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Abstract: The annual target reliability level for structural components is given as β = 3.3 in the main
design standard for wind turbines IEC 61400-1 ed. 4. However, since the same safety factors are
used for a range of load cases and limit states, deviations in the obtained reliability level can be
expected, and it should be considered how to handle this in relation to the development of the IEC TS
61400-9 on probabilistic design measures. In this paper, structural reliability analyses were performed
for components designed using safety factors for a range of extreme load cases, and by using the
correlation between limit states for different years, the development of the reliability level over time
was calculated. A relative risk-based assessment was applied to assess the optimal target reliability
level and safety factors. The risk-based assessment explicitly includes the uncertainties, benefits,
and costs and can motivate differentiation of the annual reliability level between load cases. Annual
reliability indices were found to be in the range of 2.9–3.4, and although this includes values below
the target of 3.3, it was also found that the optimal reliability indices were in the same range. The
variation in reliability level can be motivated since the optimal target reliability is found to be lower
than the current target for load cases with high correlation, as this causes the lifetime reliability level
to be comparable to that of other extreme load cases with less correlation.

Keywords: target reliability; risk-based assessment; extreme load; structural reliability analysis;
probabilistic design

1. Introduction

The drive for cost reductions within wind energy motivates the search for ways to
achieve optimized and less conservative wind turbine designs while still fulfilling basic
reliability requirements. For some optimization tasks (e.g., regarding the blades [1] and
wind farm layout [2]), both the power production and material usage need to be considered,
whereas for structural optimization of the jacket topology [3] or monopile cross-section [4],
the production is not affected. Ideally, a holistic perspective should be applied, where
expenses for design, manufacturing, transport, installation, and maintenance are included.
However, regarding the structural design of components, optimization typically implies
finding the smallest design parameter, i.e., cross-section, which fulfills the design criteria.

Currently, a deterministic design procedure is generally applied, where load cases
and safety factors from the main design standard IEC 61400-1 [5] are used. One of the
possible ways to achieve cost reductions is through the use of probabilistic design methods,
where data from tests, measurement campaigns, and operational experience can be used to
reduce uncertainties, thus allowing for a less conservative design [6]. Previous research has
examined the relationship between safety factors and reliability level concerning fatigue of
welded and cast steel details [7], fatigue reliability of large monopiles [8], fatigue reliability
for concrete sub-structures [9], and extreme load effects from combined wind and wave
loading on offshore wind turbines in [10] and extended to large monopiles in [11]. Further,
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reliability analyses may be applied in relation to the integrity management of wind turbines,
e.g., by performing reliability updating for structures using a digital twin [12] or in relation
to risk-based blade O&M [13]. Some studies suggest using surrogates as part of a reliability-
based design procedure to increase computational efficiency [14] and perform efficient
uncertainty propagation [15].

For the reliability-based design of wind turbines, a target reliability level should first
be defined. For wind turbines, lower reliability levels are accepted compared to many
other civil engineering structures, such as buildings, bridges, and oil and gas facilities,
because the failure of a wind turbine does not lead to a large probability of fatalities or
human injuries, it does not pose a large environmental threat, and it does not pose large
consequences to the society. For the design of wind turbines, the main risk is, therefore, the
economic loss due to the loss of power production. This means that the reliability level can
be determined mainly based on economic risk-based considerations [16].

Until edition 4 of the main design standard for wind turbines IEC 61400-1 [5] was
published in 2019, the reliability requirements were given only indirectly through the safety
factors [17]. During the development of ed. 4 of IEC 61400-1 [5], a reliability background
was developed to motivate the safety factors [17]. An annual reliability index β = 3.3
was selected as the target for component class 2 based on ISO 2394 [18], and for selected
design load cases (DLCs), safety factors were calibrated such that the target reliability level
would be reached. However, the same partial safety factors are applied for a wider range
of load cases, components, and environmental conditions, and this will typically result
in variation in the obtained reliability level [19]. This implies that for some DLCs, the
reliability level implicitly given through the safety factors is lower than the target β = 3.3,
and in these cases, a reliability-based design will often lead to a more expensive design
than a design based on safety factors [20]. Due to the demand for cheaper wind turbines, in
practice, the cheaper design based on safety factors will be used. However, another option
is to accept the lower reliability level implicitly given through the safety factors also for
reliability-based design, thus allowing further optimization of the design if uncertainties
can be reduced [21]. The lower reliability level should not be accepted by default but only
if it can be justified based on a risk-based optimization that is more detailed than the model
behind the original background for β = 3.3 [22].

In the background document for the safety factors in IEC 61400-1 [17], the target
β = 3.3 is motivated mainly by the table of annual reliability indices in ISO 2394 [18] and
JCSS Probabilistic Model Code [23], where the reliability target depends on the relative
consequence of failure and the relative costs of increasing the reliability. In the background
document, it is noted that the relative cost of increasing reliability is large because the cost
of energy is important and that the consequences of failure are only economic. Further,
it is noted that wind turbines are designed to the IEC wind turbine classes, thus not all
wind turbines are designed to the limit. The table in [18,23] was originally developed by
Rackwitz [22] and was elaborated by Fischer et al. [24]. The underlying assumption is
that the failure rate and obsolescence rate are constant over time, and in case of failure
or obsolescence, new structures are systematically constructed. This means that a risk-
based optimization can be made using an infinite time horizon, and the benefits can be
disregarded. According to this model, higher costs of increasing reliability lead to lower
optimal target reliabilities, and higher failure costs lead to higher optimal reliabilities. If
the uncertainties are larger, it leads to lower optimal reliability, as it will be more expensive
to increase the reliability.

The assumption of a constant failure rate is not always accurate. An obvious example
is the fatigue limit state, where the annual reliability index decreases with time. Although
the current practice is to compare the annual failure probability in the worst year with the
target value, this is a conservative approach. Rackwitz [22] originally noted that for fatigue,
the target should be compared to the asymptotic value of the renewal density, which for
a deterministic lifetime approximately corresponds to using the average annual failure
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probability. For fatigue, this will allow the failure probability to be larger than the target in
the worst year.

Additionally, for extreme loading, the limit states for different years may be correlated
due to shared resistance and model uncertainties, and thus the annual failure probability
will not be constant over time. A correlation will mean that the annual failure probability
decreases over time; thus, the failure probability will be the largest in the first year. Es-
pecially for load cases where the uncertainty on the annual maximum load is small (e.g.,
during normal operation), this effect can be significant.

In addition to the assumption of a constant failure rate, the assumption of systematic
reconstruction is also not accurate for wind turbines. Wind turbines are today mostly
erected in wind farms, and if one turbine in a wind farm fails, it is not likely that it will be
replaced due to the high costs of installing just one wind turbine. Therefore, it becomes
relevant to use a model with a finite time horizon, where benefits are included and where
the failure rate is modeled more accurately. A finite horizon risk-based optimization model
was developed for the assessment of the target reliability level for life extension [21] and
life extension decision-making [25]. In these applications, the focus was the fatigue limit
state, where it was utilized that the annual failure probability increases with time, i.e., if a
turbine is designed to the limit, the annual failure probability is lower than the target in all
other years than the last year.

In this work, the finite horizon risk-based optimization model is adapted for use in
extreme design situations. We propose to utilize the correlation between limit states for
different years in a relative comparison between load cases, to make a risk-based assessment
of the reliability level and safety factors in IEC 61400-1. We limit the scope to extreme load
cases without faults. The aim is to investigate whether the target reliability index β = 3.3
(as stated in informative annex K of IEC 61400-1) is fulfilled for typical generic limit state
equations and assess whether eventual differences in the reliability level can be motivated
based on a risk-based assessment. This could be utilized for the reliability-based design
of wind turbines in the coming IEC TS 61400-9 “Probabilistic design measures for wind
turbines” [26] and would enable cost reductions while rationally considering the reliability.
This paper presents work made by members of the project team for IEC TS 61400-9 [26]
during the development of the technical specification. The main novelty is the procedure
for the calculation of the variation in reliability over time for extreme limit states and the
application of the risk-based models for the assessment of the optimal reliability level for
extreme limit states.

The paper is structured as follows: Section 2 presents the methods used for reliability
analysis, calculation of the reliability over time, and the risk-based assessment model.
Section 3 presents and discusses the results of the reliability and risk-based assessment.
Section 4 concludes the work with a broader discussion.

2. Methods

This section describes the methods and models used for estimating the annual re-
liability index and for estimating the optimal reliability level. An overview is given in
Figure 1. The left side of the figure outlines the procedure used for estimating the reliability
level in IEC61400-1. First, the design equation was used together with the safety factors to
calculate the design parameter z. The reliability index was then calculated using Monte
Carlo simulations based on a generic limit state equation. In both the design equation
and limit state equation, normalized distributions were used for the resistance and load
effect. This generic approach is typically applied for calibration of safety factors, as it
eliminates the need for detailed design considerations, but it cannot be used for design,
only for relative assessment where the normalized distributions provide the link between
the design equation and the limit state equation [17]. The reliability indices calculated here
were annual reliability indices in the first year of operation. Often, this is simply referred to
as the annual reliability index with no mention of time, and this is sufficient to evaluate the
maximum annual failure probability.
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Figure 1. Overview of the method. The design equation is described in Section 2.1, the reliability
analysis in Section 2.2, the correlated Bernoulli model in Section 2.3, and the risk-based model in
Section 2.4.

The right side of Figure 1 outlines the procedure for the estimation of the optimal
reliability level. Here, a range of design parameters z were first defined, and the annual
reliability index was calculated for each value. Further, the correlation coefficient between
limit states for different years was estimated. Based on the annual reliability index and the
correlation coefficient, a correlated Bernoulli model was used to calculate the distribution
for the time to failure. Finally, to estimate the optimal reliability level, the distribution for
the time to failure was combined with a risk-based model.

This study focuses on load cases with extreme loading, and the following DLCs
are considered:

• DLC 1.1: Extreme loads during power production (load extrapolation);
• DLC 1.3: Extreme loads during power production (extreme turbulence);
• DLC 6.1: Extreme wind speed during parked conditions (storm);
• DLC 6.1T: Extreme wind speed during parked conditions (typhoon);
• Gravity loading only.

The load case with only gravity loading is relevant because, according to IEC61400-1,
the safety factor can be reduced for the other load cases, depending on the relative contri-
bution of the gravity load to the characteristic load. The case with only gravity loading can
be seen as the limit case.

2.1. Design Equation

The design equation for extreme loading is given as follows:

G = z
1

γM
Rk − γnγ f Fk ≥ 0 (1)

where z is the design parameter (e.g., a cross-sectional parameter); Rk is the characteristic
value of the resistance; Fk is the characteristic value of the load effect; and γM, γn, and γ f
are safety factors. The safety factor for the resistance is γM = 1.2 when a 5% quantile is used
as the characteristic value. The safety factor for the consequence of failure depends on the
component class and is γn = 0.9, γn = 1.0, and γn = 1.2 for component classes 1, 2, and 3,
respectively. Here, component class 2 is considered, as most structural elements belong to
this class. The safety factor for the load effect is γ f = 1.35 for normal design situations. An
exception is DLC 1.1 when load extrapolation is used where γ f = 1.25. When there is only
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gravity loading, the safety factor for the load effect is γ f = 1.1. The characteristic value
of the load effect is 98% quantile in the distribution for the annual maximum load, except
for gravity loading, where the characteristic value is the mean value. For the typhoon
class in IEC 61400-1, the design can be performed using the load safety factor for normal
design situations. However, it is mentioned in a footnote that this safety factor is derived
assuming that the coefficient of variation (COV) of the annual maximum wind speed is
less than 15% and that the safety factor can be increased linearly by a factor η from 1.0 at
COV = 15% to 1.15 at COV = 30% [5] (pp. 76). For a Typhoon wind with COV = 25% on the
annual maximum wind speed, the factors are η = 1.1 and γ f = 1.485. However, increasing
the safety factor is not given as a requirement, and the design may be based on the normal
safety factor γ f = 1.35.

The design equation can be used to find the necessary design parameter z for given
values of the characteristic resistance Rk and load effect Fk.

2.2. Reliability Analysis

A reliability analysis was performed to calculate the annual reliability index obtained
for a given value of the design parameter z. The reliability index is defined as β = −Φ

(
Pf

)
,

and where the annual probability of failure Pf is calculated from the limit state equation g
as Pf = P(g ≤ 0). The limit state equation is formulated as follows:

g = zδ R XStr − XSiteXAeroXDynXMatXWindXSimF (2)

where z is the design parameter, R models the resistance including uncertainties on the
dominating strength parameter, F models the load effect including physical uncertainties,
δ is the model uncertainty on the resistance model, Xstr is the model uncertainty in the
stress/strain model, XSite is the uncertainty related to the site/atmospheric conditions,
XAero is the uncertainty in the aerodynamic properties, XDyn is the model uncertainty
related to the structural dynamics, XMat is the uncertainty due to variations in material and
geometrical properties, XWind is the model uncertainty in the wind model, and XSim is the
statistical uncertainty associated with the design process of sampling wind conditions with
a limited number of simulations. The stochastic model for the load and resistance variables
is shown in Tables 1 and 2. For the Typhoon case, a COV = 50% is assumed on the load
effect, which approximately corresponds to a COV = 25% on the wind speed, as the wind
pressure is proportional to the squared wind speed. There is no common agreement on
whether it is more appropriate to model the wind pressure or wind speed by a Gumbel
distribution, and here the wind pressure is modeled by a Gumbel distribution [27]. The
stochastic model is based on IEC CD TS 61400-9 [26].

Table 1. Stochastic model for the load variables. Abbreviations are used for the distributions: LN:
Lognormal, G: Gumbel, N: Normal.

Variable Distribution Mean Characteristic Value COV COV COV COV

DLC 1.1 and DLC 1.3 DLC 6.1 DLC 6.1 Typhoon Gravity Loading

XSite LN 1.00 µ 10% 10% 10% 0%
XAero LN 1.00 µ 10% 10% 10% 0%
XDyn LN 1.00 µ 5% 5% 5% 0%
XMat LN 1.00 µ 5% 5% 5% 5%
XWind LN 1.00 µ 10% 10% 10% 0%
XSim LN 1.00 µ 5% 5% 5% 0%

F G/G/G/N - 98%/98%/98%/µ 5% 23% 50% 5%
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Table 2. Stochastic model for the resistance variables. LN: Lognormal distribution.

Variable Distribution Mean Characteristic Value COV

δ LN 1.00 µ 5%
R (steel) LN - 5% 5%
R (FRP) LN - 5% 10%

XStr LN 1.00 µ 5%

When the limit state equation and stochastic model are fully defined, the annual
reliability index can be estimated using structural reliability methods such as the first-order
reliability method (FORM), second-order reliability method (SORM), or simulation-based
methods. In this study, crude Monte Carlo simulations were used. A highly efficient imple-
mentation based on elementwise computations was used where nsim = 107 simulations can
be performed in ~2 s on a standard laptop. Compared to a traditional implementation with
loops, the computation time is reduced by a factor of ~500. In the simulation procedure,
a nvar × nsim-matrix is generated with standard normal distributed numbers (u-values),
where nvar is the number of stochastic variables in the limit state equation. Each column is
transformed from the u-space to the x-space using the Rosenblatt transformation for the
specific distribution, and the limit state equation is evaluated for each row.

To estimate the α-vector, which indicates the importance of the different variables,
first, the design point u∗ is estimated as the mean value of each column of the matrix with
u-values, including only rows for the failed realizations, i.e., g < 0. This generally slightly
overestimates the length of the u∗-vector, as this point is located within the failure domain.
However, for the estimation of the α-vector, this is not important, as the α-vector is obtained
by normalizing the u∗-vector.

2.3. Reliability over Time

When the reliability index is calculated using a limit state equation with a distribution
for the maximum annual load, the calculated reliability index is an annual reliability index.
If the aim is to calculate the expected number of failures over the lifetime of a fleet of wind
turbines, the lifetime reliability index can be calculated.

If failures occur with a constant rate (a Poisson process), the time-to-failure distribution
would be given by the exponential distribution, which decreases with time. When time
is discretized, this will be a Bernoulli process, and the time-to-failure distribution is a
geometric distribution. The probability that the first failure happens in the second year
is slightly smaller than for the first year because the first failure cannot happen in the
second year if it already failed in the first year. For the present stochastic model, the failure
events are dependent due to time-invariant stochastic variables, i.e., model uncertainties
and resistances. This gives a further decrease in the failure probability, as each year with
survival can be seen as a proof loading event, and only the realizations that survived the
proof load can potentially fail in later years. This neglects any degradation of the resistance
towards extreme loading.

The annual probability of failure for year t is therefore calculated as P(gt< 0∩ gt−1 >0),
i.e., the joint probability of failure in year t and survival in years up until year t. Based on
crude Monte Carlo simulations, where a new realization of the load effect F is drawn for
each year, this failure probability can be evaluated by identifying the year of the first failure
in each simulated life. Alternatively, an expression can be derived using linearized failure
margins for the failure event for each year. Following [28–30], the probability of exactly x
failures out of n elements is given by:

PX(x) =
(

n
n− x

) ∞∫
−∞

φ(u)

(
Φ

(
−β +

√
ρ u√

1− ρ

))x(
Φ

(
β−√ρ u√

1− ρ

))n−x

du (3)
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where β is the element reliability index, ρ is the correlation between elements’ safety
margins, and φ and Φ are the density and distribution function of the standard normal
distribution, respectively. This can be seen as a binominal model for Bernoulli trials that
are correlated due to the correlation coefficient between safety margins ρ.

The same principle can be applied to find the probability that the first failure happens
in a given year, as this is the corresponding geometric distribution based on correlated
Bernoulli trials. The probability that the first failure happens in year t is consequently:

PT(t) =
∞∫
−∞

φ(u) Φ

(
−β +

√
ρ u√

1− ρ

)(
Φ

(
β−√ρ u√

1− ρ

))t−1

du (4)

where β is the reliability index in the first year, and ρ is the correlation between failure
margins for different years. The time to failure distribution PT(t) can be obtained directly
using Equation (4), and the cumulative distribution FT(t) can be obtained by summation of
PT(t). The annual probability of failure is usually given conditioned on survival up until
that year and is therefore obtained as Pf (t) = PT(t)/(1− FT(t− 1)).

For two safety margins, the correlation can be estimated as the dot product of the α-
vectors [31]. For two identical safety margins with each n stochastic variables, an indicator
vector is defined as:

• Ii = 1 for variables that are fully correlated between the two safety margins;
• Ii = 0 for variables that are independent between the two safety margins.

The correlation coefficient is then estimated based on the α-vector for the safety
margin:

ρ =
n

∑
i

α2
i · Ii (5)

The load effect variable F is assumed uncorrelated for limit states for different years,
whereas the other variables are assumed fully correlated. For gravity loading, the load effect
would be correlated from year to year, but since component exchanges and maintenance
could cause changes, the load is conservatively assumed uncorrelated between years.

2.4. Risk-Based Model

The optimal target reliability index can be identified using a risk-based model, where
the reliability level is optimized considering the consequence of failure and the cost of
improving the reliability. The risk-based model used in this study closely followed the
model used for life extension assessment in [25] and was reproduced here with smaller
adjustments to reflect the situation at the design stage. Further background on the approach
can be found in [22,24]. The expected value of the profit Z(z) is a function of design
parameter z, and is calculated from:

Z(z) = B(z)− C(z)−OM(z)− D(z), (6)

The expected present values are as follows:

• B(z): benefit (income from power production);
• C(z): construction cost;
• OM(z): O&M costs;
• D(z): cost of structural failure.

The expected present values of the benefits and costs are calculated with the expres-
sions given below, where continuous discounting is performed using the discount rate γ.
The construction cost is given as follows:

C(z) = C0 + z C1, (7)
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where C0 are the basic costs not affected by the design parameter, and C1 are the costs of
increasing the design parameter by one unit. The expected present value of the costs of
structural failure is calculated as:

D(z) =
∫ T

0
exp(−γt)H fT(t; z) dt, (8)

where H is the cost of failure, and fT(t; z) is the density function for the time to failure,
which depends on the design parameter z. The integral is evaluated numerically with
one-year intervals using the discrete time-to-failure distribution PT(t) calculated using
Equation (4).

Both the benefits and O&M costs are assumed to discontinue in case of failure, and
therefore B(z)−OM(z) can be written based on the annual profit defined as the annual
benefits minus the annual O&M costs CP = cB − cOM:

B(z)−OM(z) =
∫ T

0

∫ t

0
exp(−γτ)CPdτ fT′(t; z)dt+

∫ T

0
exp(−γt)CPdt(1− FT(T; z)), (9)

Here τ is an integration substitute for t, and the integrals are evaluated numerically as
for Equation (8).

The optimal design is obtained by maximization of the expected value of the profit
Z(z) with respect to design parameter z using Equations (6)–(9). The cost model is defined
in terms of annual profit CP, failure consequence H, basic construction cost C0, cost of
increasing the design parameter C1, and discount rate γ. The optimal point is not impacted
by constant terms, i.e., terms that do not depend on z. Therefore, the basic construction
costs do not affect the optimal design parameter. Further, the optimal point is not affected
by the absolute value of the costs; thus, they can all be normalized with the same value.
Therefore, the costs are defined relative to the annual profit, CP, such that the only cost
parameters are H/CP and C1/CP, and the discount rate γ.

Initially, reliability analyses are performed for a range of values of z using the method
in Section 2.2, and the time to failure distribution is found using Section 2.3. Then, the
cost contributions are evaluated using Equations (7)–(9), and the expected value of the
profit is found using (6). The optimal design parameter can then be identified as the value
of z, resulting in the largest expected profit Z, and the associated reliability index can
be identified.

3. Results

This section presents the results in terms of reliability indices and optimal reliability indices.

3.1. Reliability Indices

Reliability analyses are performed for two materials (steel and FRP) and five load cases.
For the typhoon load case, the calculation is performed with both the normal safety factor
γ f = 1.35 and the increased safety factor due to higher COV γ f = 1.485. The correlation
coefficient ρ between limit states for different years is calculated using Equation (5), and
the cumulative reliability index βcum is calculated. The cumulative reliability index is the
reliability index associated with the probability of failure in or before year t. If the limit
states for different years are uncorrelated, the lifetime probability of failure for 25 years

can be estimated as: Pf ,25 = 1−
(

1− Pf

)25
. For an annual reliability index β equal to 3.3,

the lifetime reliability index becomes βcum,25 = 2.26. Additionally the reliability index βavg
corresponding to the average annual failure probability is calculated, as this approximates
the asymptotic renewal density to be compared with the target reliability index according
to [22]. The safety factors, correlation coefficients, and reliability indices are shown in
Table 3, and in Figure 2, the coefficients in the α-vector are shown.
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Table 3. Annual reliability indices, correlation coefficients between limit states for different years,
25-year reliability indices, and average reliability index for generic extreme load cases in IEC61400-
1 when using the stochastic model in Tables 1 and 2. The numbers in italic are the applied load
safety factors.

DLC 1.1
Normal Operation
Load Extrapolation

DLC 1.3
Normal Operation ETM

DLC 6.1
Extreme Wind

DLC 6.1
Typhoon

DLC 6.1
Typhoon (Increased γf)

Gravity
Loading

Result γ f = 1.25 γ f = 1.35 γ f = 1.35 γ f = 1.35 γ f = 1.485 γ f = 1.10

Steel

β 2.87 3.22 3.29 3.10 3.32 3.24
ρ 0.92 0.92 0.37 0.23 0.23 0.82

βcum,25 2.40 2.74 2.30 2.01 2.30 2.58
βavg 3.41 3.67 3.33 3.13 3.33 3.54

FRP

β 3.02 3.34 3.42 3.22 3.44 3.14
ρ 0.94 0.93 0.41 0.26 0.26 0.88

βcum,25 2.58 2.90 2.48 2.18 2.46 2.58
βavg 3.55 3.8 3.46 3.25 3.46 3.55
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It is seen that the reliability is, in most cases, larger for FRP than for steel, although
the COV on the resistance is 10% for FRP and only 5% for steel. This can happen because
the 5% quantile is used as the characteristic value, and a lower value is obtained when the
COV is larger. Depending on the importance of this variable, the lower characteristic value
may make up for the additional uncertainty. When comparing the α-vectors for steel and
FRP in Figure 2, it is seen that the resistance variable R is much more important for FRP
than for steel.

When comparing the obtained annual reliability indices with the target β = 3.3, it is
seen that many values are below the target. If accepting a deviation of 0.1, the reliability
level is still too low for DLC 1.1. Here, the same stochastic model was used for DLC 1.3,
but a lower safety factor was used for DLC 1.1. Therefore, the reliability index is lower for
DLC 1.1, and the α-vectors are almost identical.

For the three DLC 6.1 cases, the importance of the load variable L is larger than for
DLC 1.1 and 1.3, especially for the typhoon load cases. This is explained by the larger
COV for the load for DLC 6.1. However, since the characteristic value is taken as a 98%
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quantile of the load variable L, the characteristic value also increases. This explains why the
reliability index can be slightly larger for DLC 6.1 extreme wind when compared to DLC 1.3
despite the safety factors being the same and the larger uncertainties for DLC 6.1. However,
for DLC 6.1 with typhoon loads, the increase in characteristic value is not sufficient to keep
the reliability at the same level, and the reliability is only sufficient when the increased
safety factor is used but not when the normal safety factor is used.

For gravity loading, there are fewer uncertainties, and the characteristic value of
the load is taken as the mean value. Further, the safety factors are smaller than for the
remaining load cases. It is seen that this results in larger importance of the variables on the
resistance side of the limit state equation, and the reliability index is close to 3.3 for steel.
For FRP, the reliability index for gravity loading is less than for steel, whereas it is larger
for the remaining load cases. This can be explained by the combination of the increased
importance of the resistance variables and the larger uncertainty on the resistance.

The differences in correlation coefficient ρ can be explained by the differences in the
importance of the α-value for L for the load cases; the higher the α-value, the smaller the
correlation because the value for L is independent between years, whereas the remaining
variables are fully correlated between years.

In Figure 3, the annual reliability index and the cumulative reliability index are
shown as a function of time for steel. It is seen that the annual reliability index is almost
constant over time for all three DLC 6.1 cases, where the correlation coefficient is quite low.
When the annual reliability index is around 3.3, the cumulative reliability index almost
drops to βcum = 2.26, as expected for uncorrelated limit states. For DLC 1.1, DLC 1.3, and
gravity loading, the annual reliability index increases drastically over time due to the
high correlation. This means that the cumulative reliability index ends up being larger
compared to the DLC 6.1 cases. For the typhoon load case without increased safety factor,
the reliability index is low initially, and the cumulative reliability index after 25 years is the
lowest among the considered cases. The high correlation for DLC 1.1, DLC 1.3, and gravity
loading also has the effect that the average reliability indices βavg are larger than the target
β = 3.3.

Energies 2022, 15, x FOR PEER REVIEW 11 of 16 
 

 

 
(a) 

 
(b) 

Figure 2. The 𝛼-vector for (a) steel and (b) FRP for all load cases. 

In Error! Reference source not found., the annual reliability index and the cumula-

tive reliability index are shown as a function of time for steel. It is seen that the annual 

reliability index is almost constant over time for all three DLC 6.1 cases, where the corre-

lation coefficient is quite low. When the annual reliability index is around 3.3, the cumu-

lative reliability index almost drops to 𝛽𝑐𝑢𝑚=2.26, as expected for uncorrelated limit states. 

For DLC 1.1, DLC 1.3, and gravity loading, the annual reliability index increases drasti-

cally over time due to the high correlation. This means that the cumulative reliability in-

dex ends up being larger compared to the DLC 6.1 cases. For the typhoon load case with-

out increased safety factor, the reliability index is low initially, and the cumulative relia-

bility index after 25 years is the lowest among the considered cases. The high correlation 

for DLC 1.1, DLC 1.3, and gravity loading also has the effect that the average reliability 

indices 𝛽𝑎𝑣𝑔 are larger than the target 𝛽 = 3.3. 

 
(a) 

 
(b) 

Figure 3. Reliability index as a function of time for steel, component class 2: (a) annual reliability 

index; (b) cumulative reliability index. 

  

Figure 3. Reliability index as a function of time for steel, component class 2: (a) annual reliability
index; (b) cumulative reliability index.



Energies 2023, 16, 1885 11 of 15

3.2. Optimal Target Reliability

Initially, an optimization of the reliability index is performed for cost variables
γ = 0.06, H/CP = 1, and C1/CP, increasing from 0 to 2 using the method described
in Section 2.4.

The optimal target reliability is shown as a function of C1/CP in Figure 4a, and the
associated optimal load safety factor is shown in Figure 4b. The dots correspond to optimal
values of the design parameter among the ones where reliability analyses were performed,
and the lines are obtained by using a cubic smoothing spline on the expected profit Z(z)
and then finding the optimal on that spline. DLC 1.1 and DLC 1.3 do not have separate
calculations, as only the current safety factor differs, whereas the stochastic models and
limit state equations are the same.
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As it is difficult to assess the value of C1/CP, a relative assessment is made. It seems
appropriate to take DLC 6.1 as the starting point because the failure rate is almost constant
over time, and the normal safety factor γ f = 1.35 was found approximately to lead to
a reliability index β = 3.3. According to Figure 4a, this target corresponds to the value
C1/CP = 0.8, and this value is therefore used to find the optimal target reliability and load
safety factor, which are shown in Table 4 together with the current values in IEC 61400-1 ed.
4 [5].

Table 4. Optimal annual target reliabilities and load safety factors.

Load Case Current Target Reliability β Optimal Target Reliability β Current Safety Factor γf Optimal Safety Factor γf

DLC 1.1 & 1.3 3.3 2.9 1.25/1.35 1.26
DLC 6.1 3.3 3.3 1.35 1.35

DLC 6.1 Typhoon 3.3 3.2 1.35/1.485 1.44
Gravity 3.3 3.4 1.10 1.12
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It is seen that the optimal target reliability for DLC 1.1 and 1.3 is β = 2.9 instead of
β = 3.3, whereas the optimal safety factor is γ f = 1.26, which is very close to the current
safety factor for DLC 1.1. The lower optimal safety factor can be explained by the fact
that the annual reliability index is increasing over time, and thus the cumulative reliability
index is still quite large after 25 years, although the initial annual reliability index is lower
than for DLC 6.1, as seen in Figure 3.

For DLC 6.1 with typhoon wind, where the coefficient of variation on the annual
maximum load is larger, the target reliability is slightly lower (β = 3.2), but a larger safety
factor γ f = 1.44 is needed to reach this optimum. Therefore, this target is not reached
with the normal safety factor γ f = 1.35, but the optional increased safety factor given in
IEC61400-1 is sufficient [5] (p. 76). For gravity loading, the target reliability is slightly larger
(β = 3.4), and the optimal safety factor γ f = 1.12 is close to the value given in the standard
γ f = 1.10.

Figure 5 shows the optimal reliability index and safety factor if the failure costs are
increased to H/CP = 10. Compared to H/CP = 1, the optimal target reliability and safety
factor are larger for the same value of C1/CP. However, if the value of C1/CP is assessed in
a relative way, it is seen that β = 3.3 for DLC 6.1 for C1/CP = 1.1, and the optimal target
reliabilities and safety factors will be almost the same as in Table 4.
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Figure 5. The optimal value of (a) annual reliability index (in the first year), (b) load safety factor for
H/C1 = 10. The dots correspond to optimal values of the design parameter among the ones where
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the expected profit Z(z) and then finding the optimal on that spline.

Figure 6 shows the optimal reliability index and safety factor if the discount rate is
increased to γ = 0.12. It is seen that the target reliabilities become smaller for a fixed value
of C1/CP, because failure consequences, potentially happening in the future, becomes less
important when the rate is larger. Moreover, if the relative assessment is made here, a value
C1/CP = 0.5 is found for β = 3.3 for DLC 6.1, and the optimal target reliabilities and safety
factors will be almost the same as in Table 4.
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4. Discussion and Conclusions

This paper aimed to estimate and assess the reliability level for extreme load cases
implicitly given through the safety factors in the main design standard for wind turbines
IEC 61400-1. The optimal target reliability level was estimated through a relative risk-based
comparison with DLC 6.1.

The annual reliability index was found to be close to the target 3.3 (not less than 0.1
below the target) for all considered cases except for DLC 1.1, DLC 6.1 typhoon for steel
with the normal safety factor, and gravity for FRP.

For DLC 1.1, this study found a significantly lower annual reliability index than
previous studies [17] due to the combined effects of smaller adjustments in the stochastic
model between the background document to IEC 61400-1 ed. 4 [17] and IEC CD TS 61400-
9 [26]: (1) the uncertainty on the load variable L was smaller in this study, which negatively
affects the reliability because the 98% quantile is used as the characteristic value in the
design equation; (2) the model uncertainties are assumed slightly larger in this study,
as uncertainties previously assumed to be included in L is instead included as a model
uncertainty; (3) no bias is assumed on the resistance model.

However, for DLC 1.1, the resistance and model uncertainties dominate, causing the
correlation between limit states for different years to be large. Consequently, the cumulative
reliability index is not larger than for the other load cases, and the average reliability index
is larger than 3.3. The optimal value of the annual reliability index was found to β = 2.9,
which corresponds to the value found using the current load safety factor in IEC 61400-1.

For DLC 6.1 with typhoon loads, the annual reliability index was found to β = 3.1,
when the normal load safety factor γ f = 1.35 was used. This typically reflects the design,
as the typhoon class was introduced in IEC 61400-1 ed. 4 without requirements to use
increased safety factors. However, when using the optionally increased safety factor given
in a footnote in IEC 61400-1, the annual reliability index was larger than 3.3. For the
typhoon case, the load uncertainty dominates, whereby the correlation coefficient between
years is low. Therefore, the average reliability index is close to the annual reliability index
in the first year, and the cumulative reliability index is low. The optimal annual reliability
index is found to be only slightly lower than 3.3, and a larger load safety factor of around
1.44 is needed to achieve this. However, this assumes a linear relationship between the
costs and the resistance. If the demands for a resistance sufficient for typhoon loads require
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more radical design changes (resulting in a larger factor C1/CP), this could motivate lower
target reliability, and a lower safety factor could be sufficient.

For the DLCs where it is found that the reliability implicitly given through the safety
factors is less than the target β = 3.3, the use of probabilistic methods directly with the
target β = 3.3 may lead to a more expensive design. If the target reliability level was
optimal based on economic risk-based considerations, then this more expensive design
was more optimal because it gives the optimal balance between the failure risks and the
costs of improving the reliability. However, we demonstrated through a relative risk-based
comparison between different load cases with extreme loads that lower target reliability
could be motivated for DLC 1.1, and this would correspond to the reliability level implicitly
given through the safety factors in IEC 61400-1.

Therefore, lower annual target reliability could also be used for probabilistic designs
according to IEC TS 61400-9 for DLC 1.1. This could be formulated as a reduced annual
target reliability, as a lifetime reliability index, or it could be allowed to compare the
average annual reliability index with the current target. It seems preferable to continue
using annual target reliabilities, as they are least sensitive to the design lifetime. A reduced
target for the annual failure probability would be easiest for the designer, as they would only
need to calculate the annual failure probability. From a theoretical perspective, the most
direct would be to allow the target to be compared to the average annual reliability index
corresponding to the asymptotic renewal density, as suggested originally by Rackwitz [22].

However, challenges arise concerning through-life integrity management, where the
reliability can be updated continuously based on inspections and monitoring data and
where decisions can be made related to operations and maintenance. Potentially, the use of
a reduced target in this context could lead to decisions that are not optimal, and this aspect
should be considered carefully.
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