obtained on raw DK
spectra. However, the pre-processing techniques helped to reduce model complexity
by decreasing the number of LVs (except MSC) for the DK set. For the GR calibration
subset, the best PLSR model was obtained on raw spectra. Although the SG 2nd derivative
pretreatment slightly improved the ANN model of the GR calibration subset compared to
the model developed on the raw spectra, it increased the number of LVs by 1. Therefore,
the ANN model developed on raw spectra was considered the best ANN model for the GR
set. The use of ANN resulted in improved calibration models for the combined and the DK
sets. On the contrary, a slightly better performance of PLSR over ANN was reported for
the GR calibration subset. As mentioned above, the optimal number of LVs was different
depending on the dataset and pretreatment. In general, higher LVs were selected for the
combined and the DK models. This is a result of the higher variability of these two types of
sets as compared to the GR dataset, which is much more local.
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Table 3. The effect of spectral pre-processing on partial least squares regression (PLSR) and artificial
neural network (ANN) calibration models of each dataset to predict the Kd of glyphosate.

Pre-Processing
Technique No of LVs a R2 b RMSECV

cin L kg−1 RPIQ d

Combined dataset (n = 351)

No pre-processing 14 0.66 e (0.81
f) 199.52 (150.50) 1.54 (2.05)

SNV g 13 0.57 (0.70) 234.29 (189.83) 1.31 (1.62)
MSC h 11 0.57 (0.68) 226.18 (198.45) 1.36 (1.55)

SG 1st derivative i 11 0.69 (0.79) 193.09 (158.30) 1.60 (1.95)
SG 2nd derivative i 11 0.62 (0.76) 211.80 (166.83) 1.45 (1.85)

SG 1st derivative + MSC 11 0.64 (0.74) 206.82 (176.67) 1.49 (1.74)
SG 1st derivative + SNV 13 0.73 (0.77) 182.44 (164.52) 1.69 (1.87)

Danish dataset (n = 228)

No pre-processing 15 0.80 (0.84) 162.44 (143.14) 1.82 (2.07)
SNV 14 0.70 (0.80) 201.36 (163.55) 1.47 (1.81)
MSC 15 0.78 (0.80) 168.68 (157.71) 1.75 (1.88)

SG 1st derivative 10 0.77 (0.82) 172.19 (151.87) 1.72 (1.95)
SG 2nd derivative 11 0.77 (0.83) 173.63 (145.63) 1.70 (2.05)

SG 1st derivative + MSC 12 0.74 (0.82) 182.39 (151.72) 1.62 (1.95)
SG 1st derivative + SNV 09 0.64 (0.77) 221.55 (173.55) 1.34 (1.71)

Greenlandic dataset (n = 123)

No pre-processing 03 0.70 (0.68) 162.07 (168.14) 2.16 (2.08)
SNV 07 0.66 (0.63) 183.60 (183.23) 1.91 (1.91)
MSC 03 0.48 (0.46) 215.18 (218.69) 1.63 (1.60)

SG 1st derivative 03 0.66 (0.66) 173.78 (173.84) 2.01 (2.01)
SG 2nd derivative 04 0.70 (0.69) 162.99 (166.52) 2.15 (2.10)

SG 1st derivative + MSC 04 0.59 (0.59) 191.90 (190.71) 1.82 (1.84)
SG 1st derivative + SNV 03 0.67 (0.68) 172.63 (171.70) 2.03 (2.04)

a LVs, latent variables; b R2, coefficient of determination for cross-validation; c RMSECV, root mean square error
for cross-validation; d RPIQ, ratio of performance to interquartile range for cross-validation; e PLSR model results;
f ANN model results; g SNV, standard normal variate; h MSC, multiple scatter correction; i SG 1st and 2nd
derivative, Savitzky–Golay 1st and 2nd derivative.

The robustness of the best PLSR and ANN calibration models obtained for each
dataset was tested further with the validation subsets (Table A4—see Appendix A). The
ANN validation model outperformed the PLSR validation model for both the combined
and DK datasets. However, the ANN validation model resulted in a higher reduction
of standard error from the respective PLSR validation models for the combined dataset
(29%) than the DK dataset (7%). In contrast, higher accuracy was obtained for the PLSR
than the ANN validation model (R2 = 0.69 and RMSEP = 93.90 L kg−1 for PLSR while
R2 = 0.62, RMSEP = 97.98 L kg−1 for ANN) of the GR dataset. Figure 6 shows the output
of calibration models (spectral models that generated the highest prediction accuracy) with
their respective regression coefficient plots and validation results of each dataset.

The combined validation model predicted the glyphosate Kd more accurately than
the DK validation model (Figure 6d,e). The presence of two samples with the highest Kd
values in the combined and DK validation subsets (Figure 6d,e) had a clear influence on
the validation models’ performance, similar to PTF. The GR validation model resulted in
the lowest predictive ability of all three models when comparing RPIQ values.

The RC plot of a vis–NIRS model exhibits important wavelengths for predicting a
specific independent variable [58]. The RC graphs are extracted from the PLSR models as
spectra compression with PLSR was performed prior to each ANN analysis. For example,
the best spectral model of the combined dataset was the ANN model developed on the raw
spectra. Hence, the RC of the combined dataset was shown for the PLSR model developed
on the raw spectra (Figure 6g). The combined RC plot depicted peaks around 410, 450,
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470, 580, and 800 nm in the visible region and peaks around 1100, 1390, 1885, 1900, 2020,
2200, 2290, and 2400 nm in the NIR region of the electromagnetic spectrum (Figure 6g).
The RC plot of the DK model exhibited a few prominent peaks in the visible region around
450, 500, and 610 nm and prominent peaks in the NIR region around 1100, 1900, 2200, and
2290 nm (Figure 6h). Unlike the combined and DK plots, the RC plot of the GR dataset
demonstrated broad absorption peaks in the visible region near 600 and 900 nm (Figure 6i).
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3.2.3. Assessing the Advantages of Developing Individual Models

The Kd values estimated by the individual validation models were joined together.
For the PTFs, the recalculated error of the joint set indicated that the RMSEp for the Kd of
glyphosate improved when using prediction values from the individual models rather than
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the combined model (Figure 7a). However, the Mann–Whitney rank sum test indicated that
the accuracy of the estimated Kd of glyphosate by the individual models pulled together
was not significantly different from the accuracy of the combined model for PTFs. Likewise,
the individual vis–NIRS models together generated almost similar RMSEP to the combined
vis–NIRS model (Figure 7b). Moreover, the differences in prediction accuracy between the
combined and joint individual vis–NIRS models were not significant (p = 0.14).
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4. Discussion
4.1. Evaluation of Exploratory Analysis Results

The descriptive statistics of soil properties depicted that the calibration subset repre-
sented the entire dataset well covering the full range of soil properties (Table 1). This was
found to be true for all three datasets. The output of spectral responses and score plots
(Figure 3a,c) also agrees with the above finding. Interestingly, spectra for almost all the
GR samples overlapped with the DK soil spectra (Figure 3b), and the scores of most of the
GR samples overlapped with the scores of DK samples (Figure 3d). The most plausible
explanation for that overlap can be the similarities in mineralogical characteristics for those
DK and GR soil samples.

The SLR analysis showed that Feox had the highest correlation with Kd for all datasets
(Figure 4). Likewise, other studies have reported amorphous iron oxide as an important
sorbent of glyphosate [21,59,60]. Sprankle et al. [61] reported the affinity of glyphosate
to clay. However, clay was not found to be an important predictor of Kd for each of the
datasets, which can be a consequence of the strong correlation between clay and sand
(Table A2—see Appendix A). Piccolo et al. [18] reported that glyphosate could be adsorbed
in humic extracts. The soil organic fractions could explain the variation of glyphosate Kd
for all datasets except the GR dataset (Figure 4). Since the turnover and mineralization
of organic matter in GR is less advanced, organic matter was expected to hold fewer
sorption sites available to glyphosate, which was considered a possible reason for having
no significant correlation of TOC with Kd.

4.2. Evaluation of Kd Predictions by PTF and Vis–NIRS

The best five (combined and DK) or best four (GR) parameters were used to produce
an acceptable PTF prediction of glyphosate Kd (Tables 2 and A3). Developing simple PTF
with easily measurable two or three parameters is out of this study’s scope. However, an
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overview of the performance of PTF with easily measurable soil properties to predict the
glyphosate Kd can be found in Table 2. For example, Kd can be predicted with an R2 = 0.64
and RMSEC = 206.68 L kg−1 using only Feox and Pox for the combined calibration subset
(Table 2). Interestingly, Pox was the second most important predictor in PTFs (Table 2)
despite its weak correlation to Kd for both the combined and DK calibration subsets
(Table A1). The Pox was also found to be a controlling factor for the variation in the Kd of
glyphosate, together with Alox and pH, in acidic soils of New Zealand [34]. Soil properties
such as TOC and Feox had significant contributions to predicting Kd (Table 2 and Figure 4)
for the combined and DK calibration subsets. The correlation of Pox with those two above-
mentioned soil properties (Table A1) might be responsible for the contribution of Pox to
predict Kd for the combined and DK calibration PTFs. Other studies have also reported the
significant contribution of Feox [24,34,62] and OC [63] for phosphorus retention in soil.

The effect of pre-processing on vis–NIRS calibration models differed depending on
the dataset and modeling technique applied (Table 3). Improved model results after the
application of pre-processing were reported only for the combined dataset modeled with
PLSR. The applied pre-processing techniques included the 1st derivative and standard
normal variate, which correct for baseline effects in spectra for the purpose of removing
nonchemical effects and removing multiplicative interferences of scatter and particle size
effects from spectral data, respectively [51]. Hermansen et al. [34] also reported improved
PLSR results for Kd after the application of spectral pretreatments (2nd derivative) for a
heterogenous dataset from New Zealand. In line with our findings, Paradelo et al. [30] did
not improve the calibration results by applying pretreatment to their dataset collected from
a single field. This indicates that the ANN technique can account for both baseline and
multiplicative interferences present in the dataset representing a mixture of soil samples
affected by different forming factors related to the geographic origin.

Likewise, the ANN method worked best for the combined and DK dataset, whereas
PLSR provided the best estimations of Kd for the GR set. This is in line with the previous
argumentation. The GR set is smaller, more homogenous, and consists of normally dis-
tributed data from four fields only; thus, the best results with the linear PLSR. In turn, the
more complex models based on the combined and the DK sets required the application of
the ANN technique.

The sorption coefficient for glyphosate is not a spectrally active soil component. It
is, therefore, interesting to understand which wavelengths contribute to explaining its
variability. In the combined RC plot (Figure 6g), the peaks in the visible region can be
associated with the electronic transitions of iron oxides (e.g., the absorption band for
goethite: 409, 427, 480, and 490 nm and for hematite: 510, 531, 620 nm) [57,64] or OM (the
absorption band for OM: 570–700 nm and for C–H: 825 nm) [55,65,66]. Similar spectral
regions (400–700 nm) were selected in the Kd calibration model by Paradelo et al. [30] and
Hermansen et al. [34]. The peaks in the NIR region can be assigned to the absorptions
of molecular O–H bonds or O–H bonds inside mineral lattice or O–H bonds with metal
oxides (near 1400, 1900, 2200 nm) and C–H bonds (near 2400 nm) [56,65–67]. The peaks
near 1400 and 1900 nm were also reported in the Kd models by Paradelo et al. [30], whereas
Hermansen et al. [39] also found the spectral range between 2160 and 2240 nm import in
their Kd calibration model. In the DK model, the few prominent peaks in the visible region
(Figure 6h) might be associated with the presence of iron oxides [28,64], and the prominent
peaks in the NIR region might be indicative of clay mineralogy [27,28,66]. The broad
absorption peaks in the visible region (Figure 6i) can be assigned to iron oxides or OM
for the GR samples [55,57,64]. The important wavelengths used in the developed models
and as indicated by the RC are aligned with the existing knowledge on glyphosate and
its behavior in soils as well as the results from the developed PTFs. The vis–NIRS models
of glyphosate Kd rely on the spectrally active components which glyphosate is known to
have a high affinity for, such as iron oxides and clay minerals [9,10,16,17,21,22]. Thus, the
presence of peaks in the visible range and in the regions typical for OH bonds in the RC of
all three calibration models. Moreover, the peaks assigned to SOM in the combined and the
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DK model confirm that the prediction of Kd additionally relies on spectrally active humic
substances to which glyphosate can adsorb [18].

The prediction accuracy obtained for the best vis–NIRS model was higher than the PTF
for the combined dataset, while this was not the case for the DK and GR models. However,
the results of those two approaches were not significantly different (p > 0.1, according to the
Mann–Whitney rank sum test) for each dataset, and thus, may also be attributed to random
errors. The calibration results presented here show similar yet a bit higher predictive ability
than those in the regional scale study by Hermansen et al. [34]. In our study, the RPIQ
values for all three models were >2.05, whereas Hermansen et al. [34] obtained an RPIQ
of 1.79 for the cross-validation PLSR model of glyphosate Kd. On the contrary, a higher
accuracy than in our study was reported by Paradelo et al. [30] (RPIQ = 2.7) and can be
attributed to a much lower variability because of utilizing data from one field only.

5. Conclusions

The study investigated the potential of vis–NIRS to predict the soil sorption coefficient
(Kd) of glyphosate in comparison to PTF for Danish (DK) and southwest Greenlandic
(GR) soils. The nature of the dataset allowed us to investigate the effects of developing
a combined calibration model containing the DK and GR samples as well as two models
dedicated to the two geographic origins and test their robustness using a prediction set.
We obtained successful estimates for glyphosate Kd and found that the Kd for the DK and
GR soils can be predicted from the combined model as accurately as the individual models.
This implies no need to develop individual models representative of one country or a
specific parent material. The comparison of linear (PLSR) and non-linear (ANN) techniques
for Kd modeling revealed that PLSR can be used for smaller and more homogenous datasets,
whereas in the case of datasets combining samples from several geographic origins, the
application of ANN for Kd estimation is more advantageous. Moreover, when applying
ANN to such a complex dataset, there is no need to apply pre-processing techniques
accounting for both physical and chemical interferences. Finally, the predictive ability of
the glyphosate Kd for vis–NIRS models was statistically insignificantly lower compared
to PTFs.

Considering the multiple advantages of vis–NIRS, such as short measurement time,
little sample preparation, and the possibility to analyze several soil properties simultane-
ously, including those needed for the development of PTFs, this technique appears to be a
great alternative to the PTF for the estimation of glyphosate Kd.

However, as the performance of vis–NIRS is dataset dependent, these results may not
be valid for other countries with more pronounced differences in soil types, parent material,
and mineralogy. Further studies incorporating soil samples from several countries should
be conducted to confirm our findings, and the possibility of using satellite imaging data to
cover larger scales should be tested.
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Appendix A

Table A1. Pearson’s correlation matrix of soil physicochemical properties for the combined, Danish,
and Greenlandic datasets (including their calibration and validation subsets).

Clay Silt Sand TOC a pH EC b Feox
c Alox

c Pox
c Kd

d

Combined dataset, n = 439
(Calibration, n = 351)
(Validation, n = 88)

Clay 1
0.66 ***,e,f

(0.62 ***,g)
(0.95 ***,h)

−0.92 ***
(−0.92 ***)

(−0.98
***)

−0.08
(−0.10)
(0.12)

0.58 ***
(0.55 ***)
(0.76 ***)

0.37 ***
(0.36 ***)
(0.52 ***)

0.33 ***
(0.34 ***)
(0.30 **)

−0.29 ***
(−0.27 ***)

(−0.45
***)

−0.19 ***
(−0.17 **)
(−0.34 **)

0.32 ***
(0.31 **)
(0.37 **)

Silt 1

−0.87 ***
(−0.85 ***)

(−0.98
***)

−0.06
(−0.06)
(0.10)

0.49 ***
(0.45 ***)
(0.73 ***)

0.35 ***
(0.35 ***)
(0.51 ***)

0.16 ***
(0.17 **)
(0.23 *)

−0.31 ***
(−0.28 ***)

(−0.43
***)

−0.17 ***
(−0.14 *)
(−0.34 **)

0.21 ***
(0.20 **)
(0.30 **)

Sand 1
−0.09

(−0.08)
(−0.23 *)

−0.55 ***
(−0.51 ***)

(−0.73
***)

−0.43 ***
(−0.42 ***)

(−0.55
***)

−0.34 ***
(−0.35 ***)
(−0.32 **)

0.24 ***
(0.21 ***)
(0.43 ***)

0.13 ***
(0.10)

(0.30 **)

−0.36 **
(−0.36 **)
(−0.40 **)

TOC 1
−0.29 ***

(−0.31 ***)
(−0.13)

0.21 ***
(0.17 **)
(0.31 **)

0.32 ***
(0.30 ***)
(0.47 ***)

0.49 ***
(0.52 ***)

(0.02)

0.41 ***
(0.40 ***)
(0.30 **)

0.40 ***
(0.38 ***)
(0.55 ***)

pH 1
0.37 ***

(0.38 ***)
(0.37 ***)

−0.13 **
(−0.13 *)
(−0.05)

−0.43 ***
(−0.42 ***)

(−0.51
***)

−0.26 ***
(−0.25 ***)

(−0.36
***)

−0.21 ***
(−0.23 ***)

(−0.06)

EC 1
0.18 ***
(0.15 **)
(0.36 ***)

−0.06
(−0.07)

(−0.24 *)

0.13 **
(0.12 *)
(−0.01)

0.02
(0.00)
(0.20)

Feox 1
0.18 ***

(0.18 ***)
(0.09)

0.10 *
(0.08)
(0.18)

0.77 ***
(0.77 ***)
(0.81 ***)

Alox 1
0.54 ***

(0.51 ***)
(0.63 ***)

0.10 *
(0.12 *)
(−0.03)

Pox 1
−0.15 **

(−0.16 **)
(−0.15)

Kd 1

Denmark, n = 296
(Calibration, n = 228)
(Validation, n = 68)

Clay 1
0.58 ***

(0.56 ***)
(0.90 ***)

−0.93 ***
(−0.93 ***)

(−0.97
***)

0.15 **
(0.14 *)
(0.33 **)

0.40 ***
(0.40 ***)
(0.48 ***)

0.32 ***
(0.32 ***)
(0.33 **)

0.74 ***
(0.75 ***)
(0.67 ***)

−0.07
(−0.05)

(−0.33 **)

0.13 *
(0.18 **)

(−0.33 **)

0.57 ***
(0.57 ***)
(0.67 ***)

Silt 1

−0.82 ***
(−0.81 ***)

(−0.96
***)

0.01
(0.01)
(0.16)

0.35 ***
(0.33 ***)
(0.48 ***)

0.23 ***
(0.24 ***)
(0.31 **)

0.52 ***
(0.53 ***)
(0.51 ***)

−0.32 ***
(−0.32 ***)
(−0.30 *)

−0.28 ***
(−0.25 ***)

(−0.41
***)

0.45 ***
(0.43 ***)
(0.52 ***)

Sand 1
−0.25 ***

(−0.24 ***)
(−0 37 **)

−0.39 ***
(−0.38 ***)

(−0.48
***)

−0.33 ***
(−0.34 ***)
(−0.37 **)

−0.76 ***
(−0.77 ***)

(−0.67
***)

0.13 *
(0.10)

(0.31 *)

0.03
(−0.02)
(0.34 **)

−0.64 ***
(−0.64 ***)

(−0.69
***)

TOC 1
−0.15 **
(−0.16 *)
(−0.09)

0.14 *
(0.11)

(0.27 *)

0.34 ***
(0.30 ***)
(0.61 ***)

0.42 ***
(0.49 ***)
(−0.11)

0.07
(0.07)

(−0.02)

0.54 ***
(0.52 ***)
(0.73 ***)
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Table A1. Cont.

Clay Silt Sand TOC a pH EC b Feox
c Alox

c Pox
c Kd

d

pH 1
0.27 ***

(0.29 ***)
(0.14)

0.10
(0.10)
(0.09)

−0.25 ***
(−0.22 ***)

(−0.41
***)

−0.01
(0.03)

(−0.22)

−0.13 *
(−0.15 *)
(−0.05)

EC 1
0.36 ***

(0.34 ***)
(0.52 ***)

−0.02
(−0.02)
(−0.15)

0.10
(0.10)

(−0.04)

0.12 *
(0.10)

(0.30 *)

Feox 1
−0.04

(−0.05)
(0.02)

0.31 ***
(0.32 ***)

(0.22)

0.78 ***
(0.78 ***)
(0.83 ***)

Alox 1
0.45 ***

(0.41 ***)
(0.65 ***)

−0.03
(−0.03)
(−0.06)

Pox 1
−0.05

(−0.04)
(−0.11)

Kd 1

Greenland, n = 143
(Calibration, n = 123)
(Validation, n = 20)

Clay 1
0.79 ***

(0.78 ***)
(0.59 **)

−0.85 ***
(−0.83 ***)

(−0.74
***)

0.41 ***
(0.34 ***)
(0.69 ***)

0.11
(0.12)

(−0.43)

0.47 ***
(0.40 ***)
(0.76 ***)

0.28 ***
(0.26 **)
(0.04)

0.62 ***
(0.59 ***)

(0.42)

0.31 ***
(0.25 **)
(0.67 **)

0.26 **
(0.26 **)
(−0.21)

Silt 1

−0.93 ***
(−0.93 ***)

(−0.96
***)

0.36 ***
(0.29 **)
(0.88 ***)

0.13
(0.13)
(0.03)

0.53 ***
(0.48 ***)
(0.87 ***)

−0.12
(−0.17)
(−0.01)

0.50 ***
(0.45 ***)
(0.67 **)

0.50 ***
(0.46 ***)
(0.84 ***)

−0.06
(−0.08)
(−0.20)

Sand 1

−0.66 ***
(−0.60 ***)

(−0.97
***)

−0.11
(−0.11)
(0.14)

−0.68 ***
(−0.64 ***)

(−0.96
***)

−0.02
(0.02)
(0.07)

−0.57 ***
(−0.53 ***)
(−0.59 **)

−0.57 ***
(−0.53 ***)

(−0.86
***)

−0.01
(0.01)
(0.24)

TOC 1
−0.02

(−0.03)
(−0.20)

0.70 ***
(0.65 ***)
(0.96 ***)

0.16
(0.14)

(−0.17)

0.38 ***
(0.32 ***)
(0.47 *)

0.52 ***
(0.47 ***)
(0.80 ***)

0.03
(0.01)

(−0.24)

pH 1
0.43 ***

(0.46 ***)
(−0.11)

−0.09
(−0.10)
(−0.05)

−0.04
(−0.05)
(−0.03)

0.11
(0.12)

(−0.20)

−0.17 *
(−0.19 *)

(0.06)

EC 1
0.00

(−0.04)
(−0.18)

0.26 **
(0.19 *)
(0.50 *)

0.57 ***
(0.54 ***)
(0.82 ***)

−0.13
(−0.16)
(−0.31)

Feox 1
0.30 ***
(0.28 **)
(0.27)

−0.29 ***
(−0.33 ***)

(−0.06)

0.75 ***
(0.75 ***)
(0.64 **)

Alox 1
0.42 ***

(0.38 ***)
(0.67 **)

0.18 **
(0.17)
(0.04)

Pox 1
−0.58 ***

(−0.62 ***)
(−0.52 *)

Kd 1

a TOC, total organic carbon; b EC, electrical conductivity; c Feox, Alox, and Pox, oxalate-extractable iron, aluminum,
and phosphorous; d Kd, soil sorption coefficient of glyphosate; e Pearson correlation coefficient at significance
levels of * 0.05, ** 0.01 and *** 0.001; f results of all soil samples for each dataset; g results for the calibration subsets;
h results for the validation subsets.
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Table A2. Results for the forward stepwise MLR analysis to predict the Kd (L kg−1) of glyphosate
with all samples for each dataset.

All Samples of the Combined Dataset All Samples of the Danish Dataset All Samples of the Greenlandic Dataset

Variables R2 a RMSE b Variables R2 a RMSE b Variables R2 a RMSE b

Constant 329.73 Constant 343.52 Constant 284.81
Feox 0.59 211.29 Feox 0.61 214.36 Feox 0.56 188.76
Pox 0.64 197.25 Pox 0.71 186.94 Pox 0.71 154.84

TOC 0.72 176.07 TOC 0.78 161.01 Sand 0.79 132.69
pH 0.73 170.73 EC 0.82 148.45 Alox 0.80 129.77

Sand 0.77 160.02 pH 0.83 141.70 pH 0.81 128.07
EC 0.78 156.56 Clay 0.84 139.71

a R2, coefficient of determination; b RMSE, root mean square error.

Table A3. Pedotransfer functions to predict the Kd (L kg−1) of glyphosate for all the calibration subsets.

Dataset PTFs

Combined calibration subset Kd
a = 1524.34 − (5.87 × sand) + (55.62 × TOC b) −

(131.54 × pH) + (4.56 × Feox
c) − (13.39 × Pox

c)

Danish calibration subset Kd = 761.25 + (76.46 × TOC) − (78.32 × pH) − (129.20
× EC d) + (7.46 × Feox) − (20.70 × Pox)

Greenlandic calibration subset Kd = 1521.14 − (11.53 × sand) + (3.12 × Feox) + (2.82 ×
Alox

c) − (17.52 × Pox)
a Kd, soil sorption coefficient of glyphosate; b TOC, total organic carbon; c Feox, Alox, and Pox, oxalate-extractable
iron, aluminum, and phosphorous; d EC, electrical conductivity; all soil properties are significant at p < 0.001
except Alox in the Greenlandic dataset (p < 0.05).

Table A4. The summary of validation results for the best PLSR and ANN calibration models of
each dataset.

Dataset No of LVs a R2 b RMSEP
c

in L kg−1 RPIQ d

Combined 13 e (14 f) 0.69 (0.81) 162.01 (114.65) 1.34 (1.89)
Denmark 15 (15) 0.82 (0.85) 130.12 (120.83) 1.58 (1.70)
Greenland 03 (04) 0.69 (0.62) 93.90 (97.98) 1.50 (1.44)

a LVs, latent variables; b R2, coefficient of determination for validation subset; c RMSEP, root mean square error
for prediction; d RPIQ, ratio of performance to interquartile range; e PLSR model results; f ANN model results.
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