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A Contribution-based Device Selection Scheme in
Federated Learning

Shashi Raj Pandey, IEEE Member, Lam D. Nguyen, IEEE Member, and Petar Popovski, IEEE Fellow

Abstract—In a Federated Learning (FL) setup, a number
of devices contribute to the training of a common model. We
present a method for selecting the devices that provide updates
in order to achieve improved generalization, fast convergence,
and better device-level performance. We formulate a min-max
optimization problem and decompose it into a primal-dual
setup, where the duality gap is used to quantify the device-level
performance. Our strategy combines exploration of data freshness
through a random device selection with exploitation through
simplified estimates of device contributions. This improves the
performance of the trained model both in terms of generalization
and personalization. A modified Truncated Monte-Carlo (TMC)
method is applied during the exploitation phase to estimate the
device’s contribution and lower the communication overhead.
The experimental results show that the proposed approach has
a competitive performance, with lower communication overhead
and competitive personalization performance against the baseline
schemes.

Index Terms—federated learning, device selection, exploration,
exploitation, personalization, generalization

I. INTRODUCTION

Federated Learning (FL), as introduced by McMahan et.
al. [1], discusses unbalanced and non-i.i.d. (independent and
identical distribution) data partitioning across a massive num-
ber of unreliable devices, coordinating with a central server,
to distributively train learning models without sharing the
actual data. In practice, the data samples are generated through
device’s usage, such as interactions with applications, results
to such statistical heterogeneity. Towards that, related works
primarily focus on improving the model performance by
tackling data properties, i.e., statistical challenges in the FL
[1], [2]. Noticeably, in the initial work [1], the authors show
that their proposed Federated Averaging (FedAvg) algorithm
empirically works well with non-i.i.d. data. However, the
accuracy of FedAvg varies differently for different datasets,
as observed in the existing methods [2], [3], and how client
selection is made [3]–[5]. For instance, the authors in [3],
[4], [6] discussed the impact of having heterogeneous clients,
given time requirements for per round training execution, dur-
ing the decentralized model training over unreliable wireless
networks. In doing so, more devices are packed within a
training round to improve model performance; however, this
lead to consumption of excessive communication resources
and larger communication rounds to attain a level of global
model accuracy. Also, all received local updates are directly
aggregated during model aggregation [1], [3], [6], [7]; thus,
fairly ignoring their individual contributions and the rationale
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Fig. 1: An illustration of device selection strategy with a mix
of exploration and exploitation.

behind selecting them. In line with that, the authors in [1]–
[3] revealed that adding local computations can dramatically
increase communication efficiency and improve the trained
model performance. However, this additional computational
load may be prohibitive for some devices.

In principle, the aforementioned issues appear primarily as a
result of selecting ill-conditioned devices in the training proce-
dure, without evaluating their marginal contribution in improv-
ing the model performance. In fact, in FL literature [2]–[4],
device selection problem over wireless networks has remained
an overarching challenge, particularly, due to two reasons:
first, owing to the consequences of statistical and system-level
heterogeneity, uniformly random selection of device may lead
to slower convergence and poor model performance across
devices [6], [8]; second, devices with trivial contributions may
get scheduled in model training process which only adds larger
communication overhead [2]. Moreover, device’s contribution
are unknown a priori, and its estimation is not straightforward.
Some recent works [5], [7] introduced quality-aware device
selection strategy with multi-arm bandits (MAB) method in the
absence of estimates on available computation-communication
resources with fixed dataset; however, they focus on mini-
mization of the convergence time, leaving aside the impact of
device selection on the trained model performance, particularly
on unseen data, as well as the device-level performance.

In this work, we are interested in, and provide a solution
to, the problem of device selection and its impact on model
performance defined in terms of generalization, i.e., how
the trained model work on unseen/new data samples, and
personalization, i.e., the device-level performance. Different
from the related literature, our approach considers the impact
of device selection procedure in the decentralized training
framework of FL with fairness guarantees in the model
performance. An example, compared with [9], [10], where
fairness is associated with device scheduling opportunities
following statistical and/or system-level heterogeneity, our per-
spective and definition on fairness guarantees is unique. The
term fairness captures the discrepancies in device-level model
performance, i.e., personalization performance, appeared as
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a direct consequence of statistical heterogeneity and device
selection approach during model aggregation. Referring to
Fig. 1, similar to FedAvg [1], we start by random device
selection in FL during the exploration phase at each global
iteration. Subsequently, in the exploitation phase, the focus
is on contribution-based model aggregation for refining the
global model, which, although fundamental, is not addressed
by FedAvg. As the contributions of devices in enhancing the
global model performance is unknown a priori, we develop
a mechanism that first provides an estimation of device’s
contribution, which is followed by model aggregation with
the objective of ensuring fairness across selected device. This
way, we bring balance in improving both generalization and
device-level performance of the trained model. The summary
of our contributions are as follows.

• We develop a cost-efficient, simplified device selection
mechanism in the FL setting that captures the notion
of fairness in terms of personalized performance. It
lowers the communication overhead while enhancing the
generalization performance of the trained model. Therein,
as an initial step, the problem is revealed as a min-
max optimization problem that specifically captures the
aforementioned joint objectives.

• To solve the problem of device selection, we propose a
strategic mix of exploration and exploitation during each
global iteration. This is in contrast to periodic exploration
that particularly leads to poor model performance. In
particular, we unleash a mechanism that both assess and
incorporates the value of contribution of each randomly
selected device during model training.

• We propose a contribution-based device selection (CDS)
technique for model aggregation with the modified Trun-
cated Monte-Carlo (TMC) [11] method during exploita-
tion phase within random device selection rounds, i.e.,
the exploration phase. We show this technique eliminates
the need of adding local computations to lower commu-
nication overhead and improve model convergence.

• The simulation results show that the proposed method,
while offering a 4X decrease in the communication
rounds, still brings a small performance improvement in
terms of personalization.

Overall, the chief contribution of this work is that it in-
corporates a contribution-based device selection strategy for
model aggregation in FL. This improves device-level perfor-
mance in several aspects simultaneously: generalization, low
communication overhead, and fast convergence.

II. PROBLEM SETTING

We consider a supervised learning problem in a FL setting
where each available device (client) m ∈ M in the training
process has a local data set Dm of size Dm such that the
overall training data size D =

∑M
m=1 Dm. The devices com-

municate with the central aggregator (e.g., a multi-access edge
computing (MEC) server) via orthogonal frequency division
multiple access (OFDMA). For simplicity, downlink is treated
as error-free. The data samples are defined as a collection set
of input-output pairs {xi, yi}Dm

i=1, where, respectively, xi ∈ X
characterizes the feature space of data sample with correspond-
ing labels yi ∈ Y , X ⊆ Rd and Y ⊆ R. The goal of the

central aggregator orchestrating the distributed training process
is to learn a predictor F (w) : X → Y ∈ R. The predictor
performance is associated with learning of a model parameter
w ∈ Rd that captures the empirical risk on all distributed data
samples as the regularized finite-sum objective of the form

min
w∈Rd

J(w) + λg(w) where J(w) :=
∑M

m=1

Dm

D
· Jm(w),

(1)
Jm(w) := 1

Dm

∑Dm

i=1 fi(w), fi(w) is the loss function that
depends upon the choice of learning algorithms [1], [6];
λ is a regularizer and g(w) is a well-known regularization
function that controls the complexity and captures the device-
level performance. We assume fi is (1/γ)-smooth and 1-
strongly convex of g and continuous differentiable to ensure
convergence of the solution; a common assumption made in
several existing works [6], [12], [13].

Solving FL problem with FedAvg [1]: The learning
problem in (1) is solved following a two-step approach in
an iterative manner. Step 1: In the tth update of the global
iteration, a fraction of selected devices m iterates over its on-
device training data Dm to solve the local problem

w(t)
m = argmin

wm∈Rd

Jm(wm|w(t−1)), (2)

and communicates the parameters w
(t)
m to MEC. Step 2:At the

MEC, the collected local parameters are simply aggregated as

w(t+1) =
∑M

m=1

Dm

D
· w(t)

m , (3)

and broadcast back to the fraction of participating devices
for the next global iteration. This process continues until a
desired level of model accuracy is achieved. We observe, this
approach of model aggregation imposes an equal value of
contribution to the selected local model parameters without
considering its consequences on the model performance; e.g. a
deterioration due to poor local updates. This eventually exerts
larger communication rounds to converge to a high-quality
global model while alongside inducing irregularities in the
device-level performances.
A. Device Selection in FL with Fairness Guarantees

We note that a plain FL [1] ignores the device-level
performance, particularly caused due to small data, limited
computational capabilities and available communication chan-
nels to share parameters with the server, or having devices
with poor local updates. Hence, the random device selection
procedure may incur costs in terms of overhead. While it is
also significant to maintain device-level performance, the cost
overhead due to uncertainty in random device selection should
be minimized. Therein, we first develop a natural extension
to plain FL which captures the risk associated with the local
accuracy loss using model w in each device m as

R(t)
m (F ) = E

{Xm,Y m}∼Pm

[
J(F (Xm;w), Y m)

]
, (4)

where Pm is the underlying distribution of local data samples.
Here, we look forward to characterize a predictor F that
works well with dataset in all associated devices. Basically,
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in a risk-averse FL setting, we aim to minimize the maxi-
mum risk across all participating devices, ensuring improved
personalization and generalization performance of the trained
model. Subsequently, we formulate a min-max optimization
problem: it jointly selects the devices contributing the most in
improving the model performance and minimize the maximal
risk to ensure fairness amongst these associated devices:

P:min
w

[
max

M̃:={m}

∑
m∈M̃

R(t)
m (F )

]
, (5)

s.t. w ∈ arg min
w∈Rd

R(t)
m (Fm), ∀m ∈ M̃, (6)

R(t)
m (Fm) ≤ θth

m,∀m ∈ M̃, (7)

M̃ ⊆M. (8)

where M̃ is a subset of devices selected based on their local
contribution to the global model and satisfying fairness con-
straint (7) imposed as θth

m, defined with details in Section III-A.
To solve P, we need to efficiently derive M̃ in prior, which is
not straightforward. For that purpose, we use the primal-dual
decomposition method and capture the contribution of devices
in terms of the quality of obtained dual solution, that is defined
in details in the following Section III-A.

Next, we define and discuss the incurred time costs from
the perspective of random device selection procedure.
B. Time cost

In each global iteration, the time cost for device m has two
components: (i) local computation time: tcomp

m = cmDm/fm,
where cm is CPU-cycles requirement to compute per bit data;
fm is CPU-cycle frequency; and (ii) communication time:
tcomm
m = sm/(rmBm), where sm is the size of transmitted data

in bits; rm = log2(1+
pmhm

N0Bm
) is the rate; pm is the transmis-

sion power; hm is the channel gain; N0 is the noise power
spectral density and Bm is the corresponding bandwidth.
Then, the corresponding execution time cost texec per global
iteration due to random device scheduling is proportional to
tcost := max

m
{tcomp

m + tcomm
m },∀m ∈ M. This captures the

fact that minimization of tcost
τ while ensuring fairness of the

collaborative training in solving P, there is a need for careful
device selection M̃ and subsequent model aggregation.

In the following, we first reflect the risk minimization
problem P for a known set of selected devices in a primal-
dual setting. Then, we propose a cost-efficient contribution-
based device selection approach with fairness guarantees by
exploiting the modified TMC [11], [14] method to solve the
P in subsequent global iterations.

III. CONTRIBUTION-BASED DEVICE SCHEDULING
ALGORITHM

A. Device’s local contribution in a distributed setting

We revisit the global problem (1) in its dual optimization
form [13] with M devices to evaluate their local contribution
in solving the learning problem. The corresponding dual
optimization problem of (1) for a convex loss function f is

max
α∈RD

R(α) :=
1

D

∑D

i=1
−f∗

i (−αi)− λg∗(ϕ(α)), (9)

where f∗
i and g∗ are the convex conjugates of fi and g,

respectively [13]; α ∈ RD is the dual variable mapping to

Algorithm 1 CDS: Contribution-based Device Selection

1: Input: M is the number of devices in setM; C ∈ (0, 1]
is fraction of random devices selected; B is the local
minibatch size; E is the number of epochs, and η is the
learning rate.

2: Initialize: ϕ1, C,B,E,∆t, ϵ and η.
//Exploration://

3: for all global iteration t ∈ {1, 2, . . . , τ} do
4: Set St ⊆M with max(1, C ×M) devices;
5: for all m ∈ St do
6: Execute DeviceUpdate(m,ϕt);
7: end for

//Exploitation://
8: Start exploitation timer t′ = 0;
9: while t′ < ∆t do

10: Define πt′ as random permutation of the selected
devices;

11: Set vt
′

0 = V (∅);
12: for all m ∈ St′ do
13: if |V (ϕt′)− vt

′

m−1| < ϵ then
14: vt

′

m = vt
′

m−1;
15: else
16: Set vt

′

m ← V ({πt′ [1], . . . , πt′ [m]});
17: end if
18: βπt′ [m] ← t′−1

t′ βπt′−1[m] +
1
t′ (v

t′

m − vt
′

m−1);
19: end for
20: Update t′ = t′ + 1;
21: end while
22: Sort βπt′ [m] in descending order;
23: Obtain M̃ as per contributions βπt′ [m] and update

global variable ϕt (13);
24: end for

DeviceUpdate(m,ϕt):
25: Solve the local sub-problem (10);
26: Update dual variables using (12);
27: Return ∆ϕt

[m],∀m ∈M;

the primal candidate vector; and ϕ(α) = 1
λDXα. Here, we

define X ∈ Rd×Dm as a matrix with columns having data
points for i ∈ Dm,∀m. Then, having the optimal value of dual
variable α∗ in (9), we obtain the optimal solution1 of (1) as
w(α∗) = ∇g∗(ϕ(α∗)) [4]. Hereafter, we use ϕ ∈ Rd for ϕ(α)
for simplicity, and define a weight vector ϱ[m] ∈ RD at the
local sub-problem m with its elements zero for the unavailable
data points. As the consequence of the properties of fi and g,
we obtain the approximate solution to the local sub-problem:

max
ϱ[m]∈RD

Rm(ϱ[m];ϕ, α[m]), (10)

defined by the dual variables α[m], ϱ[m]. Here, we have
Rm(ϱ[m];ϕ, α[m]) = − 1

M − ⟨∇(λg∗(ϕ(α))), ϱ[m]⟩ −
λ
2 ∥

1
λDX[m]ϱ[m]∥2 with X[m] as a matrix with columns having

data points for i ∈ Dm, and zero padded otherwise. Each
selected device m ∈ M iterates over its computational

1Finding the optimal solution follows an iterative process to attain a global
accuracy 0 ≤ ϵ ≤ 1 (i.e., E [R(α)−R(α∗)] < ϵ).

This article has been accepted for publication in IEEE Communications Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LCOMM.2022.3181678

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on July 04,2022 at 07:22:57 UTC from IEEE Xplore.  Restrictions apply. 



PREPRINT VERSION 4

resources using any arbitrary solver to solve its local problem
(10) for a defined local relative θth

m accuracy, i.e., the maximal
risk in P in terms of fairness, that characterizes the quality of
the local solution and produces a random output ϱ[m] satisfying

E
[
Rm(ϱ∗[m])−Rm(ϱ[m])

]
≤ θth

m

[
Rm(ϱ∗[m])−Rm(0)

]
.

(11)
Then, the local dual variable is updated as follows:

αt+1
[m] := αt

[m] + ϱt[m],∀m ∈M. (12)

The selected devices then broadcast the local parameter de-
fined as ∆ϕt

[m] := 1
λDX[m]ϱ

t
[m] to the MEC server along

with its local relative accuracy, which completes the explo-
ration phase. Next, considering all selected devices contribute
equally, which is the usual case of FedAvg, the MEC server
can simply aggregate the local parameters as

ϕt+1 := ϕt +
1

M

∑M

m=1
∆ϕt

[m]. (13)

and share ϕt+1 back to the randomly selected devices to
again solve (10). However, instantiating random device se-
lection in each exploration phase with the global model using
FedAvg demerits local model performance, particularly poor
personalization and large variance in model accuracy across
devices. This is because the technique does not specifically
consider the actual contribution of each device in the model
training, and tune parameters accordingly to minimize the
empirical risk at worse performing devices; this leads to
the increase of the number of communication rounds for
convergence. Therefore, we depart from the naive approach
of model aggregation and introduce an additional exploitation
phase, where the contributions made by selected devices are
taken into consideration.

In the following, we present our proposed approach that
utilizes the contribution of each device within the exploration
phase in improving the model performance and lowering the
long-term communication overhead.

B. Contribution-based device selection with modified TMC

Within each round of global iteration that executes random
device scheduling, we first eliminate the frequency of trans-
mitting the local dual variables through an estimation of TMC
at the MEC, leading to an efficient parameter aggregation
scheme. Specifically, following the value of contribution of
each selected device, we operate ∆t rounds of random per-
mutations on received dual variables to perform the model
aggregation before proceeding to the next global iteration with
random device selection strategy. We use the estimation of the
contribution of each selected device m ∈ St in round t as

βm =
1

|St|!
∑

π∈Π(∆ϕt
[m]

)
[V (Pπ

m ∪ {m})− V (Pπ
m)], (14)

where V (·) is the standard valuation of local parameter defined
as its performance score while contributing to improve the
model accuracy, similar to [11]. π ∈ Π(∆ϕt

[m]) characterizes
the permutation of devices and Pπ

m is the preceding devices
selected for model aggregation. The details are described in
Algorithm 1. Once the exploration phase is executed, using

(14), the MEC proceeds to the exploitation phase (lines 8–
21) to estimate the contributions of each selected device
parameters in improving the model performance (lines 12–
20). Then, the devices are sorted based on their contributions,
after which the final model is obtained (line 23) to execute the
next round of exploration.

IV. PERFORMANCE EVALUATION

We have simulated the MEC environment with network
parameters defined in [3] and conducted extensive experiments
with well-known MNIST datasets [15]. We have taken into
account the statistical heterogeneity involving the non-i.i.d.
characteristics and unbalanced dataset, in order to appro-
priately setup data across the devices [6]. We shuffle and
divide dataset at each device, where data samples are drawn
particularly from two labels out of ten for MNIST. We have
considered M = 100 devices on a single server with 26 core
Intel Xeon 2.6 GHz, 256 GB RAM, 4 TB, Nvidia V100 GPU,
Ubuntu OS. Accordingly, we have normalized the time cost per
global iteration and also assumed that the devices and server
are synchronized. We have then evaluated the model perfor-
mance by considering the impact of device selection strategy
during the model aggregation. For training, each device uses
E = 10 epochs, the batch size B = 10, and the learning rate
η = 0.01 as a default. Further, in all of our evaluations, unless
specified, we set the value of C = 0.1, which exhibits a good
balance between computational efficiency and convergence
rate, as demonstrated experimentally in [1]. The default value
of ∆t is set to 1. We compare CDS against (a) two intuitive
baselines: 1) Random Sampling method which choose devices
randomly, 2) Greedy Algorithm [16], in which the server
collects the local gradients of all devices and chooses a subset
of devices providing the greatest marginal gain, and (b) a more
competitive approach, namely FedFomo [17], customized for
personalized federated updates of each device.

Fig. 2a shows that that our proposed contribution-based
device selection approach achieves a high accuracy, approxi-
mately 97%, while using substantially fewer communication
rounds compared to the Greedy and Random Sampling algo-
rithms. This is due to the fact that we are strategically selecting
device updates based on their contribution in improving the
model performance during model aggregation. This is further
supported by Table I, where we present a comparative analysis
on the execution time cost texec in achieving around 80% of the
target device-level model accuracy and the required number of
communication rounds. We note a relaxed threshold accuracy
allows a larger set of participating devices, and thus, leads
better generalization during model training. In all cases, we see
CDS demonstrates better and stable performance than these
baselines, and a competitive model accuracy as compared with
FedFomo. Similar observations pertain to the training loss of
different sampling strategies, as shown in Fig. 2b. In Fig. 2c,
we evaluate and compare the average device-level performance
as the performance of the trained model on their local test
dataset. Interestingly, we see that CDS provides improvement
in the device-level performance: 6.54% and 4.78% higher
than Greedy method and Random sampling, respectively, as
well as 2.54% compared to FedFomo. This is due to the
appropriateness of the local updates that are aggregate in the
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(a) Testing accuracy.
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(b) Training loss.
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(c) Device-level performance.
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Fig. 2: Comparative performance analysis with different sampling strategies on: (a) testing accuracy, (b) training loss, (c)
personalization, i.e., the device-level performance, and (d) the impact of ∆t against adding more local computations during
local training.

TABLE I: Comparison of execution time cost texec (in sec).

Algorithms
Average time to achieve accuracy of
80%, and number rounds to achieve
Average texec Number of rounds

Random Sampling [1] 0.521664 5±1
Greedy-based solution [16] 1.768358 9±1

FedFomo [17] 0.338333 2±1
CDS - Our proposed 0.335492 2±1

model following the contributions of the selected devices in
every global round. Furthermore, Random Sampling shows
better performance in terms of personalization compared to the
Greedy. This is reasonable as it explores the available devices
to improve personalization, while the Greedy approach focuses
only on improving the performance of the global model.

Finally, in Fig. 2d, we analyze the significance of ∆t on
eliminating the time cost required for the model convergence
to a target accuracy. The insight is that, instead of adding more
computation per device to lower the communication overhead
[1], we perform contribution-based model aggregation that
compensates the increase in local computation costs and the
resulting higher tcost for achieving better convergence. Specif-
ically, relaxing ∆t allows more rounds of random permutation
to explore the contribution of local model updates. In return,
having broader exposure of the contributing devices results in
better device selection strategy for model aggregation and a
better model performance as shown in Fig. 2d, while saving
local computations (epoch) at the devices. We also observe the
impact of relaxing ∆t as a reference to evaluate and compare
model performance against adding more local computations.
For example, when E = 40, we see no significant improve-
ment in the model performance even though we increase ∆t
by more than 3 rounds, which is due to the optimized device
selection strategy.

V. CONCLUSION

We have presented a simplified solution of the device se-
lection problem in Federated Learning (FL), aiming to jointly
improve model performance and lower the communication
costs. In doing so, we have first formulated a min-max
optimization problem. to solve it, we have developed a strategy
that constitutes a mixture of exploration phase, where random
selection of devices is made, similar to the plain FL approach
but under a primal-dual setting of the learning problem, and an
additional exploitation scheme that quantifies the contribution

of selected devices in improving the model performance via
efficient model aggregation. Extensive simulations on real-
world dataset have demonstrated the efficacy of the proposed
approach against the baselines in improving model perfor-
mance, i.e., better generalization and personalization, lowering
communication costs, and achieving fast convergence rate.
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