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Abstract—In modern dc shipboard microgrid (SMG) systems,
the propulsion motors and hotel loads are always supplied
through tightly regulated point of load converters, which be-
have as constant power loads (CPLs). The negative incremental
impedance due to CPL’s characteristics destabilizes the dc bus
voltage of dc SMGs. Due to uncertain operating conditions of
maritime ships on the sea, the dc bus voltage robust control is
a crucial matter. Therefore, this paper presents a cutting-edge
systematic review on advanced nonlinear control strategies to
stabilize and control the CPLs in dc SMGs, such as sliding
mode control, synergetic control, backstepping control, model
predictive control, and passivity-based control. The latest stabi-
lization techniques and the future trends towards an adaptive
nonlinear control have been presented throughout this review.
Several feedforward control-based observation and estimation
techniques have been highlighted. The stability analysis and
stability challenges of dc SMGs are also discussed.

Index Terms—DC shipboard microgrids, constant power load,
adaptive nonlinear control, power electronic converters, system
stabilization, nonlinear disturbance observer.

I. INTRODUCTION

RECENTLY, dc microgrids (MGs) attracted great interest
of many academic and industrial researchers, since it

can efficiently integrate local groups of distributed generation
(DG) units and energy storage systems (ESSs) directly to the
dc loads with less conversion stages [1]–[3]. DC MGs based
on local DG systems (renewable generation), combined with
the capability to work dependently or independently of the
main grid, makes the dc MGs technically a feasible option to
address the concerns of substantiality, reliability, and energy
efficiency [4]. Furthermore, the accelerated improvement in
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Fig. 1. Typical structure of dc SMGs.

the performance of ESSs during the last decade makes dc
MGs an economically viable option, which also helps to
address the concerns of energy saving and balance [5], [6].
In addition to the application of dc MGs on land, it has
also been successfully implemented in off-grid applications,
such as electric vehicles, aircraft, and maritime ships [7], [8].
[9]–[11]. Thus, the dc shipboard microgrids (SMGs) emerged
as a modern electrification network for maritime ships. Fig.
1 shows a typical structure of the dc SMGs for maritime
ships, which is composed of the propulsion motors and hotel
loads supplied by DG units; diesel generators, fuel cells,
photovoltaic (PV) modules, and a pack of batteries. This
structure can work in different operating modes with advanced
energy management and control systems [9]. It can also be
connected or disconnected from the shore power system.
Since the 1990s, the controlled power electronic converters
have created a breakthrough in the field of shipboard electric
networks enabling electrification of the propulsion motors
through drivers based on variable-voltage-variable-frequency
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control. To reduce fuel consumption, emission, and to increase
the efficiency of maritime ships, the concept of all-electric
ship (AES) has been presented as a modern electrification
approach to supply the propulsion system electrically instead
of the conventional mechanical one [12], [13]. In this regard,
dc SMGs offer remarkable features as compared with ac
MGs, which can efficiently reduce the fuel consumption,
weight and space needed [8], [14]. The diesel generators in
dc SMGs can work with optimum speed, whereas the speed
in ac MGs can only be fixed at the frequency of the system.
Therefore, dc SMGs allow the generators to work with a unity
power factor with a faster and simpler parallel connection
[14]. In view of the advantages of dc MGs, many practical
dc maritime ships projects have been implemented around
the world. Thanks to the Italian Navy project named Naval
Package, the generation system for medium voltage dc (MVdc)
integrated power systems (IPSs) has been implemented in [15].
ABB has developed an onboard dc grid for ships, including
power rectification, power protection, and safety [16], [17].
The dc vessel named BlueDrive PlusC was developed by
Siemens to provide a comprehensive solution in cost reduction,
where the diesel generators can run at an optimum speed to
meet the load changes [18]. To further reduce cost, Siemens
and Ostensjo Rederi in Norway have launched the Edda Ferd
dc ship, which combines a set of batteries to work in one
IPS with the available diesel generators [19]. In Norway, the
Viking Lady vessel has also been developed by adding fuel
cell generation to the available set of generators and batteries.
The happiness hybrid-electric ferry is also developed in Taiwan
based on a hybrid power source containing diesel generators
with a set pack of batteries that are connected to dc and ac
MGs [20].

However, due to uncertain operating conditions of maritime
ships on the sea, dc bus voltage stabilization, regulation,
and fast recovery during disturbances are the most important
issues in the dc SMGs operation. Several disturbance dynamics
could degrade the regulation of the dc bus voltages, such
as oscillation dynamics due to the CPL [21], [22], pulsed
load [22], [23], voltage mismatches between power converters
[24]–[27], fault occurrences [28], and load rejection (sudden
disconnection of entire propulsion loads). Due to off-grid
working conditions of ships on the sea, the CPL is significantly
impacting stability in dc SMGs compared to the dc MGs on
the land. An effective three control levels for dc MGs were
presented in [29], including primary control for dc bus voltage
regulation, secondary control with voltage restoration, and
tertiary control for energy management. This paper focuses
on the CPL instability problem of dc SMGs at the primary
control level, including the CPL’s characteristics, definition,
and problem solutions using advanced nonlinear control tech-
niques.

The problem of CPL was originally defined by Middle-
brook, 1976 in [30], when the tightly regulated point of load
(POL) converter is supplied through an undamped input LC
filter. The ideal infinite output impedance of the LC filter at
the resonance frequency makes the system unstable. In order
to regulate the propulsion motor’s speed in dc SMGs, the
motor driver absorbs constant power from the dc bus voltage.

Likewise, to supply the hotel loads, the dc-dc buck power
converter draws constant power to regulate the output voltage.
The POL converters (either for speed or voltage regulation
purposes) are the substantial causes of the CPL dynamic,
which creates a negative incremental impedance (NII) [31].
Owing to this impedance, the system becomes unstable, poorly
damped and has loss-less energy dissipation across the CPL’s
input terminals [21], [22]. The constant oscillation caused by
the CPL is known as the limit-cycle dynamic, which is the
origin of the dc bus voltage instability [21]. This dynamic
not only degrades the stability of dc SMG, but also increases
the stress across the switching components of power source
converters. To stabilize the CPL in dc MGs, intensive research
has been undertaken in the literature including linear or
nonlinear control strategies. Numerous linear control strategies
have been studied using either passive or active damping
control techniques [21]. The passive damping is achieved by
adding a real passive component to the converter’s circuit such
as real resistors or capacitors [32]–[34]. Whereas, the active
damping is obtained by passivating the converter’s circuit
virtually through the control action [35]–[37]. For both linear
control approaches, the main converter’s circuit as well as
the control feedback system must be linearized in a small
vicinity near to a certain equilibrium point. Therefore, the
linearization-based small-signal model can only provide an
accurate control performance in a small neighborhood to this
point. Given the nonlinear nature of the power electronic
converters, a typical robust control dynamic away from this
point cannot be obtained. Therefore, the majority of linear
control techniques cannot maintain the global stability of the
system at wide dynamic ranges.

A great effort was employed to cancel out the nonlinearity
caused by the CPLs using; linearization via state feedback
[38] or loop-cancellation control [39]. Although nonlinear
feedback is added to capture the overall nonlinear dynamics
owing to the CPLs, the baseline controller is still linear.
For all these reasons, linear control strategies are considered
as over conservative control methods which, may not be
suitable in many industrial and power electronic applications
[40], [41]. Therefore, the current research is attracted towards
nonlinear control techniques. The main feature offered by
nonlinear control techniques is that they can provide large-
signal stability with globally asymptotically stable equilibrium
points. Besides, all power electronic converters are nonlinear
in nature, therefore, they are more efficiently controlled using
nonlinear control strategies.

The main contribution of this article can be summarized as
follows:

1) This paper reviews the latest nonlinear control techniques
to stabilize the CPL in dc SMGs. The cutting-edge state-
of-the-art literature for the most advanced nonlinear con-
trol strategies is presented and discussed. The instability
problem of dc SMGs due to CPL limit-cycle dynamic
has been introduced and defined. The recent stabilization
techniques of dc SMGs with CPL have been reviewed.

2) It was noted that the majority of the nonlinear control
strategies tend to use an adaptive control (using feed-
forward compensation control) to improve the control
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(a)

(b)

Fig. 2. Typical CPL characteristics due to the (a) speed regulation and (b)
voltage regulation.

robustness against system disturbances, such as CPL
changes. Therefore, this paper also fills the gap in the
applications of feedforward control-based observation
and estimation techniques. This review paves the road
for further investigation on adaptive nonlinear control
strategies and their application in dc SMGs.

3) Large-signal stability analysis and stability challenges of
dc SMG have been presented. The future trends towards
adaptive nonlinear control techniques have been covered
and discussed. The upcoming work of this current version
is also highlighted.

The paper is organized as follows. The CPL problem and
its characteristics are defined in Section II. An overview
of advanced nonlinear control technologies is presented in
Section III. The main challenges and future trends for dc SMG
CPL stability and control are presented in Section IV. The
main conclusions of this work are summarized in Section V.

II. DC SHIPBOARD MICROGRID CPL INSTABILITY
DEFINITION AND CHARACTERISTICS

In dc SMGs, there are two types of CPLs, including the dc-
ac inverter, which drives the propulsion motors of ships, and
the dc-dc power converter that regulates the output voltage
for the hotel and auxiliary loads (see Fig. 2). Both converters
consume constant power from the dc bus. Fig. 2(a) depicts the
dc-ac inverter, which drives the propulsion motor with tightly
regulated speed. As the speed (ω) remains regulated at a fixed
value, the torque (T ) would remain constant too. Therefore, the
power consumed (P = Tω) is almost constant [31]. Similar
to this one-to-one speed-torque characteristic of the propulsion
loads, the power consumed by the hotel and auxiliary loads
is also constant. As shown in Fig. 2(b), the dc-dc converter
regulates the output voltage (Vo) at a constant value, the output
current (Io) is constant. Therefore, the power (P = VoIo)
delivered to the load is also constant [31]. By neglecting the

Fig. 3. An approximation voltage-current characteristics curve of the CPLs.

power converter’s losses, the input power of CPL is equal
to the output power. Fig. 3 shows the negative incremental
impedance (NII) dynamic of CPL due to its input voltage-
current curve characteristics. To maintain constant power at
the CPL’s input terminals, the feedback control system always
enforces the input current (I) to increase (decrease) as the
voltage (V ) across the CPL decreases (increases). Although
the instantaneous impedance of CPL is positive (V/I > 0),
the incremental impedance is always negative (dV/dI < 0)
[31], [33]. The incremental impedance can be determined as:

Rinc =
∂v

∂i
=

∂

∂i

(
P

i

)
= − P

I2
= −V

I
(1)

This negative impedance always makes the system poorly
damped, unstable, and has loss-less energy dissipation across
the CPL’s input terminals [21]. Besides, the NII dynamic is
nonlinear in nature, and it is not stable when supplied by an
open-loop control source power converter. Following an open-
loop dynamic equation of dc-dc buck power converter supply-
ing CPL. where L,C and E represent the circuit inductance,
capacitance, and input voltage, respectively. µ, iL and v are the
duty-ratio, inductor current, and dc bus voltage, respectively.{

Li̇L = Eµ− v,
Cv̇ = iL − (P/v)

(2)

The output-to-input voltage transfer function G(s) is given by
[31], [42], [43]:

G(s) =
v̂(s)

Ê(s)
=

µe

LCs2 − L
(

P
V 2

)
s+ 1

(3)

where µe = V/E is the duty-ratio for the steady-state point
(V, IL). The poles of (3) have positive real parts, which means
that the system is unstable owing to the effect of the CPL
[31], [42], [43]. Therefore, without a robust feedback control
system, the dc bus voltage oscillates, creating a limit-cycle
dynamic. This dynamic also increases the stress across the
switches of the source power converters.

III. NONLINEAR CONTROL STRATEGIES AND
STABILIZATION TECHNIQUES FOR CONSTANT POWER

LOADS IN DC MICROGRIDS

Because all physical systems are nonlinear in nature, non-
linear control is more suitable [44]. Nonlinear control theory
is one of the areas of control that deals with systems that are
nonlinear, time-variant, or both. Nonlinear control strategies
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Fig. 4. Structure of the nonlinear disturbance observer.

are a class of closed-loop feedback control systems that can en-
sure a global solution for nonlinear systems with large-signal
stability. Moreover, it also concurs with the nonlinear nature
of the power electronic converters [45]–[47]. The majority of
the nonlinear control strategies use Lyapunov’s theorem as
a general platform to analyze the system’s stability. Since
the power converters and the CPLs are nonlinear systems,
it is more efficient to be controlled using nonlinear control
schemes. Several advanced nonlinear control schemes have
been presented in the previous literature to stabilize the CPL
in dc SMGs, such as sliding mode control, synergetic control,
backstepping control, model predictive control, and passivity-
based control.

On the other hand, there have been great efforts to de-
velop fast and robust control strategies for the nonlinear
plants subjected to unknown disturbances/uncertainties. An
adaptive nonlinear control (based observation and estimation)
has been proved to be one of the most promising control
systems, which can be applied to control power electronic
converters subjected to large system disturbances [40]. In
general, there are two stages to design adaptive nonlinear
control schemes; (i) design baseline nonlinear controller to
guarantee voltage regulation at steady-state operation, and (ii)
adding an external control circuit to attenuate steady-state
errors due to system disturbances [48]. In power electronic
applications, two control techniques are usually used to elimi-
nate the steady-state error caused by the system disturbances,
including feedback or feedforward control. It is well-known
that the linear proportional-integral-derivative (PID) control
system always attenuates system disturbances through feed-
back control, which has slow performance, noise degradation
due to derivative part, and stability margin reduction due to
the integral control [40]. In contrast, the feedforward control-
based observation and estimation technique ensures faster and
robust dynamic response during system disturbances with less
number of sensors [41], [47]. Although the PID control system
is a successful mechanism that dates back to the 1920s, the
author in [40], provided a sufficient justification to switch from
the PID controller to the disturbance rejection control system
based on extended state observer. Therefore, the majority of
current research is focused towards adaptive control-based
feedforward observation and compensation, such as nonlinear
disturbance observer (NDO), sliding mode observer (SMO),

Fig. 5. Sliding phases toward the equilibrium point.

immersion and invariance (I&I) observer, extended Kalman
filter (EKF), artificial intelligence (AI)-based observer, etc.
This paper will review all these observation techniques.

Recently, the NDO attracted substantial interest since it
can work independently of the baseline nonlinear controllers,
with less information dynamics [41], [48], [49]. Based on
the observation mechanism, the NDO can estimate all distur-
bances/uncertainty of the system. The NDO can estimate the
disturbances that are not easy to be sensed in some practical
applications, thus reducing the number of required sensors.
The general equation of the basic NDO is [41]:{

ẏ = −`(z)g2(z)y − `(z) [f(z) + g2(z)p(z) + g1(z)µ]

d̂ = y + p(z),
(4)

where d̂, y ∈ Rl, `(z), and p(z) are the estimated disturbances,
observer’s internal state vector, observer’s nonlinear gain func-
tion, and the nonlinear function to be designed, respectively.
f(z), g1(z), h(z), and g2(z) are smooth functions in terms
of z. This observer can be connected to the nonlinear plant
as depicted in Fig. 4, [41]. To reject system disturbances, the
estimated disturbances d̂ would be injected to the baseline
nonlinear controller.

A. Sliding Mode Control (SMC)

SMC is one of the nonlinear control strategies categorized
under the variable-structure system [46], [47], [50]. The main
feature offered by the SMC is that it can operate at high-speed
switching frequency control, which can drive the trajectory of
the system state into a specified surface in the state space,
named switching surface or sliding manifold. Thus, SMC has
a fast recovery performance as well as robust control against
system disturbances, such as CPL variations. In general, there
are two important phases for SMC design, including (i)
reaching phase, which enables the system trajectory S to be
attracted towards the sliding manifold ζ = 0, as shown in Fig.
5a, and (ii) sliding phase, which keeps the trajectory slides
toward the steady-state equilibrium point O = 0, as shown in
Fig. 5b [46], [47]. Following is the dynamic equation of the
common power electronic converters, such as buck, boost, and
buck-boost converters [46], [47]:

ż = Az + uBz (5)

where z ∈ Rn is the vector state, A,B ∈ Rn×n are the
connection matrix, and u is the control law. The basic sliding
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Fig. 6. Structure of sliding mode control strategy with the observer.

surface can be written as:

S = z − z∗ (6)

where z∗ is the desired reference vector. The discrete control
law has been determined in the following form:

u =
1

2
(1− sign(S)) (7)

Owing to the fast switching performance, the nonlinear SMC
has attracted great attention to enhancing the stability of dc bus
voltage supplying CPLs in shipboard’s electric networks [51]–
[54]. Besides, there are great efforts to increase the robustness
of the SMC using feedforward observers. To improve the
control robustness of SMC strategy, an observers based on
estimation techniques are introduced to work in parallel with
SMC, as shown in Fig. 6, [51], [53]–[61]. iLN are the
N inductor currents, µ are the duty cycles and k are the
control laws. The system states z are transformed into states
representing the total energy stored x using the canonical
form transformation, which is the input for the observers
[58]. The proposed observers were designed as NDO in [57],
[58]. It is also presented as an observer based on AI control
algorithms in [53]–[56]. The AI algorithms are proposed using
an interval type-2 fuzzy logic controller in [53], [54], and
deep learning controller in [55], [56]. To reject the system
disturbances, uncertainty and to enhance the stability of the
dc-link voltage, the observer is also combined with working
in parallel with a composite discretized quasi-sliding mode
control scheme in [59] and SMC strategy (working as outer-
loop) in [60]. It is worth mentioning that the observer-based
estimation technique has gained great attention in all applica-
tions of nonlinear control strategies, including the SMC. The
estimated disturbances d̂ are injected into the SMC through
feedforward compensation channels to ensure robust control
dynamics. The feature offered by the feedforward control has
an extremely fast response against system disturbances, such
as CPL variations.

Rather than using observers, the SMC performance is
also improved by introducing other techniques. In [62], the
switching function-based SMC synthesizes CPL with a series
inductor in the input port. The switching function is designed
to represent the error difference between the input power and
the desired power reference. In [31], a simple sliding surface
has been proposed to control the dc-dc buck power converter

Fig. 7. Continuous and discontinuous SMC strategies.

feeding a CPL. The attraction region toward the equilibrium
point is bounded by large-signal stability. However, the pro-
posed sliding surface lacks to ensure voltage regulation during
load changes. Authors in [63], [64], have proposed a robust
nonlinear sliding surface to control different topologies of dc-
dc power converters (buck, boost, and bidirectional) feeding
a CPL. In this work, the SMC was implemented based on
two different control schemes; continuous or discontinuous
control schemes (see Fig. 7). These controllers provide a robust
voltage control against both input voltage and load variations.

Indeed, the common problem that faces the majority of
SMC strategies is that ideal control performance can only
be obtained at extremely high switching frequencies; which
causes the well-known chattering problem. High switching
frequencies lead to high switching losses in the power devices.
It also increases the possibility of electromagnetic interfer-
ence with neighboring devices. Recently, high-power high-
frequency silicon carbide transistors can help SMC to achieve
robust control performance. Therefore, the SMC is expected
to be applied widely in the applications of dc SMGs in the
future.

B. Synergetic Control (SC)

The synergetic control method is a nonlinear algorithm that
can be designed based on the concept of the nonlinear dynamic
dissipative system [65]. The synergetic control strategy and
the SMC share a similar control scheme by designing a linear
manifold that attracts the system states towards the desired
equilibrium point. The following differential equation defines
the nonlinear plant to be controlled:

ż = f(z, µ, t) (8)

where z is the state variable vector, µ is the control input
for the plant, and t is time. The following steps have to be
followed to design a synergetic control strategy:

1) Define a macro-variable ψ to be a function of z with
considering all control system specifications and charac-
teristics.

ψ = ψ(z) (9)

The closed-loop control system forces the plant to work
at switching surface ψ = 0. The derivative with respect
to z is given by

ψ̇ =
dψ

dz
ż (10)
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Fig. 8. Structure of BSC strategy with CKF.

2) Determine the desired dynamic equation of macro-
variable as.

T ψ̇ + ψ = 0, T > 0 (11)

T is the control parameter to ensure the convergence
towards the desired manifold ψ = 0.

3) Synthesize the input control law µ, by invoking (8) and
(10) in (12), obtaining

T dψ
dz
f(z, µ, t) + ψ = 0 (12)

Numerous synergetic control strategies have been presented
in the past literature to control the CPL in dc MG systems.
In [66], the synergetic control strategy is used to stabilize
parallel-connected dc-dc buck power converters feeding a
CPL; the control performance of this strategy gives robust
dynamics and faster response as compared with a linear control
strategy. This work not only ensures voltage regulation but also
provides equal current sharing among the parallel buck power
converters. However, this article did not provide a detailed
analysis for CPLs. In [67], [68], the same authors proposed
synergetic control strategies to control the output voltage of the
n number of paralleled dc-dc buck power converters supplying
CPL in dc SMG. The condition of an equal current sharing
is satisfied by introducing invariant manifolds into the state-
space of the system, which significantly suppresses the error
of the output voltages. The synergetic control strategy is also
implemented in [69], [70] to stabilize the dc bus voltage
supplying CPL in the MVdc distribution system. In both
works, a detailed performance comparison has been presented
to demonstrate the superiority of the synergetic control as
compared with the linear feedback control.

A synergetic control strategy is a promising control method,
which can generate fixed switching-frequency without chat-
tering problem. However, it is sensitive to parameter uncer-
tainty and load disturbances. The synergetic control is not
yet combined with the NDO or other observers, which may
open a new research direction to improve control robustness of
synergetic strategy in terms of fast dynamic response against
system disturbances. Since synergetic control requires a fairly
low bandwidth for the control design, it is more suitable for
digital control applications, such as digital signal processors.
However, it requires more complex calculations.

C. Backstepping Control (BSC)

BSC is a nonlinear control approach that works according
to a recursive Lyapunov-based scheme [71], [72]. The concept
behind the BSC scheme is to design a controller that works

Fig. 9. Structure of BSC strategy with NDO.

recursively by considering some of the state variables as
virtual control and designing intermediate control laws for
them. Following this criterion, the final control signal of the
feedback system will be reached by systematically following
a step-by-step backstepping algorithm [71]. In [73]–[75], the
BSC performance of the dc-dc boost converter (classical or
interleaved) feeding a CPL is improved by adding the NDO.
Based on the standard backstepping design, the dynamic
model of the dc-dc boost power converter with the CPL is
converted into Brunovsky’s canonical form. At the same time,
the NDO is added to eliminate the regulation error during
disturbances. This control strategy ensures global stability
under large variations of the CPL and provides a fast dynamic
response compared with the linear control. However, these
papers did not present the control performance before and after
adding the NDO. By transforming the model into Brunovsky’s
canonical form, an adaptive backstepping sliding mode control
strategy is also presented in [76] to improve the control
robustness of dc bus voltage supplying the CPL in the dc
MG. In [77], an adaptive BSC strategy is proposed to stabilize
the uncertain CPLs in dc MG. The CPLs are represented
by electrical aircraft that comprise a vast amount of tightly
regulated POL converters. A third-degree cubature Kalman
filter (CKF) algorithm is developed to improve the control
robustness of the backstepping controller by estimating not
only the states of the dc MG, but also the total power of the
load PL (see Fig. 8). The estimated signals of load power are
then sent to a backstepping controller to stabilize the dc MG,
as well as to track the desired value of the dc bus voltage.

Based on the estimation technique (i.e., NDO), the BSC
strategy has also been developed to control high voltage gain
converters, such as floating dual boost converters (FDBCs)
in [78], and multilevel boost converters (MBCs) in [79].
It is worthy to note that the NDO has been added to the
majority of the above-mentioned BSC strategies [73]–[75],
[78], [79]. Fig. 9 depicts the general structure of the BSC
combined with the NDO. The NDO estimates the system
disturbances d̂ =

[
d̂1 d̂2

]T
based on the input system’s

states x =
[
x1 x2

]T
, using the following coordinate

transformation, [73]–[75], [78], [79]:{
x1 =

1

2
Cv2c +

1

2
Li2L,

x2 = ẋ1

(13)
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where x1 is the state of the total energy (potential plus kinetic),
and x2 describes the transient dynamics of x1. Additional
coordinates (z1, z2) have been added to enforce the state vari-
ables (x1, x2) to track the desired reference values (x1d, x2d),
which can be written as:{

z1 = x1 − x1d,
z2 = x2 − x2d

(14)

Finally, the intermediated control law v of the BSC can be
determined as follows:

v = −k2z2 − d̂2 + ẍ1 (15)

where k2 is the control gain, and d̂2 is the estimated system
disturbances provided by the NDO. We can conclude that the
control dynamics of the BSC strategy is significantly improved
by adding the NDO, which can open the window for using
more advanced estimation techniques to enhance the stability
of dc SMGs.

D. Model Predictive Control (MPC)

MPC is one of the nonlinear control strategies recently
applied in power electronics converters [80]. This control
strategy uses a discrete-time model to predict the changes in
the system states (dependent variables) caused by variations
in the independent variables, such as line and loads variation.
The prediction process takes place at every single sample
time to minimize a certain cost function. By comparing the
system output with a reference value, this function works as
an actuator to provide future information for the next sample
time of each variable. Recently, the application of MPC in dc
SMGs has also attracted much attention [81]–[85]. Generally,
to stabilize the CPLs, the MPC can be categorized into two
groups [86]; continuous control set (CCS) and finite control
set (FCS). The CCS-PMC works based on the principles of
continuous signals [87], [88], whereas the FCS-MPC considers
the discrete nature of the nonlinear system [89]–[93]. To
improve the control robustness of the MPC, both; extended
[94] and pseudo-extended Kalman filters (EKFs) [95] are
proposed to estimate the time-varying power of uncertain
CPLs in dc SMG. The estimated power is then injected into
the PMC circuits, which is considered an economical solution
compared with using real sensors to measure the online CPL’s
power. Recently, observer-based control has also been applied
to work in parallel with the MPC strategies to stabilize the
CPLs [96]–[98]. This observer is designed either as NDO
in [96], fuzzy-observer in [97], or higher-order sliding mode
observer in [98]. Fig. 10 depicts the common structure of
the MPC for dc-dc power converters supplying CPLs. The
predictive model presents J different switching states. The
control objective is obtained when the variables X converge
with the desired values X∗. The common stages to implement
the MPC strategies are shown as follows [80]:

1) Measure and (or) estimate (based observation) the con-
trolled state variables X .

2) Based on the previous optimal switching state, predict the
behavior of the state variable for the next sampling step
XP .

Fig. 10. Common structure of MPC strategies.

3) Evaluate and calculate the error |X∗ − XP | to generate
the switching state that minimizes the cost function Sopt

to be the state for the next sampling interval.
Other new techniques also were presented to improve the

control robustness of the MPC. By treating a multiparametric
nonlinear programming problem, an offline optimal control
law is designed in [99] to drive an explicit MPC for a dc-
dc boost converter supplying CPL. In [100], parallel power
converters are implemented to supply the CPL. The MPC is
used to enhance the stability for equal current sharing and
voltage regulation by replacing the conventional primary level
of dc MGs (inner-loop and droop control) with a single optimal
predictive model controller.

The main feature offered by MPC is that it can solve
an online optimization problem for multi-input multi-output
(MIMO) systems while handling all constraints of the system.
However, it requires a powerful, fast processor with large
memory. This increases the computational complexity and
cost.

E. Passivity-Based Control (PBC)

PBC is one of the high-gain nonlinear control strategies
that focus on the principle of energy conservation (i.e., energy
supplied is equal to the sum of energy dissipated plus energy
stored). The passivity property is presented as an alternative
concept to describe and control nonlinear systems from an
energy processing perspective. For physical systems that con-
tain input (u ∈ Rm) and output (y ∈ Rn), the system is said
to be passive if the energy stored Ḣ(z) is always less than
the energy supplied uT y with the difference being the energy
dissipated ZTRi(z)Z , which is represented by the following
energy balance equation [101]:∫ t

0

uT (t)y(t)dt︸ ︷︷ ︸
energy supplied

=

∫ t

0

ZTRi(z)Zdt︸ ︷︷ ︸
energy dissipated

+H (z(t))−H (z(0))︸ ︷︷ ︸
energy stored

(16)
The PBC strategy has been successfully applied in many

power electronics and industrial applications. PBC strategy
has been presented to stabilize the CPL in dc SMG and to
control the dc bus voltage [102]. The passivity property almost
concurs with the physical nature of power electronics archi-
tecture, which are composed of storing elements (inductances
and capacitances) and dissipative loads. To damp the energy
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oscillation caused by the CPL, the PBC strategy reshapes the
energy balance equation (16) by injecting the new desired
storage energy and dissipation functions. This can be achieved
virtually through the control action. Therefore, to implement
the feedback PBC strategy, two stages have to be followed, in-
cluding energy shaping stage by modifying the coordinates of
the stored energy (potential or kinetic) with handling the new
deviations, and the damping injection stage by injecting virtual
damping resistance matrix. In general, the PBC strategy can
be divided into two main groups including; (i) classical PBC,
and (ii) interconnection and damping assignment (IDA-PBC),
[103]. The classical PBC strategy was originally proposed by
Ortega et al. [101], which is similar to standard Lyapunov
methods successfully applied to control the physical systems
described by Euler-Lagrange motion equations. The dynamic
equations of the dc-dc power converter based on the classical
PBC was determined as [101]:

HŻ + [G +R(z)]Z = E (17)

H is a positive definite matrix of the storage system (induc-
tance and capacitance), Z is the vector of the state variables,
G is a skew-symmetric matrix, R(z) is the diagonal positive
semi-definite matrix for heat dissipation, and E is the input
vector matrix. The energy damping stage can be obtained by
changing the coordinate of (17) using Z = Z̃ + Zd:

H ˙̃Z + [G +R(z)] Z̃ = E −
(
HŻd + [G +R(zd)]Zd

)
(18)

where Z̃ is the new deviation from the reference point Zd.
The damping injection stage can be determined by adding a
virtual resistance matrix RdZ̃ to both sides of (18):

H ˙̃Z + [G +Ri(z)] Z̃ = E
−
(
HŻd + [G +R(zd)]Zd −RdZ̃

)
(19)

where Ri(z) = R(z)+Rd. In the classical PBC strategy, the
feedback control system is usually designed by considering the
system has well-defined input and output, and it tends to make
the storage function nonincreasing. However, the classical
PBC is considered as a particular case of the control by inter-
connections, which is the main property of the nascent IDA-
PBC strategy [104]. In this sense, the IDA-PBC is effective for
all physical systems that have an interconnection nature with
other storage and dissipative elements where the input and
output of the system are not easy to be assigned. Therefore,
the port-controlled Hamiltonian (PCH) method is presented to
characterize all assignable energy functions compatible with
this structure, which is determined in the following form [103].

Ż = [G −R(z)] ∂Hd

∂z
(z) + g(z, u) (20)

where
Hd(z) =

1

2
Lz1

2 +
1

2
Cz2

2 (21)

This provides the IDA-PBC with robust dynamic and globally
asymptotically solution. Both PBC strategies are presented and
developed in several works to stabilize the CPL in dc MGs,
including the classical PBC in [105]–[112], and IDA-PBC in
[113]–[123]. However, each strategy has its own drawback.

Fig. 11. Structure of PBC strategy with NDO.

The main drawback of the classical PBC strategy is that it
cannot eliminate the steady-state error caused by the wide va-
riety of disturbances (such as input voltage or CPL variations)
[108]–[111]. To eliminate this error, simple integral-controller-
based feedback attenuation is added to classical PBC in [105],
[106]. However, it has slow recovery performance during
disturbances with high maximum overshoot. Therefore, the
NDO is presented in [108]–[111] to work in parallel with the
PBC strategy as feedforward compensation control. The NDO
is added to observe and estimate the system disturbances (d̂)
online and inject it to the PBC through feedforward channels,
as shown in Fig. 11. In this work, it is proved that the NDO-
based feedforward control provides faster dynamic response
during system disturbances with global trajectory tracking as
compared to the integral-based feedback control [108]–[111].
Likewise, to improve the control performance of the IDA-
PBC strategy, several observer techniques were also presented,
such as immersion and invariance (I&I) in [115], [117]. I&I
observer is added to estimate the power load online, which
is difficult to be measured in some practical applications. An
adaptive interconnection matrix is also developed in [118]–
[121], by establishing internal links in the PCH model, which
enables the generation of the desired control law for the
cascaded power electronic system containing input filter and
CPL. With the aid of an additional integrator, the IDA-
PBC strategy has also been extended to control high-power
multiphase interleaved boost power converters, suitable for
transportation applications [116], [122]. Another drawback of
the IDA-PBC is that the PCH used in the previous methods is
not shifted passive. Therefore, the property of shifted passive
has been enforced in [123] by adding state feedback, called
shifted passivity via feedback. The results show accurate
voltage control for the buck-boost converter supplying a CPL.
However, the control robustness against CPL variation has not
been examined. The instability issue of unknown nonlinear
ZIP loads [i.e., constant impedance (Z), current (I), and load
(P)] was also addressed in [124], [125]. Based on the skew-
symmetric interconnection properties between the individual
local passive subsystems, stability of the entire dc SMG can
be ensured using the PBC strategy.

It can be concluded that the adaptive PBC strategy could
pave the road to better understand the dynamics of the dc
SMG from the standpoint of energy processing (storage and
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TABLE I
COMPARISONS OF BASELINE NONLINEAR CONTROL STRATEGIES WITH THEIR ADAPTIVE TECHNIQUES.

Baseline
Controller

Advantages Drawbacks All
Techniques

Adaptive Techniques

NDO SMO I&I EKF AI

SMC – Fast recovery performance.
– Use continuous and discontinuous

control schemes.
– Robust control.

– Chattering problem.
– Electromagnetic interference.
– Complex for high-order power con-

verters.

[31]
[50]–[64]

[57], [58] [59], [60] [53]–[56]

SC – Suitable for digital control.
– Fixed switching-frequency.
– Less power filtering.

– Sensitive to parameters uncertainty.
– Less robustness against load distur-

bances.
– Complex calculations.

[66]–[70]

BSC – Easy and simple design.
– Systematic approach to construct

the Lyapunov function.
– Fast performance.

– Requires transformation to another
canonical form.

– Sensitive to parameters and distur-
bances uncertainty.

– Requires adaptive technique.

[73]–[79] [73]–[75]
[78], [79]

[76] [77]

MPC – Robust control dynamic.
– Effective for MIMO systems.
– Optimum with online problem

solving.
– Handling all constraints.

– Computational complexity.
– Detailed model-based design.
– Requires a powerful fast processor.

[85]
[87]–[100]

[96] [98] [94], [95] [97]

PBC – Energy processing-based design.
– Globally asymptotically stability.
– Consistency with the physical na-

ture of power electronics.
– Systematic and easy design ap-

proach.

– Sensitive to system disturbances.
– Detailed model-based design.
– Requires adaptive technique.

[105]–[125] [108]–[111] [115], [117]

Fig. 12. Interconnected passive systems through (a) parallel and (b) feedback
connection.

dissipation elements) rather than signal processing. PBC offers
the feature of local passivity for subsystems connected together
through parallel connection or using passive feedback control
(see Fig. 12) [126]. The transient energy can be dissipated
locally in each subsystem owing to this feature, which fa-
cilitates the stability for the entire dc SMGs. In this sense,
the overall energy balance of the dc SMG is always positive.
Therefore, the PBC strategy is qualified to be pioneering in
the applications of dc SMGs in the near future.

IV. CHALLENGES AND FUTURE PERSPECTIVE FOR DC
SMG CPL STABILITY CONTROLS

It is obviously that dc SMG has been evolved rapidly as
effective alternative network compared with ac SMG, which
reduces the cost, size and makes the diesel generators working
at optimum operating point with unity power factor. However,
the control and stability of the dc bus in dc SMG is a
crucial issue due to the presence of CPLs. Besides, the CPLs
variations due to the uncertain operation condition of ships
on the sea, such as torque and load changes of propulsion

motors, increases the dc bus voltage control challenges. The
aforementioned well-established nonlinear control methods,
can be considered the backbone for more future control
innovations and applications to regulate the dc bus voltage
and ensure system stability for dc SMGs.

A. Stability Challenges of DC SMG with CPLs

Table I summarizes the comparison between advanced non-
linear control strategies and their adaptive techniques (type of
observers) to stabilize CPLs. The comparison shows the ad-
vantages and drawbacks of each baseline nonlinear controller.
Besides the estimation techniques used to improve their control
performance. We can conclude that the stability analysis of dc
SMGs requires more development for two levels of control, in-
cluding local control level for each single power converter and
system-level control for parallel-connected power converters.

1) Stability challenges of local nonlinear control: Several
well-known frequency domain stability methods were suc-
cessfully tested in the dc MGs linear control systems, such
as Bode plot, Routh-hurwitz, root locus, Nyquist stability
criteria, etc. [127]. On the other hand, a few techniques have
been used for stability analysis of local nonlinear control
systems, such as describing function, phase plane, Popov,
and Lyapunov stability criteria, which require more complex
equations and advanced analysis [44]. The problem of the
nonlinear systems in the frequency domain is that there are
always highly complex output frequencies, appearing as su-
perharmonics, sub-harmonics, inter-modulation, chaos, limit-
cycle, and bifurcation, which can produce output frequencies
quite different from the input frequencies [44], [128]. This
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TABLE II
DIFFERENT COMPARISONS BETWEEN THE NONLINEAR CONTROL STRATEGIES.

Control
Method

Control-loop stability analysis criteria Work without
stability
analysis

Work
with only
simulation
results

Work with hardware-in-loop results Work with hard-
ware experimen-
tal results

Lyapunov
stability

Fixed-time
stability

discrete
stability

OPAL-RT
simulation
platform

dSPACE
simulation
platform

SMC [50],
[52]–[54],
[56]–[58],
[61]–[63]

[51] [59] [55], [60] [50] [63], [64] [51], [53]–[56],
[59]–[61]

[52],
[57]–[59],
[61]–[64]

SC [66]–[70] [66]–[70]

BSC [73]–[79] [75] [73], [74] [73], [74],
[76]–[79]

MPC [87], [93],
[95]–[97]

[85], [88], [89],
[91], [94], [99],
[100]

[87] [97], [100] [88], [91],
[93]–[96], [98], [99]

[85], [88]–[90],
[92]–[94], [99]

PBC [105]–[125] [108],
[123]–[125]

[108]–[111] [113], [116], [118],
[120]–[122]

[105]–[107], [109],
[111]–[122]

usually makes it rather difficult to analyze and design output
frequency response of nonlinear systems than linear systems
[128]. Table II shows that the majority of nonlinear control
techniques used the Lyapunov stability criterion to analyze
feedback closed-loop local control systems. It also shows
the classification of works that have been implemented using
simulation or hardware experiments. Besides, the hardware-in-
loop simulation platforms were also classified. The advantage
of nonlinear control systems is that they can handle many
nonlinear dynamics, which can not be addressed using linear
control, such as finite escape time, multiple isolated equilibria,
limit cycles, chaos, etc. [44]. However, nonlinear control
systems are complex and require complicated computational
and programming modeling. Besides, the industry of nonlinear
control systems has not yet become mature in the applications
of dc MGs as compared to the linear PID controller. The cost
of nonlinear control implementation is also high.

2) Stability challenges of system-level control: Last decade,
the system-level stability analysis of dc MGs have been
presented using many effective linear criteria [129], includ-
ing Middlebrook [30], gain margin and phase margin [130],
opposing argument [131], energy source analysis consortium
[132], three-step impedance [133], and passivity-based sta-
bility criterion [129], [134]. On the other hand, system-level
nonlinear control stability of dc MGs, still limited to a few
methods based on Lyapunov stability theorem, such as low-
frequency bifurcation-based analysis [135], [136], Popov’s
absolute stability criterion [137], and mixed potential theory
[138]–[142]. Thus, system-level stability analysis of dc SMGs
based on nonlinear control needs more development. Other
problems may also impact dc SMGs’ system-level stability,
such as bifurcation and chaos behavior due to system param-
eters changes [143]–[145]. Ships with high power weapons
(pulse load) and motor drive probably experience high volt-
age fluctuation, which may lead to bifurcations and chaos
dynamics. Therefore, the region of parameter space must be
accurately justified to ensure the system is working within
the allowed boundary of selected parameters [143]. Adaptive

robust control techniques are also required to avoid bifurcation
occurrence.

B. Stability Analysis of DC SMG with CPLs

Large-signal stability analysis of MGs, including all non-
linearities of the system and CPLs is a crucial matter. In
[146], Lyapunov-based large-signal stability criteria have been
intensively reviewed for MGs stabilization. Large-signal sta-
bility tools for dc power systems are also reviewed in [147].
The prime concerns of SMGs instability are the system
disturbances due to intermittent nature of renewable energy
resources, and MGs load pattern changes. Besides the uncer-
tainty due to parameters variations. Therefore, Lyapunov large-
signal stability criterion have been widely presented as the
most effective methods for SMGs stability analysis to address
all concerns, including CPLs [146]. Several stability criteria
have been developed based Lyapunov’s method for dc MGs
[147]:

1) Mixed Potential Theory (MPT): MPT-based Lyapunov’s
method has been employed for many work as stability tool for
dc MGs with CPLs [138]–[142], [148]. Which can be applied
to analyze dc MG’s stability from the level of single CPL to
mutlti-CPLs. The MPT was originally proposed by Brayton
and Moser [149], which has been recently applied in power
electronics stability using region of attraction estimation [148].
The MPT is an energy-related function, which can contain the
current and voltage potentials.

C(v)
∂v

∂t
= −∂P (v, i)

∂v
, L(i)

∂i

∂t
=
∂P (v, i)

∂i
(22)

In [142], [148], MPT has been employed to analyze large-
signal stability of parallel connected dc-dc power converters
supplying CPL in dc MGs. Based on Lyapunov’s equations,
the mixed potential function P (v, i) have be constructed to
analyze large-signal stability under certain conditions [142].

2) Bifurcation Theory: bifurcation occurs in power elec-
tronics, when a small smooth changing of the parameter values
lead to a sudden qualitative variation in its behavior, such as
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Fig. 13. Regulatory mechanisms, (a) mechanical spring and (b) dc electric
spring.

Fig. 14. DCES with battery, (a) with noncritical load and (b) without
noncritical load.

high CPL changing and parameters uncertainty [150]–[152].
In [150], where MG supplying CPL, bifurcation boundaries
before the MG become unstable can be predicted using bi-
furcation stability region analysis. In [151], a jacobian matrix
has been developed to investigate the stability of limit cycles
for dc power system with CPLs and LC filters. A simplified
model was developed to understand the interaction dynamics
between the inverters in ac MGs with CPLs using bifurcation
theory [152]. The obtained results of simplified model with
output power variation has been verified with the a full model
of MG.

3) Popov Stability Criterion: is a stability analysis tool
to obtained the absolute stability for a class of nonlinear
equations that satisfying an open-sector condition. In [137],
the Popov’s absolute stability method has been utilized to
analyze system stability for an ac MG in presence of CPL. It
was presented that the ac MGs becomes stable when the CPL
changing satisfying certain conditions of Popovs criterion.

4) Recent Stability Analysis Techniques: In [153], a
semidefinite programming (SDP) have been developed as a
new stability tool to estimate the domain of attraction for dc
MGs composed of multiple CPLs. In [154], the bifurcation
analysis was used to study the fast-scale stability analysis for
dc-dc boost power converter with CPL. A piecewise linear
switched model can provide fast-scale stability for linear load
and still providing the accuracy of the full model of CPL. In
[155], using solving convex optimization problems (to check
set of sufficient conditions), a robust stability framework has
been developed for dc MGs for a given range of CPLs.

Fig. 15. Hybrid-electric ferry system structure.

C. DC SMGs Stability using DC Electric Springs (DCES)
DCES is an effective emerging method to ensure dc bus

voltage stability of dc MGs against system disturbances, such
as CPL oscillations, renewable power source fluctuation, sys-
tem fault, voltage droop, etc. [156]–[159]. DCES behaves as
mechanical spring to absorb the shock of the system subjected
by external force. Similar dc regulatory mechanisms can be
obtained using electric springs with capacitor and noncritical
load [156] (see Fig. 13). With the development of energy
storage system, such as lithium batteries, the DCES can be
design combined with bidirectional dc-dc power converters, as
shown in Fig. 14 [156]–[158]. The battery can be connected
to the dc bus with and without noncritical load. The main
function of DCES is to regulate the dc bus voltage within
certain limits and to balance the power fluctuations by load
boosting and shedding function [156].

D. Upcoming Work
The trade-off between the PBC strategy and other nonlinear

control strategies is the strong relationship between stability
and passivity, presented early by Youla et al. [160]. A passive
system means a stable system. If all subsystems in dc SMG
become strictly passive (dissipative), the entire dc SMG would
be stable (as shown in Fig. 12) [126]. Therefore, the stability
target of dc SMGs can be easily localized to each single power
converter. Thus, the upcoming work of this current version
focuses on dc SMG stabilization using the PBC strategy. The
happiness hybrid-electric ferry (HEF) working in Taiwan has
been taken as a study-case for practical application of dc
SMGs [20]. Fig. 15 depicts system structure of the HEF, which
contains propulsion motors (i.e., CPLs) supplied by hybrid
power sources (diesel generators and set of batteries) through
a common dc bus. Owing to the operation of HEF on the sea of
Kaohsiung City, Taiwan, dc bus voltage stability and control is
a crucial matter. The next work aims to ensure dc bus voltage
control against CPL oscillation and its variations using PBC.
Part of the next work have been published in [102].

V. CONCLUSION

This paper has provided a state-of-the-art literature review
of adaptive nonlinear control strategies to stabilize the constant
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power loads (CPLs) in dc shipboard microgrids (SMGs).
The tightly regulated point of load converters, such as the
propulsion motors and hotel load, behave as CPLs. The
negative incremental impedance due to CPL characteristics is
the main cause of the dc bus voltage instability problem in
dc SMGs. Besides, the CPL variations due to motor speed
or torque changes on the sea increase the challenges of dc
SMG stability and control. Therefore, a robust control design
is a crucial matter. The CPL instability dynamics cannot be
controlled effectively using simple PID linear control systems.
Thus, this paper focuses on nonlinear control systems as
well as adaptive techniques. Throughout this review, the most
advanced adaptive nonlinear control technologies to enhance
the stability for the dc SMGs have been presented, including
sliding mode control, synergetic control, backstepping control,
model predictive control, and passivity-based control. These
techniques ensure large-signal stability, global tracking control
to the reference voltage, and robust control dynamic against
system disturbances, such as CPL variations. To this end, this
manuscript has also provided an overview of the most popular
observer-based estimation techniques to improve the control
robustness of baseline nonlinear controllers, such as nonlinear
disturbance observer, sliding mode observer, immersion and
invariance observer, extended Kalman filter, and artificial
intelligence-based observer.

This article also addresses the challenges of dc SMGs
stability analysis based on nonlinear control techniques. Fur-
ther development is required for dc SMGs stability analysis,
including local and system-level control. Upcoming work of
this current article contains the hybrid-electric ferry (HEF) as
a case study for dc SMGs applications on maritime ships.
An adaptive passivity-based control (PBC) strategy has been
presented to stabilize the CPL. Simulation and experimental
results of a practical dc shipboard microgrid are presented
and used to ensure and demonstrate the performance of the
proposed method.
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