

Aalborg Universitet

Oxygenation targets in ICU patients with COVID-19: a post-hoc sub-group analysis of the HOT-ICU trial.

Rasmussen, Bodil Steen; Lass Klitgaard, Thomas; Perner, Anders; Brandt, Björn Anders; Hildebrandt, Thomas; Siegemund, Martin; Hollinger, Alexa; Aagaard, Søren Rosborg; Heiberg Bestle, Morten; Marcussen, Klaus Vennick; Craveiro Brøchner, Anne; Sølling, Christoffer Grant; Musaeus Poulsen, Lone; Laake, Jon Henrik; Aslam, Tayyba Naz; Bäcklund, Minna; Okkonen, Marjatta; Morgan, Matthew; Sharman, Mike; Lange, Theis; Wetterslev, Jørn; Schjørring, Olav Lilleholt

Published in:

Acta Anaesthesiologica Scandinavica

DOI (link to publication from Publisher): 10.1111/aas.13977

Publication date: 2022

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):

Rasmussen, B. S., Lass Klitgaard, T., Perner, A., Brandt, B. A., Hildebrandt, T., Siegemund, M., Hollinger, A., Aagaard, S. R., Heiberg Bestle, M., Marcussen, K. V., Craveiro Brøchner, A., Sølling, C. G., Musaeus Poulsen, L., Laake, J. H., Aslam, T. N., Bäcklund, M., Okkonen, M., Morgan, M., Sharman, M., ... Schjørring, O. L. (2022). Oxygenation targets in ICU patients with COVID-19: a post-hoc sub-group analysis of the HOT-ICU trial. *Acta Anaesthesiologica Scandinavica*, 66(1), 76-84. https://doi.org/10.1111/aas.13977

DR BODIL STEEN RASMUSSEN (Orcid ID: 0000-0003-2190-145X)

DR ALEXA HOLLINGER (Orcid ID: 0000-0001-6799-1652)

DR TAYYBA ASLAM (Orcid ID: 0000-0002-1376-1533)

DR OLAV LILLEHOLT SCHJØRRING (Orcid ID: 0000-0002-7749-6003)

Article type : Research Article

Oxygenation targets in ICU patients with COVID-19: a post-hoc sub-group analysis of the HOT-ICU trial Bodil S. Rasmussen^{1,2,4}, Thomas L. Klitgaard^{1,2}, Anders Perner^{3,4}, Björn A. Brand³, Thomas Hildebrandt⁵, Martin Siegemund^{6,7}, Alexa Hollinger^{6,7}, Søren R. Aagaard^{1,2}, Morten H. Bestle⁸, Klaus V. Marcussen⁹, Anne C. Brøchner¹⁰, Christoffer G. Sølling¹¹, Lone M. Poulsen¹², Jon H. Laake¹³, Tayyba N. Aslam¹³, Minna Bäcklund¹⁴, Marjatta Okkonen¹⁴, Matthew Morgan¹⁵, Mike Sharman¹⁶, Theis Lange¹⁷, Jørn Wetterslev¹⁸, Olav L. Schjørring^{1,2,4}

Affiliations

¹ Department of Anaesthesia and Intensive Care, Aalborg University Hospital, Aalborg, Denmark. ² Department of Clinical Medicine, The Faculty of Medicine, Aalborg University, Aalborg, Denmark. ³ Department of Intensive Care, Rigshospitalet, University of Copenhagen, Denmark. ⁴ Center for Research in Intensive Care, Rigshospitalet, Copenhagen, Denmark. ⁵ Department of Anaesthesia and Intensive Care, Zealand University Hospital, Roskilde, Denmark. ⁶ Department of Anaesthesia and Intensive Care, Basel University Hospital, Basel, Switzerland. ⁷Department of Clinical Research, University of Basel, Basel, Switzerland. ⁸ Department of Anaesthesia and Intensive Care, Nordsjaellands Hospital, Hilleroed, Denmark. ⁹ Department of Anaesthesia and Intensive Care, Slagelse Hospital, Slagelse, Denmark. ¹⁰ Department of Anaesthesia and Intensive Care, Kolding Hospital, Kolding, Denmark. ¹¹ Department of Anaesthesia and Intensive Care, Viborg Hospital, Viborg, Denmark. ¹² Department of Anaesthesia and Intensive Care, Oslo University Hospital Rikshospitalet, Oslo, Norway. ¹⁴ Department of Anaesthesia and Intensive Care, Helsinki University Hospital, Finland. ¹⁵ Department of Intensive Care, University Hospital of Wales, Cardiff, Wales, UK. ¹⁶ Department of Intensive Care and Respiratory Medicine, Manchester University NHS Foundation Trust, Manchester Royal Infirmary, Manchester, UK. ¹⁷ Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark. ¹⁸ Copenhagen Trial Unit, Copenhagen, Denmark.

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the <u>Version of Record</u>. Please cite this article as <u>doi</u>: 10.1111/AAS.13977

This article is protected by copyright. All rights reserved

Running title: Oxygenation targets in COVID-19 patients

Word count: 2602

Corresponding author: Professor, MD, PhD Bodil Steen Rasmussen, Department of Anaesthesia and Intensive Care, Aalborg University Hospital, Hobrovej 18-22, DK-9000 Aalborg Denmark. E-mail: bodil.steen.rasmussen@rn.dk

Telephone: +4597661864

Abstract

Background

Supplemental oxygen is the key intervention for severe and critical COVID-19 patients. With the unstable supplies of oxygen in many countries it is important to define the lowest safe dosage.

Methods

In spring 2020, 110 COVID-19 patients were enrolled as part of the Handling Oxygenation Targets in the ICU trial (HOT-ICU). Patients were allocated within 12 hours of ICU admission. Oxygen therapy was titrated to a partial pressure of arterial oxygen (PaO₂) of 8 kPa (lower oxygenation group) or a PaO₂ of 12 kPa (higher oxygenation group) during ICU stay up to 90 days. We report key outcomes at 90 days for the sub-group of COVID-19 patients.

Results

At 90 days, 22 of 54 patients (40.7%) in the lower oxygenation group and 23 of 55 patients (41.8%) in the higher oxygenation group had died (adjusted risk ratio: 0.87; 95% confidence interval, 0.58 - 1.32). Percentage of days alive without life support was significantly higher in the lower oxygenation group (p=0.03). Numbers of severe ischemic events were low with no difference between the two groups. Proning and inhaled vasodilators were used more frequently, and the positive end-expiratory pressure was higher in the higher oxygenation group. Tests for interactions with the results of the remaining HOT-ICU population were insignificant.

Conclusions

Targeting a PaO₂ of 8 kPa may be beneficial in ICU patients with COVID-19. These results come with uncertainty due to the low number of patients in this unplanned sub-group analysis, and insignificant tests for interaction with the main HOT-ICU trial.

Trial registration number: ClinicalTrials.gov number, NCT03174002

Date of registration: June 2, 2017

Keywords: Severe acute respiratory syndrome coronavirus 2, Oxygen Inhalation Therapy, Respiratory Insufficiency, Randomised Controlled Trial, Intensive Care Units

Editorial Comment: In this substudy of the HOT-ICU randomized controlled trial comparing two different oxygenation targets for patients with hypoxic respiratory failure, patients with COVID-19 disease who were treated

targeting an arterial oxygenation of 8 kPa had more days alive without life support. While limited by few patients in the trial with COVID-19, the results, in combination with the main study results, are suggestive that targeting a oxygen level of 8 kPa is both safe and potentially beneficial for patients with COVID-19.

Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in a global pandemic. The virus causes coronavirus disease 2019 (COVID-19) ranging in severity from fever and mild upper respiratory tract symptoms to acute respiratory distress syndrome (ARDS) with severe hypoxaemia requiring advanced respiratory support in the intensive care unit (ICU). Worldwide, the mortality of patients admitted to the ICU with COVID-19 is high, being close to 40%. Supplemental oxygen is the key component of supportive care, but the balance between benefits and harms of different oxygenation targets is unknown for ICU patients with COVID-19.

In ICU patients with ARDS by any aetiology, clinical practice guidelines give no recommendation for oxygenation targets ^{3,4}. One oxygenation target that is often referred to is a partial pressure of arterial oxygen (PaO₂) between 7.3 to 10.7 kPa or a SpO₂ of 88 to 95% defined as standard of care in randomised trials performed by the National Heart, Lung, and Blood Institute ARDS Clinical Trials Network ⁵⁻⁷. A recent trial, Liberal or Conservative Oxygen Therapy (LOCO₂), in ARDS patients of a similar low target (PaO₂, 7.3 to 9.3 kPa or SpO₂, 88 to 92%) versus a higher target (PaO₂, 12 to 14 kPa or SpO₂ above 95%) was stopped prematurely because five of 99 patients had mesenteric ischaemia in the lower oxygenation group as compared to none of 102 patients in the higher oxygenation group, and likewise a significant difference in 90-day mortality between the two groups was found ⁸. In the Handling Oxygenation Targets in the ICU (HOT-ICU) trial we found no difference in number of ischaemic events nor in 90-day mortality among 2928 patients with moderate to severe acute hypoxaemic respiratory failure acutely admitted to the ICU comparing similar lower and higher oxygenation targets. ⁹ Also, no differences in mortality at 90 or 180 days were found in the Intensive Care Unit Randomised Trial Comparing Two Approaches to Oxygen Therapy (ICU-ROX) in which 1000 invasively mechanically ventilated patients were enrolled ¹⁰.

During the first wave of the COVID-19 pandemic 110 ICU patients with COVID-19 were enrolled in the HOT-ICU trial ⁹. The HOT-ICU trial was completed on August 3, 2020 and the primary results have been published ⁹. With the unstable supplies of medical oxygen in many countries and the lack of evidence in this area we find it important to report key outcomes at 90 days for the sub-group of COVID-19 patients enrolled in HOT-ICU trial.

Methods

Trial Design

Twelve HOT-ICU trial sites in Denmark, Switzerland, Norway, Finland and the United Kingdom enrolled one or more patients with documented positive SARS-CoV-2 test at baseline or during the ICU stay. Written informed consent was obtained from the patients or their legal surrogate as per the relevant legislation. The HOT-ICU trial was registered at ClinicalTrials.gov (NCT03174002) before enrolment of the first patient. The protocol and statistical analysis plan were published before enrolment was completed. The HOT-ICU trial was an investigator-initiated, multicentre, stratified, parallel-grouped, randomised clinical trial with 35 participating ICUs in Denmark, Switzerland, Norway, Finland, the United Kingdom, the Netherlands and Iceland. The first patient out of 2928 patients was enrolled in the HOT-ICU trial on June 20, 2017 and the last patient on August 3, 2020. Centralised randomisation was conducted using a computer-generated concealed allocation sequence, with permuted blocks of variable sizes, in a 1:1 ratio, stratified by site, the presence or absence of chronic obstructive pulmonary disease (COPD), and the presence or absence of active haematological malignancy. No stratification for SARS-CoV-2 status was implemented. The hypothesis of the HOT-ICU trial was that a PaO₂ target of 8 kPa would reduce 90-day mortality, being the primary outcome, as compared with a PaO₂ target of 12 kPa. Results did not confirm this; adjusted risk ratio (RR) of 1.02 with a confidence interval (CI) 0.94-1.11.9

Patients

We screened patients aged 18 years or above who were acutely admitted to the ICU, received at least 10 litres of oxygen per minute in an open system or at least a fraction of inspired oxygen (FiO₂) of 0.50 in a closed system, had an arterial line, and were expected to receive supplemental oxygen therapy for at least 24 hours in the ICU. We excluded patients that could not be randomised within 12 hours of ICU admission; all exclusion criteria are provided in the Supplement. In the present sub-group analysis of the HOT-ICU trial, we only include patients who had at least one airway sample positive for SARS-CoV-2 by PCR analysis at randomisation or at any time during the ICU admission.

Intervention

Patients were randomly assigned to oxygen therapy titrated to achieve a PaO₂ of 8 kPa (lower oxygenation group) or a PaO₂ of 12 kPa (higher oxygenation group) during the entire ICU stay, including re-admissions, to a maximum of 90 days after randomisation. To document the intervention, we registered the lowest and the highest PaO₂ in predefined 12-hour intervals with concomitant values for arterial oxygen saturation (SaO₂) and FiO₂. All patients were continuously monitored with SpO₂ to maintain the assigned PaO₂. The oxygenation targets were achieved by adjustments of the FiO₂. All other interventions in the ICU were at the discretion of the clinicians.

Outcome measures

We present key outcomes at 90 days as predefined in the HOT-ICU trial including; all-cause mortality; percentage of days alive without use of life support defined as invasive or non-invasive mechanical ventilation or continuous positive airway pressure treatment, vasopressor or inotropic therapy, or renal replacement therapy; percentage of days alive and out of hospital; and number of patients with one or more serious adverse events defined as a new episodes of shock, myocardial ischaemia, intestinal ischaemia, or ischaemic stroke in the ICU within 90 days, details are provided in the Supplement.

Statistical analysis

We did no sample size estimation for the analyses reported here. All analyses were conducted according to the intention-to-treat principle 13 and according to the statistical analysis plan for the HOT-ICU trial. 12 The intention-totreat population included all randomised patients positive for SARS-CoV-2 in the HOT-ICU trial except for those where follow-up data could not be obtained due to withdrawal of consent according to national regulations. 14-16 We compared 90-day mortality in the two groups using a generalised linear model with a log-link and a binomial error distribution adjusted for the stratification variables site and COPD, but not for active haematological malignancy due to non-convergence in the model. Results are presented as RR and risk differences (RD) with corresponding 95% CI. We also performed a secondary analysis of mortality adjusted for all stratification variables and for baseline parameters; age, presence or absence of active metastatic cancer, type of admission (medical, elective surgical or emergency surgical) and sequential organ failure assessment (SOFA) score calculated on the basis of six organ systems (respiration, coagulation, liver, cardiovascular, central nervous system, and renal) with higher scores indicating more severe organ dysfunction and a maximum score of 24,17 using a logistic regression model presented as odds ratio with 95% CI. We compared survival times using Kaplan-Meyer curves supplemented with a Cox proportional hazards model adjusted for all stratification variables. Percentages of days alive without life support and of days alive and out of hospital at day 90 were compared using the van Elteren test with adjustment for site. The number of patients with one or more serious adverse events in the two groups was compared using a generalised linear model with a log-link and a binomial error distribution adjusted for the stratification variables COPD and active haematological malignancy. The outcomes were tested for interaction with the results of the HOT-ICU trial. We tested a possible interaction on the outcomes between the COVID-19 patients and the remaining non-COVID-19 patients in the HOT-ICU trial. For all tests a statistical significance was indicated by a P value below 0.05. We did not correct for multiple testing. No imputations for missing values were performed as less than 5% of data was missing in all parameters. Comparisons of processes during the ICU stay were conducted using Wilcoxon rank sum test for continuous data and Fisher's exact test for dichotomous data. All analyses were performed using Stata Statistical Software Release 16 (StataNordic, Stockholm, Sweden).

Results

From March 3, 2020 to July 20, 2020, 110 patients with COVID-19 were enrolled in the HOT-ICU trial (Figure 1). At baseline, f46 out of 54 patients (85.2%) in the lower oxygenation group and 47 out of 56 patients (83.9%) in the higher oxygenation group had a positive test for SARS-CoV-2, respectively. We obtained 90-day vital status for 109 out of the 110 patients as one patient was lost to follow-up in the higher oxygenation group; 54 patients were randomly assigned to the lower oxygenation group and 56 patients to the higher oxygenation group (Figure 1). The characteristics of the patients were similar at baseline (Table 1).

Oxygenation and ICU treatments

During the 90 days of intervention in the ICU, the daily medians of the registered PaO_2 and the corresponding FiO_2 and SaO_2 were lower in the lower oxygenation group as compared to the higher oxygenation group (Figure 2). The patient numbers in the figures are provided in the Supplement, as well as the highest and lowest registered PaO_2 with corresponding FiO_2 and SaO_2 (Table S1 and Figure S1 to S3). Details on the process of care in the ICU for the two oxygenation groups are provided in Table 2.

Outcomes and Interaction analysis

Ninety days after randomisation 22 of 54 patients (40.7%) in the lower oxygenation group and 23 of 55 (41.8%) in the higher oxygenation group had died, implying no significant differences between the two groups in both the unadjusted and the adjusted analyses (Table 2 and Figure 3). The percentage of days alive without life support at day 90 was significantly increased in the lower oxygenation group as compared to the higher oxygenation group being 79% and 71%, respectively (Tables 2 and S3). The corresponding days alive without life-support were 57.5 and 61.0, respectively (Table S2). A histogram of percentages of days alive out of hospital in the two oxygenation groups are provided in the Supplement (Figure S4). No significant differences between the two groups were found in the percentage of days alive and out of hospital or in the number of patients with one or more serious adverse events (Table 2 and Table S4).

Tests for interaction between COVID-19 patients and the remaining HOT-ICU population without COVID-19 showed no statistically significant heterogeneity effect of the lower oxygenation target versus the higher oxygenation target on 90-day mortality (P=0.67), percentage of days alive without life-support at day 90 (P=0.33), or percentage of days alive out of hospital at day 90 (P=0.33).

Discussion

In this post-hoc sub-group analysis of ICU patients with COVID-19 enrolled in the HOT-ICU trial, targeting a PaO₂ of 8 kPa was not associated with a statistically significant decrease in 90-day mortality as compared with targeting a PaO₂ of 12 kPa. The point estimates of treatment effect favoured the lower oxygenation target, however, with wide confidence intervals and an insignificant test for interaction with the results of the main HOT-ICU trial. This emphasises the importance of conducting larger trials to generate more robust data before a recommendation of oxygenation targets in ICU patients with COVID-19 can be provided.

There is no published randomised clinical trial on oxygenation targets in ICU patients with COVID-19.2 Therefore, oxygen therapy in COVID-19 patients are guided by the SSC recommendation of a maximum SpO₂ target of 96%. 18 The sparse evidence is based on data from a retrospective study in critically ill patients with hypoxia being associated with poor outcomes, 19 a systematic review and meta-analysis in acutely ill adults being associated with increased mortality, ²⁰ a clinical practice guideline for acutely ill medical patients, ²¹ the ICU-ROX trial of mechanically ventilated ICU patients with equipoise between a lower oxygenation target and a higher oxygenation target, 10 and the LOCO₂ trial of ARDS patients with potential harm in the lower oxygenation target group.⁸ The SpO₂ target of a maximum of 96% is maintained in the lower oxygenation group in our sub-group of COVID-19 patients in the ICU. In this sub-group, a higher percentage of days alive without life support, less frequent use of invasive mechanical ventilation, proning and inhaled vasodilators, a lower positive end-expiratory pressure, and a lower number of daily blood gas analyses were observed as compared with the higher oxygenation group. All patients in the sub-group had SARS-CoV-2 pneumonia, while only approximately 60% of the patients in the main HOT-ICU population were diagnosed with pneumonia at baseline, which may have an impact on the overall outcomes. Importantly, the results of the sub-group of COVID-19 patients are hypothesis generating as it is a pilot study not pre-planned and with a low number of patients. An ongoing randomised clinical trial (HOT-COVID: NCT04425031), which is an extension of the HOT-ICU trial, will potentially provide solid data to generate more valid guidelines.

COVID-19 is a life-threatening condition as it can lead to profound hypoxaemia and ARDS.^{22,23} In our COVID-19 sub-group, the patients had severe hypoxaemic respiratory failure at baseline elucidated by a median PaO₂/FiO₂ ratio <14 kPa and the majority of patients being invasively mechanically ventilated. The high incidence of mechanically ventilated COVID-19 patients may partly be explained by the restricted use of high flow nasal cannula during the first phase of the pandemic.^{22,24} The currently available evidence on targeting oxygen therapy in patients with ARDS is of very low certainty due to lack of data² with only one randomised clinical trial conducted, the LOCO₂ trial.⁸ This trial was stopped prematurely due to a high proportion of intestinal ischaemia in the lower oxygenation group,⁸ an observation which could be by chance as no differences in severe ischaemic events occurred in neither the main HOT-ICU trial⁹ nor in the present sub-group of COVID-19 patients. Of interest, proning and inhaled vasodilators were used less frequently in the lower oxygenation groups as compared to the higher oxygenation group, similarly to the LOCO₂ trial⁸ and to what was found in the main HOT-ICU trial.⁹ We found no significant difference in mortality at 90 days in the sub-group of COVID-19 patients. The mortality seen in our sub-group was higher than in the LOCO₂ trial, however, it is consistent with what has been reported worldwide in patients with critical COVID-19. The high mortality may be due to a high frequency of multiorgan dysfunction in critically ill COVID-19 patients; 18,25 25% of

COVID-19 patients in our study received renal replacement therapy and more than half had at least one episode of shock.

The strengths of the present sub-group analysis are the variety of ICUs and countries involved, the pragmatic protocol maintaining routine practice except for the oxygenation targets, and the clear separations in PaO₂, SaO₂ and FiO₂ between the two groups. The limitations are that patients with COVID-19 were not a pre-planned sub-group in the HOT-ICU trial, 9 no stratification for a positive SARS-CoV-2 was conducted, the sample size was small, personnel were not blinded, and data of specific medical treatments for COVID-19 were collected. Also, targeting a higher oxygenation may make interventions more likely to occur to achieve this, thus if there is harm in the higher oxygenation group, it may result from the interventions to achieve this and not from the oxygen itself. In conclusion, in this post-hoc sub-group analysis of ICU patients with COVID-19 enrolled in the HOT-ICU trial, a lower oxygenation target did not result in a statistically significant reduction in mortality as compared to a higher oxygenation target. With the depleted oxygen resources in part of the world our data may justify the present recommendation with a SpO₂ target up to a maximum of 96% until more solid evidence is obtained.

Acknowledgement

We wish to thank patients, relatives, clinical staff and research staff at all trial sites during the challenging first wave of the COVID-19 pandemic. Without their support COVID-19 patients would never have been included in the HOT-ICU trial.

Funding

Funded by the Innovation Fund Denmark (Grant No. 4108-00011A), the Regions of Denmark (Grant No. EMN-2017-00901 and EMN-2019-01055), the Obel Family Fund (Grant No. 27970), the Danish Association of Anaesthesia and Intensive Care and the Intensive Care Symposium Hindsgavl.

Conflicts of interest

The authors report no conflicts of interest.

References

- 1. Armstrong RA, Kane AD, Cook TM. Outcomes from intensive care in patients with COVID-19: a systematic review and meta-analysis of observational studies. Anaesthesia 2020;75:1340-9.
- 2. Cumpstey AF, Oldman AH, Smith AF, Martin D, Grocott MP. Oxygen targets in the intensive care unit during mechanical ventilation for acute respiratory distress syndrome: a rapid review. Cochrane Database Syst Rev 2020;9:Cd013708.
- 3. Claesson J, Freundlich M, Gunnarsson I, et al. Scandinavian clinical practice guideline on mechanical ventilation in adults with the acute respiratory distress syndrome. Acta Anaesthesiol Scand 2015;59:286-97.
- 4. Fan E, Del Sorbo L, Goligher EC, et al. An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2017;195:1253-63.
- 5. Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000;342:1301-8.
- 6. Brower RG, Lanken PN, MacIntyre N, et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 2004;351:327-36.
- 7. Aggarwal NR, Brower RG, Hager DN, et al. Oxygen Exposure Resulting in Arterial Oxygen Tensions Above the Protocol Goal Was Associated With Worse Clinical Outcomes in Acute Respiratory Distress Syndrome. Crit Care Med 2018;46:517-24.

- 8. Barrot L, Asfar P, Mauny F, et al. Liberal or Conservative Oxygen Therapy for Acute Respiratory Distress Syndrome. N Engl J Med 2020;382:999-1008.
- 9. Schjorring OL, Klitgaard TL, Perner A, et al. Lower or Higher Oxygenation Targets for Acute Hypoxemic Respiratory Failure. N Engl J Med 2021;384:1301-11.
- 10. Mackle D, Bellomo R, Bailey M, et al. Conservative Oxygen Therapy during Mechanical Ventilation in the ICU. N Engl J Med 2020;382:989-98.
- 11. Schjørring OL, Perner A, Wetterslev J, et al. Handling Oxygenation Targets in the Intensive Care Unit (HOT-ICU)-Protocol for a randomised clinical trial comparing a lower vs a higher oxygenation target in adults with acute hypoxaemic respiratory failure. Acta Anaesthesiol Scand 2019;63:956-65.
- 12. Schjørring OL, Klitgaard TL, Perner A, et al. The handling oxygenation targets in the intensive care unit (HOT-ICU) trial: Detailed statistical analysis plan. Acta Anaesthesiol Scand 2020.
- DeMets DL, Cook TD. Alternatives to Intention-to-Treat Analyses-Reply. Jama 2019;321:2135.
- 14. Gabriel SE, Normand SL. Getting the methods right--the foundation of patient-centered outcomes research. N Engl J Med 2012;367:787-90.
- Schmiemann G. [The preliminary draft of the methodology report by the Patient-Centered Outcomes Research Institute]. Z Evid Fortbild Qual Gesundhwes 2012;106:496-9.
- 16. International conference on harmonisation; guidance on statistical principles for clinical trials; availability--FDA. Notice. Fed Regist 1998;63:49583-98.
- 17. Ferreira FL, Bota DP, Bross A, Mélot C, Vincent JL. Serial evaluation of the SOFA score to predict outcome in critically ill patients. Jama 2001;286:1754-8.
- 18. Alhazzani W, Møller MH, Arabi YM, et al. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Intensive Care Med 2020;46:854-87.
- 19. van den Boom W, Hoy M, Sankaran J, et al. The Search for Optimal Oxygen Saturation Targets in Critically Ill Patients: Observational Data From Large ICU Databases. Chest 2020;157:566-73.
- 20. Chu DK, Kim LH, Young PJ, et al. Mortality and morbidity in acutely ill adults treated with liberal versus conservative oxygen therapy (IOTA): a systematic review and meta-analysis. Lancet 2018;391:1693-705.
- 21. Siemieniuk RAC, Chu DK, Kim LH, et al. Oxygen therapy for acutely ill medical patients: a clinical practice guideline. Bmj 2018;363:k4169.
- 22. Grasselli G, Zangrillo A, Zanella A, et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. Jama 2020;323:1574-81.
- 23. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. Jama 2020;323:2052-9.
- 24. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 2020;8:475-81.
- 25. Gabarre P, Dumas G, Dupont T, Darmon M, Azoulay E, Zafrani L. Acute kidney injury in critically ill patients with COVID-19. Intensive Care Med 2020;46:1339-48.

Table 1 Baseline characteristics in the two allocation groups

Characteristics	Lower Oxygenation Group	Higher Oxygenation Group
	$(\mathbf{n} = 54)$	(n=56)
Age – years, median (IQR)	71 (60-76)	69 (60-75)
Male sex – no. (%)	43 (79.6)	43 (76.8)
Time from hospital admission to	2 (1-6)	2 (0-5)
randomisation - days, median (IQR)		
Time from ICU admission to randomisation –	4 (1-8)	3 (2-5)
hours, median (IQR)		
Comorbidities – no. (%)		
Ischaemic heart disease	6 (11.1)	6 (10.7)
COPD	6 (11.1)	5 (8.9)
Active haematological malignancy	5 (9.3)	3 (5.4)
Heart failure	2 (3.7)	3 (5.4)
Metastatic cancer	1 (1.9)	2 (3.6)
Chronic dialysis	2 (3.7)	0 (0.0)
Respiratory support at randomisation – no.		
(%)		
Invasive mechanical ventilation	24 (44.4)	31 (55.4)
NIV or CPAP	3 (5.6)	3 (5.4)
Open systems – no. (%)	27 (50.0)	22 (39.3)
Invasive ventilation		
Tidal volume – mL, (IQR)	478 (414-533)	460 (378-570)
End-expiratory pressure – cm H_2O , median	13 (11-15)	15 (12-15)
(IQR)		
Peak inspiratory pressure – cmH ₂ O,	28 (23-30)	28 (23-30)
median (IQR)		
Non-invasive ventilation or CPAP		
End-expiratory pressure – cmH ₂ O, (IQR)	7 (6-8)	7 (5-10)
Oxygenation parameters at randomisation		
PaO ₂ – kPa, median (IQR)	9.7 (8.4-11.3)	9.2 (8.3-10.4)
SaO ₂ – %, median (IQR)	94 (92-97)	93 (90-96)
FiO ₂ – median, (IQR)	0.73 (0.59-0.90)	0.70 (0.59-0.93)
PaO ₂ /FiO ₂ ratio – median (IQR)	13.8 (10.6-19.3)	13.9 (9.5-16.8)
Lactate – mmoL/L, median (IQR)	1.2 (0.9-1.9)	1.2 (0.9-1.5)
Use of vasopressor – no. (%)	23 (42.6)	27 (48.2)
SOFA score – median (IQR)	6 (4-8)	6 (4-8)

IQR interquartile range, ICU intensive care unit, COPD chronic obstructive pulmonary disease, NIV non-invasive ventilation, CPAP continuous positive airway pressure, PaO₂ partial pressure of arterial oxygen, SaO₂ arterial oxygen saturation, FiO₂ fraction of inspired oxygen, SOFA sequential organ failure assessment score

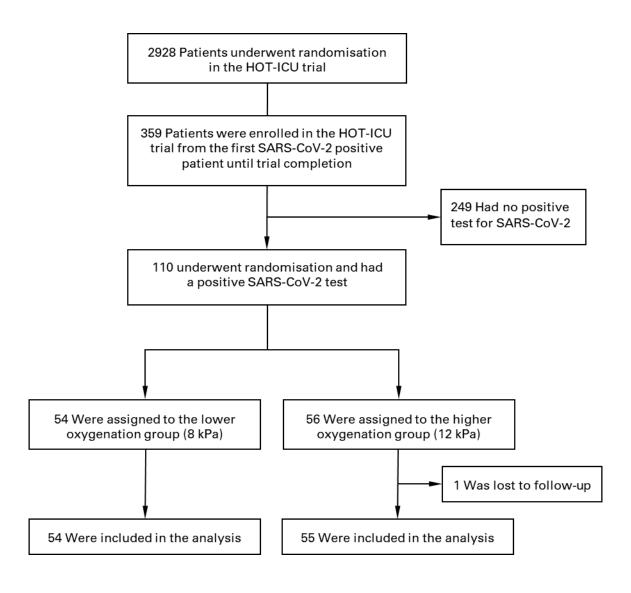
 $Table\ 2\ Outcomes\ at\ day\ 90\ and\ processes\ of\ care\ during\ ICU\ stay\ in\ the\ two\ allocation\ groups$

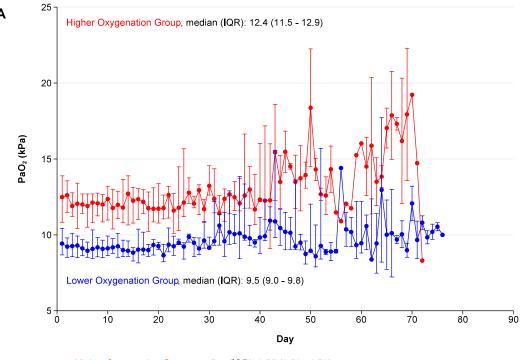
Outcomes	Lower Oxygenation Group (n = 54)	Higher Oxygenation Group (n = 55)	Risk difference (95% CI)	Risk ratio ^a / Odds ratio ^b (95% CI)	P value
Primary outcome at day 90					
Death by day 90	22 (40.7)	23 (41.8)	-1.08	0.97^{a}	0.91
			(-19.56 to 17.41)	(0.62 to 1.52)	
Adjusted for stratification			-0.45	0.87^{a}	0.51
variables			(-17.77 to 16.87)	(0.58 to 1.32)	
Adjusted for stratification and				0.66^{b}	0.39
baseline variables				(0.26 to 1.70)	
Secondary outcomes at day 90					
Percentage of days alive	79	71			0.03
without life support	(0-90)	(0-84)			
Percentage of days alive and	33.3	1.0			0.18
out of hospital*	(0.0–71.1)	(0.0–65.6)			
Number of serious adverse	30 (55.6)	30 (53.7)			0.90
events in the ICU					
Shock	30 (55.6)	29 (51.8)			
Myocardial	1 (1.9)	0 (0.0)			
ischaemia					
Intestinal	1 (1.9)	0 (0.0)			
ischaemia					
Ischaemic stroke	0 (0.0)	1 (1.8)			
Processes of care in the ICU					
Daily number of arterial blood	7 (6-9)	8 (7-9)			0.04
gases					
Respiratory support	47 (87.0)	55 (98.2)			0.03
Invasive MV	45 (83.3)	54 (96.4)			0.03
NIV or CPAP	5 (9.3)	4 (7.1)			0.74
In invasively mechanically					
ventilated patients					
Tidal volume (mL/kg)	7.0 (6.7-7.6)	7.3 (6.7-7.8)			0.51
PEEP (cm H ₂ O)	12 (10-13)	13 (12-15)			< 0.01
PIP (cmH ₂ O)	26 (23-28)	27 (23-30)			0.19
Prone position	15 (27.8)	31 (55.4)			< 0.01

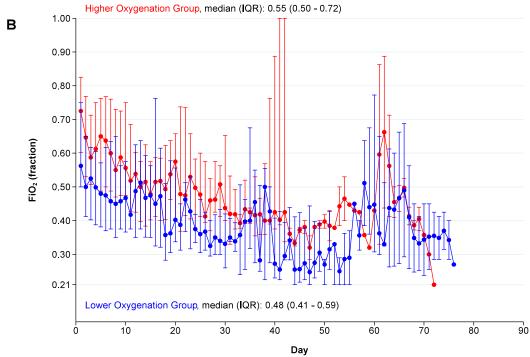
Inhaled vasodilators	3 (5.6)	13 (23.2)	0.01
ECMO	1 (1.9)	3 (5.4)	0.62
Vasopressors or inotropes	45 (83.3)	53 (94.6)	0.07
Renal replacement therapy	16 (29.6)	14 (25.0)	0.67
Red blood cell transfusion	14 (25.9)	17 (30.4)	0.67

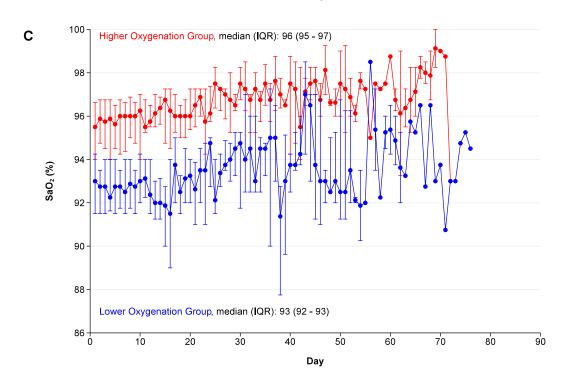
Note: Data are presented as median (IQR) or n (%), as appropriate.

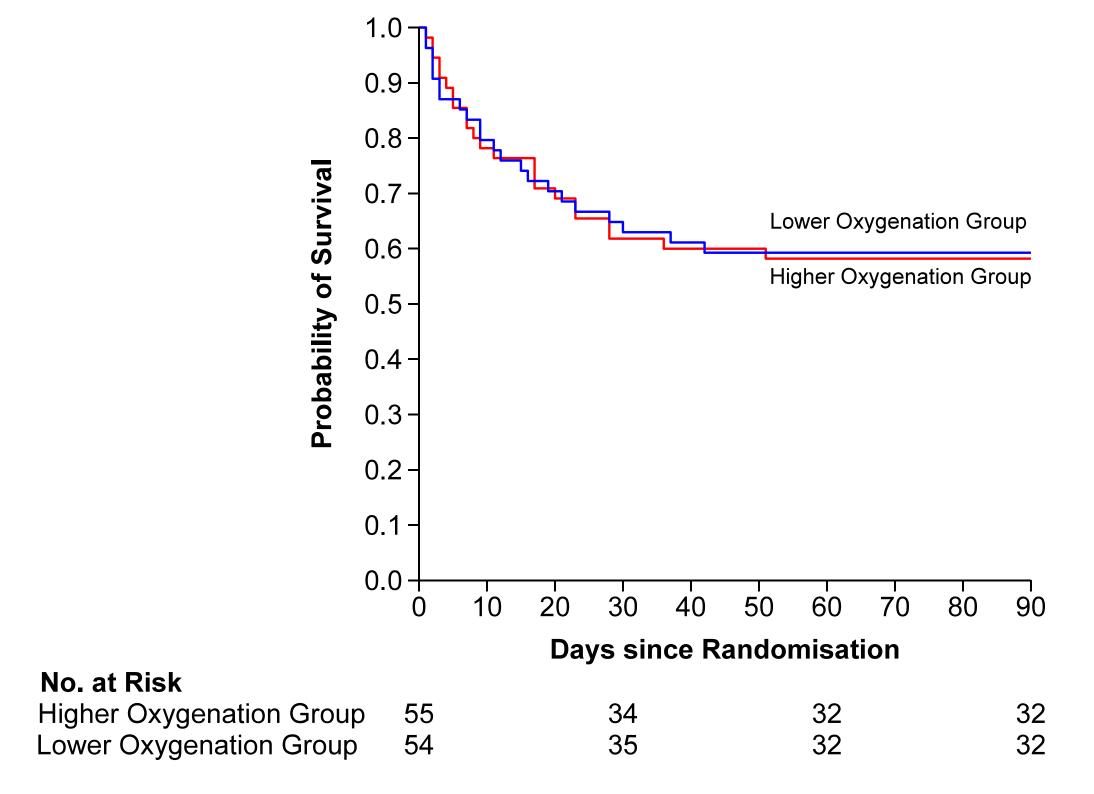
Abbreviations: IQR, interquartile range; ICU, intensive care unit; MV, mechanical ventilation; NIV, non-invasive ventilation; CPAP, continuous positive airway pressure; PEEP, positive end-expiratory pressure; PIP, peak inspiratory pressure; ECMO, extra corporeal membrane oxygenation.


*The seemingly large difference in the two point estimates is due to a zero inflated negatively skewed distribution (the histograms are provided in the supplement)


Figure captions


Figure 1 Assessment, randomisation and follow-up of COVID-19 patients enrolled in the HOT-ICU trial comparing a lower versus a higher oxygenation target in the ICU.


Fig. 2 PaO₂, FiO₂ and SaO₂ by allocation group. The medians of daily means of the partial pressure of arterial oxygen (PaO₂), the fraction of inspired oxygen (FiO₂), and the arterial oxygen saturation (SaO₂) in the ICU up until day 90. Daily means were calculated from the 12-hour lowest and highest PaO₂ with concomitant values for FiO₂ and SaO₂. Bars represent interquartile ranges (IQR). IQR are missing for some points as there is only one measurement for these particular days, see Table S1 in the supplement for patient numbers by days. SaO₂ values were not available in blood gas analyses from one site and were therefore missing for 19 patients.


Fig. 3 Kaplan-Meier plots of survival. The unadjusted hazard ratio is 0.98 [(95% CI 0.55–1.75, *P*=0.98)] and the hazard ratio adjusted for the stratification variables chronic obstructive pulmonary disease, haematological malignancy, and site was 0.82 with 95% CI, 0.45 to 1.50 (P=0.94).

