Aalborg Universitet

Multisystem inflammatory syndrome in a male adolescent after his second Pfizer-**BioNTech COVID-19 vaccine**

Chai, Qing; Nygaard, Ulrikka; Schmidt, Rebecca Catherine; Zaremba, Tomas; Møller, Anne Marie; Thorvig, Camilla Maria

Published in: Acta Paediatrica

DOI (link to publication from Publisher): 10.1111/apa.16141

Publication date: 2022

Document Version Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA): Chai, Q., Nygaard, U., Schmidt, R. C., Zaremba, T., Møller, A. M., & Thorvig, C. M. (2022). Multisystem inflammatory syndrome in a male adolescent after his second Pfizer-BioNTech COVID-19 vaccine. Acta Paediatrica, 111(1), 125-127. Advance online publication. https://doi.org/10.1111/apa.16141

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

DR. ULRIKKA NYGAARD (Orcid ID : 0000-0002-2093-5909)

Article type : Brief Report

BRIEF REPORT

Title

Multisystem inflammatory syndrome in a male adolescent after his second Pfizer-BioNTech COVID-19 vaccine

Correspondence

Ulrikka Nygaard, Ass Professor, PhD, MD, Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, Copenhagen 2100, Denmark

E-mail: Ulrikka.Nygaard@regionh.dk

All co-authors

Qing Chai¹, Ulrikka Nygaard², Rebecca Catherine Schmidt¹, Tomas Zaremba³, Anne Marie Møller¹, Camilla Maria Thorvig¹

¹Department of Paediatrics and Adolescent Medicine, Regionshospital Nordjylland, Hjoerring, Denmark. ²Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark. ³Department of Cardiology, Aalborg University Hospital, Denmark.

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the <u>Version of Record</u>. Please cite this article as <u>doi:</u> 10.1111/APA.16141

This article is protected by copyright. All rights reserved

Multisystem inflammatory syndrome (MIS) in children (MIS-C) is a complication of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, while myocarditis is a rare adverse effect to messenger ribonucleic acid (mRNA) SARS-CoV-2 vaccines, especially in males aged 12-17 years.^{1,2} As far as we are aware, no cases of MIS-C after mRNA SARS-CoV-2 vaccinations have been reported in children or adolescents. However, one case of MIS after the Pfizer-BioNTech mRNA vaccine has been described in a 44-year-old woman without a previous SARS-CoV-2 infection.³

We present details on a 17-year-old previous healthy male adolescent who fulfilled the diagnostic criteria for MIS-C after the Pfizer-BioNTech vaccine.⁴ He developed fever, vomiting, myalgia and chest pain five days after his second dose of the Pfizer-BioNTech vaccination. After two days, he was admitted to hospital with high levels of inflammatory parameters and multisystem involvement of the gastrointestinal tract, skin, central nervous system, kidneys, liver, coagulation, lungs and heart (Table 1). The patient developed myocarditis, with a severely reduced ejection fraction of 20%. He received therapy in the intensive care unit for six days with norepinephrine infusion, high-flow oxygen therapy, steroids, intravenous immunoglobulin and antibiotics. The patient was discharged after 10 days of hospitalisation. Cardiac magnetic resonance imaging the day after discharge revealed normal left ventricular ejection fraction of 62% and was consistence with myocarditis with subepicardial late gadolinium enhancement. During a follow-up visit eight days after discharge, the patient was asymptomatic, except fatigue, with no obvious clinical sequelae (Table 1). He returned to school the week after discharge from the hospital.

In-depth investigations excluded a wide range of differential diagnoses, including septic shock and toxic shock syndrome, meningitis, Kawasaki syndrome, macrophage activation syndrome, SARS-CoV-2 vaccine-induced immune thrombotic thrombocytopenia, *Legionella pneumophila* and cat-scratch disease. The following viral infections were also excluded: enterovirus, parechovirus, adenovirus, cytomegalovirus, Epstein-Barr-virus, herpes simplex virus, norovirus, rotavirus, influenza virus and human parvovirus B19. The patient's polymerase chain reaction SARS-CoV-2 test was negative on admission and he had negative nucleocapsid SARS-CoV-2 immunoglobulin G, but a

high level of SARS-CoV-2 spike glycoprotein immunoglobulin G (> 5.680 IU/ml). The case was reported to the European Medical Agency. The patient and his parents agreed that his details could be published.

To our knowledge, this is the first reported case of an adolescent who developed fever and multisystem inflammation following an mRNA SARS-CoV-2 vaccination. He fulfilled the diagnostic definition for a level one definitive case of MIS-C after COVID-19 vaccination, as defined by Vogel *et al.*⁴ Differential diagnoses were thoroughly investigated and excluded, including a previous SARS-CoV-2 infection.

Although the mRNA vaccine cannot be established as the cause of this case of MIS-C, it was compatible with the known spectrum of vaccine reactogenicity. The side effects of mRNA vaccines, which have been reported to occur in up to one-third of adolescents, are fever, headache and myalgia. In addition, myocarditis, often accompanied by fever and myalgia, is a rare adverse effect of mRNA vaccines.^{1,2} Furthermore, myocarditis occurs more frequently in male adolescents after the second vaccine.^{1,2} This was in accordance with our male adolescent developing MIS-C with myocarditis a few days after the second vaccination.

If the inflammation in our patient was caused by the Pfizer-BioNTech vaccine, it still remains an extremely rare condition as no other cases fulfilling the criteria for MIS-C after COVID vaccination have been reported in adolescents, despite nine million vaccinated children in the USA.¹ This contrasts with MIS-C after SARS-CoV-2 infection, which has been reported to occur in one in approximately 4,000 children and adolescents.⁵

In conclusion, this case raises suspicion of a rare association between the Pfizer-BioNTech mRNA SARS-CoV-2 vaccine and MIS-C in a male adolescent.

ABBREVIATIONS

SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; MIS, multisystem inflammatory syndrome; MIS-C, MIS in children; mRNA, messenger ribonucleic acid;

CONFLICTS OF INTEREST

The authors have no conflicts of interest to declare.

FUNDING

The study was funded by a COVID-19 grant from the Danish National Ministry of Higher Education and Science (grant number 0237-00004B).

REFERENCES

- Gargano JW, Wallace M, Hadler SC, et al. Use of mRNA COVID-19 Vaccine After Reports of Myocarditis Among Vaccine Recipients: Update from the Advisory Committee on Immunization Practices - United States, June 2021. MMWR Morb Mortal Wkly Rep. 2021;70(27):977-982.
- Jain SS, Steele JM, Fonseca B, et al. COVID-19 Vaccination-Associated Myocarditis in Adolescents. Pediatrics. 2021;e2021053427. https://doi.org/10.1542/peds.2021-053427.
- Nune A, Iyengar KP, Goddard C, Ahmed AE. Multisystem inflammatory syndrome in an adult following the SARS-CoV-2 vaccine (MIS-V). BMJ Case Rep. 2021;14(7):e243888. https://doi.org/10.1136/bcr-2021-243888.
- Vogel TP, Top KA, Karatzios C, et al. Multisystem inflammatory syndrome in children and adults (MIS-C/A): Case definition & guidelines for data collection, analysis, and presentation of immunization safety data. Vaccine. 2021;39(22):3037-3049
- Holm M, Hartling UB, Schmidt LS, et al. Multisystem inflammatory syndrome in children occurred in one of four thousand children with severe acute respiratory syndrome coronavirus 2. Acta Paediatr. 2021;110(9):2581-2583

Hospitalisation	Day 1 [§]	Day 2	Day 3	Day 4	Day 5	Day 6	Days 7-10	Day 18
status	Ward	Ward	ICU	ICU	ICU	ICU	ICU/ward	Follow-up
Clinical findings	Fever, headache	+Diarrhoea	+Hypotension (80/40 mmHg)	+Chest pain	Ending of fever,		Clinical	Fatigue. No
	vomiting,	+Diffuse rash	+Dyspnoea		headache, vomiting,		stable	obvious clinical
	lethargy, myalgias	+Dehydration			rash			sequelae
Investigations	Blood cultures:	Chest X-ray:	Chest CT: Bilateral infiltrations,		TTE: LV ejection	TTE: LV ejection		TTE: Normal
	Negative	Normal	pulmonary oedema, pleural effusions		fraction 20%	fraction 45%		
		Urine culture:	Abdominal CT: Mesenteric adenitis,		Chest X-ray:			
		negative	periportal oedema		Bilateral			
			Lumbar puncture: Normal CSF		infiltrations, pleural			
			Blood culture: Negative		effusions			
			TTE: LV ejection fraction 40%					
Treatment	Fluid therapy	Fluid therapy	Norepinephrine infusion	Norepinephrine infusion	High-flow oxygen	Methylpredniso	Oxygen	Prednisolone
	Antipyretics	Antipyretics	Hydrocortisone (IV)	IVIG (100 grams)	Methylprednisolone	lone (IV)	(intermittent)	(oral)
	Antiemetics	Antiemetics	Antibiotics	Hydrocortisone (IV)	(IV)	Antibiotics	Prednisolone	
			High-flow oxygen	High-flow oxygen	Antibiotics		(oral)	
				Antibiotics				
Biochemistry								Reference
C-reactive protein	148	255	304	305	286	145	61-14	<8 mg/L
Procalcitonin	0.7		22	>50	>50	22		<0.5 μg/L
Ferritin				920				22-355 μg/L
Leucocyte count	11.8	9.9	6.0	15.0	10.5	8.6		4.4-10.5
Haemoglobin	8.7				6.4		7.8-9.1	6.6-9.9 mmol/L
Platelets	189	169	101	126	108	141		165-435
INR	1.3		1.2	1.2	1.2	1.2		<1.2

Table 1. Details of clinical findings, investigations and treatment

This article is protected by copyright. All rights reserved

APTT	41		53	51	46	34		22-38 s
Fibrinogen	12		16	15	15	13		5.0-11 μmol/L
D-dimer	1.3		4,4	6.4	4.4	3.7		<0.7 mg/IFEU
Antithrombin	0.91		0.58	0.65	0.50	0.56		0.85-1.2 x 10 ³
ALAT	29		33		318	278		10-50 U/L
Creatinine	108	127	136	256	164	122	99-75	52-93 μmol/L
eGFR/1.73 m ²	86	71	65	30	52	75		>60 ml/min.
Creatinine Kinase	114				402			30-370 U/L
CK-MB	<1.0			68.9	10.3			<7 μg/L
Troponin I	<3		12	10507	5886			< 7ng/L
Troponin T					219		189	<14 ng/L
ProBNP	162			17844	16638		9796	<300 ng/L

[§]The patient developed the first symptoms two days before hospitalisation (five days after the second vaccine).

ALAT, alanine aminotransferase; APTT, activated partial thromboplastin time; CK-MB, creatinine kinase myocardial band; CSF, cerebrospinal fluid; CT, computerized tomography; ICU, intensive care unit; IV, intravenous; IVIG, intravenous immunoglobulin; LV, left ventricular; proBNP, pro b-type natriuretic peptide; TTE, transthoracic echocardiogram