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A Novel Loss Function and Training Strategy for
Noise-Robust Keyword Spotting

Iván López-Espejo, Zheng-Hua Tan, Senior Member, IEEE, and Jesper Jensen

Abstract—The development of keyword spotting (KWS) sys-
tems that are accurate in noisy conditions remains a challenge.
Towards this goal, in this paper we propose a novel training
strategy relying on multi-condition training for noise-robust
KWS. By this strategy, we think of the state-of-the-art KWS
models as the composition of a keyword embedding extractor
and a linear classifier that are successively trained. To train the
keyword embedding extractor, we also propose a new (CN,2+1)-
pair loss function extending the concept behind related loss
functions like triplet and N -pair losses to reach larger inter-
class and smaller intra-class variation. Experimental results
on a noisy version of the Google Speech Commands Dataset
show that our proposal achieves around 12% KWS accuracy
relative improvement with respect to standard end-to-end multi-
condition training when speech is distorted by unseen noises.
This performance improvement is achieved without increasing
the computational complexity of the KWS model.

Index Terms—Keyword spotting, noise robustness, multi-
condition training, deep metric learning, loss function, keyword
embedding.

I. INTRODUCTION

VOICE-activated assistants such as Amazon’s Alexa and
Apple’s Siri are revolutionizing our daily lives by en-

abling comfortable interaction between users and electronic
devices [1]. Devices with voice assistants, e.g., smart speakers,
are commonly activated by means of a wake-up-word or
keyword. Hence, for a good user experience, accurate keyword
spotting (KWS) systems are desirable. For example, to avoid
our privacy to be compromised, low false acceptance rates are
required, as, otherwise, unintended speech might be picked
up by voice assistants. On the other hand, a low miss rate is
desired for comfortable usage.

Despite all the research progress, acoustic noise is still
one of the most notable factors that negatively affect KWS
performance and that of automatic speech recognition (ASR)
in general [2]. Recent work encompasses both single- [3] and
multi-channel [4]–[6] noise-robust KWS. In [3], Yu et al.
develop a text-dependent single-channel speech enhancement
front-end based on a long short-term memory (LSTM) recur-
rent neural network (RNN). This front-end computes a mask
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that is applied to the input spectrogram before feeding it to a
small-footprint (that is, low memory and low computational
complexity) keyword spotter. A multi-channel approach is
adopted in [4], where a neural network-based keyword spotter
with a feedback loop to a noise reduction front-end inspired
by the human auditory system is proposed. Huang et al. [6]
propose a short-time Fourier transform (STFT)-based adaptive
noise cancellation method modified to employ deferred filter
coefficients in order to retrieve keywords from noisy signals.
Furthermore, in [5], beamformed signals are combined on
the basis of an attention mechanism for end-to-end noise-
robust KWS. While all of these techniques improve KWS
performance in noisy acoustic conditions, this is achieved at
the expense of a significant increase of the computational
complexity.

Multi-condition training remains one of the most successful
approaches for noise-robust ASR [7]. It consists of training the
acoustic model with speech data either collected from different
(noisy) acoustic conditions or artificially distorted with a va-
riety of noises through a procedure called data augmentation.
For instance, it has been reported that the performance of a
multi-condition trained acoustic model is highly competitive
with that of a state-of-the-art method like the application
of teacher-student learning using a parallel clean and noisy
speech corpus [8]. Furthermore, in general, combining speech
enhancement approaches with multi-condition trained acous-
tic models has not yielded the expected improvements with
respect to just exploiting effective multi-condition training [9].

Indeed, KWS has also benefited from multi-condition train-
ing based on data augmentation [10]. Very recently, Gao et
al. [11] explored multi-condition training with stratified data
augmentation for KWS robust to different acoustic conditions,
achieving a comparable performance to that of a production-
grade model. Moreover, it is worth to remark the follow-
ing positive feature of multi-condition training: it improves
robustness to noise while not increasing the computational
complexity of the model.

In this paper, we propose a novel training strategy relying
on multi-condition training for noise-robust KWS. Many state-
of-the-art KWS systems consist of the extraction of speech
features that are fed into a deep learning model comprising a
final fully-connected layer with softmax activation for classifi-
cation [12]–[18], as in Figure 1. In this work, we think of the
input vectors to those final fully-connected layers as linearly
classifiable keyword embeddings. Thus, instead of training
such models in an end-to-end manner using cross-entropy loss,
which is commonly done [12]–[15], we propose to divide their
training into two successive stages:
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1) The final fully-connected layer with softmax activation
(linear classifier) is removed and the remaining model is
multi-condition trained to be a discriminative and noise-
robust keyword embedding extractor;

2) Then, the linear classifier is trained using cross-entropy
loss and taking as input keyword embeddings extracted
by means of the model resulting from the first stage.

As a second contribution of this paper, and to train the keyword
embedding extractor, we suggest a new (CN,2 + 1)-pair loss
function, which is related to other well-known tuple-based loss
functions like triplet loss [19] and N -pair loss [20]. In fact,
recent work on KWS has explored the use of triplet loss —
either standalone [21] or in combination with the reversed
triplet and hinge loss functions [22]— and related losses,
like an angular variant of the prototypical loss [23] (sharing
many similarities with the N -pair loss), for word embedding
learning. However, unlike these loss functions, our proposed
(CN,2 + 1)-pair loss imposes some restrictions on the way
the negative training samples relate to each other in terms
of embedding distance, as will be carefully developed in a
subsequent section. This allows us to achieve larger inter-
class and smaller intra-class variation for improved KWS
performance in noisy acoustic conditions.

In order to support the multi-condition training paradigm,
we create a noisy speech corpus with several acoustic con-
ditions —i.e., noise types and signal-to-noise ratio (SNR)
levels— from the Google Speech Commands Dataset (GSCD)
[24]. Experimental results show that our proposal is able to
enhance the generalization ability of a multi-condition trained
state-of-the-art KWS system. This means that our proposal
obtains around 12% KWS accuracy relative improvement
with respect to standard end-to-end multi-condition training
when speech is contaminated with noises not seen during
training. Besides KWS performance gains, it is also relevant to
highlight the following key features of our method: 1) it can be
applied to most of the latest (single- and multi-channel) KWS
models, 2) it does increase neither the number of parameters
nor the number of multiplications of the model1, 3) it can
potentially be useful to mitigate the effect of other types of
distortions in addition to acoustic noise, and 4) it might be
exported to other application areas (e.g., image classification).

The rest of this paper is structured into five more sections.
The suggested KWS training strategy is explained in Section
II. In Section III, the proposed training loss function is
presented along with related tuple-based loss functions. The
experimental setting is described in Section IV. Experimental
results and discussion are presented in Section V. Finally,
Section VI concludes the paper.

II. KEYWORD SPOTTING TRAINING STRATEGY

Most of the state-of-the-art KWS systems [3]–[6], [12]–
[18] follow the general approach illustrated by Figure 1.
First, a speech feature matrix (e.g., a normalized log-Mel
feature matrix) X ∈ RK×T (where K and T represent the
number of features —e.g., frequency bins— and time frames,

1This is of utmost importance, since KWS systems are frequently intended
for relatively low-resource devices.

FC
+

SoftmaxFC
+

Softmax

FC
+

Softmax

FC
+

Softmax

y

z = fz(X|θz)

X

fz(·|θz)

f(·|θ)

Fig. 1: General state-of-the-art KWS approach. “FC + Soft-
max” stands for fully-connected layer with softmax activation.
See the text for further details.

respectively) is typically computed from an input speech
segment. Then, X is the input to a deep learning architecture
modeling a function f(·|θ) : RK×T → IN , where θ denotes
the parameters of the model and I = [0, 1] represents
the unit interval. The final layer of this architecture is a
fully-connected (FC) layer with softmax activation. Hence,
the output of this function, y = f(X|θ), y ∈ IN , can be
interpreted as a posterior probability distribution on the N
different recognizable types of words (classes) given the input
speech feature matrix X, that is,

yi = P (i|X, θ), i = 1, ..., N, (1)

where subscript i denotes the i-th element of a vector and∑N
i=1 yi = 1. In other words, the deep learning model solves

an N -class classification problem, where, normally, N − 1
classes correspond to N − 1 different keywords and the
remaining class is the filler (non-keyword) class.

In this work, we think of the input vectors to the final fully-
connected layer with softmax activation (i.e., linear classifier),
z ∈ RD (see Figure 1), as linearly classifiable keyword
embeddings. Let fz(·|θz) : RK×T → RD, θz ⊂ θ, be
the function modeled by the architecture of Figure 1 when
removing the contribution of its final linear classifier. Then,
z = fz(X|θz) can be understood as a D-dimensional keyword
embedding, and fz(·|θz), as a keyword embedding extractor.
The keyword embedding z, which is a more compact (i.e.,
lower-dimensional) representation of X, is further processed
by the final fully-connected layer with softmax activation as

yi =
e(Wz+b)i∑N
j=1 e

(Wz+b)j
, i = 1, ..., N, (2)

where W ∈ RN×D and b ∈ RN are the weight matrix
and bias vector, respectively, of the fully-connected layer. A
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keyword might be spotted by simply picking the most likely
class î from y, namely,

î = argmax
1≤i≤N

yi. (3)

A common practice is to end-to-end train the deep learning
model f(·|θ) by means of cross-entropy loss (e.g., [12]–[15]).
Alternatively, to obtain more discriminative and noise-robust
keyword embeddings for improved KWS performance in noisy
conditions, we propose the following two-stage KWS training
strategy to estimate the set of parameters θ = {θz,W,b}:

1) Training of the keyword embedding extractor: First, the
keyword embedding extractor fz(·|θz) is multi-condition
trained by considering a new (CN,2 + 1)-pair loss func-
tion, which is formulated in Section III.

2) Training of the linear classifier: Second, the linear
classifier of Eq. (2) is trained using multi-condition
keyword embeddings extracted by means of fz(·|θz). To
this goal, cross-entropy loss [25], LCE, is used as in

LCE = −
N∑
i=1

li log(yi), (4)

where {li; i = 1, ..., N}, li ∈ {0, 1}, are the corre-
sponding KWS true labels.

The benefits of this two-stage KWS training strategy will
be clearly demonstrated throughout the following sections.

III. A NEW (CN,2 + 1)-PAIR LOSS FUNCTION

The objective of the keyword embedding extractor fz(·|θz)
introduced above is to compute discriminative and noise-robust
keyword embeddings to improve KWS performance in noisy
acoustic conditions. To this end, fz(·|θz) is multi-condition
trained using a new (CN,2 + 1)-pair loss function that is
developed in the present section.

A. Related Work

Deep metric learning is widely used to obtain compact
and discriminative representations —that is, embeddings—
of different kind of data for different tasks like, for exam-
ple, visual understanding tasks [26]. In essence, deep metric
learning, which is based on the principle of data similarity, is
about learning a set of hierarchical non-linear transformations
to project data samples into another (embedding) space for
comparison or matching [26]. The resulting set of hierarchical
non-linear transformations serves as an embedding extractor.

A central aspect of deep metric learning is the tuple-
based loss function. This function is, in turn, defined from
a distance function measuring the similarity between pairs of
embeddings computed from tuples comprising two or more
data samples. Indeed, the training of the embedding extractor
is targeted to minimize such a tuple-based loss function. This is
equivalent to the embedding extractor producing close (distant)
embeddings in case of, according to the task-related criteria,
similar (dissimilar) data samples.

Without loss of generality, from now on we will assume
that we want to obtain discriminative embeddings to perform

N -class classification. One of the first proposed tuple-based
loss functions was contrastive loss [27]. Let z(i)1 and z

(j)
2 be

different D-dimensional embeddings belonging to classes i
and j (i, j = 1, ..., N ), respectively. The 2-tuple contrastive
loss, LContrastive, is defined as

LContrastive = δijD
(
z
(i)
1 , z

(j)
2

)
+ (1− δij) max

(
0, m−D

(
z
(i)
1 , z

(j)
2

))
, (5)

where D
(
z
(i)
1 , z

(j)
2

)
: RD × RD → R+ is a (symmetric)

distance function between the embedding pair z
(i)
1 and z

(j)
2 ,

m > 0 is a margin and δij is the Kronecker delta,

δij =

{
1 if i = j,
0 if i 6= j. (6)

The goal of (5) is to learn embeddings z
(i)
1 and z

(j)
2 with a

short (large) distance between them when i = j (i 6= j). Notice
that when the distance between negative embedding pairs (i.e.,
when i 6= j) is equal to or larger than m, LContrastive = 0 and
training can be focused on more difficult negative pairs, i.e.,
those with short distances.

Schroff et al. [19] took the concept behind contrastive
loss further by proposing triplet loss. Let z(i)a , z(i)p and z

(j)
n ,

j 6= i, denote the so-called anchor, positive and negative
embeddings in such a manner that

{
z
(i)
a , z

(i)
p

}
and

{
z
(i)
a , z

(j)
n

}
constitute positive and negative (i.e., same- and different-class)
embedding pairs, respectively. Then, triplet loss is a 3-tuple
loss function that can be written as

LTriplet = max
(

0, D
(
z(i)a , z(i)p

)
− D

(
z(i)a , z(j)n

)
+m

)
. (7)

The objective of (7) is to ensure that the distance between neg-
ative and anchor embeddings (belonging to different classes j
and i) is equal to or larger than the distance between positive
and anchor embeddings (belonging to the same class i) plus
a margin m.

In practice, setting a margin m involves some heuristics,
and setting a bad one might yield poor local optima [28]. To
avoid this issue, in [28], it is proposed to use the softplus
function, log(1+exp{·}), as an approximation to the function
max(0, ·). Thus, triplet loss can be simply rewritten as

LTriplet ∼= log
(

1 + exp
{
D
(
z(i)a , z(i)p

)
− D

(
z(i)a , z(j)n

)})
. (8)

This variant is shown to outperform (7) for person re-
identification [28].

Furthermore, to improve the generalization ability of triplet
loss, quadruplet loss was proposed in [29]. Let z(k)n be another
negative embedding from a third class k, where k 6= i and
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Fig. 2: An illustrative comparison among different tuple-based loss functions when N = 4.

k 6= j. Using the softplus function, this 4-tuple loss function,
LQuadruplet, might be expressed as

LQuadruplet = log
(

1 + exp
{
D
(
z(i)a , z(i)p

)
−D

(
z(i)a , z(j)n

)}
+ exp

{
D
(
z(i)a , z(i)p

)
−D

(
z(k)n , z(j)n

)})
. (9)

The second exponential term of (9) helps to achieve larger
inter-class and smaller intra-class variation compared to triplet
loss, thus improving the generalization ability of the embed-
ding extractor [29].

A major problem with all of the tuple-based loss functions
presented above is that, depending on the value of N , there
might be no interaction among all the N classes in each
update of the network weights. Hence, frameworks for training
of deep models using these loss functions might experience
slow convergence and poor local optima [20]. Also, these loss
functions may require expensive sample mining to provide
non-trivial tuples in order to accelerate the training. To address
these limitations, the N -pair loss was proposed in [20]:

LN -pair = log

1 +
N∑
j=1
j 6=i

exp
{
D
(
z(i)a , z(i)p

)

− D
(
z(i)a , z(j)n

)}. (10)

As can be observed from (10), given an anchor example, N -
pair loss is intended to identify a positive example represented
by z

(i)
p out of N − 1 negative examples, each from a different

class, represented by
{
z
(j)
n ; 1 ≤ j ≤ N ; j 6= i

}
. Notice that

when N = 2, Eq. (10) is equivalent to triplet loss as in (8).
This N -pair loss function has been successfully applied to
tasks like image recognition and verification [20], and context-
aware recommendation [30].

B. Proposed Training Loss Function

In N -pair loss, N − 1 negative examples, each from a
different class, are pushed away from the anchor example
in the embedding space. However, the way in which these
negative examples relate to each other in terms of distance

is not under control. Evidently, we would like them to be
as distant each other as possible. Therefore, we propose a
(CN,2+1)-pair loss that also looks for maximizing the distance
among the N − 1 negative examples as

L′(CN,2 + 1)-pair = log

1 + exp

D
(
z(i)a , z(i)p

)

− λ
N∑
j=1
j 6=i

D (z(i)a , z(j)n

)
+

N∑
k>j
k 6=i

D
(
z(j)n , z(k)n

)

, (11)

where CN,2 = N(N − 1)/2 is a binomial coefficient account-
ing for the total number of different negative pairs, and λ > 0
is a hyperparameter balancing the importance of the negative
pairs distances with respect to the positive pairs distances.

Figure 2 shows an illustrative comparison between our
proposal and the tuple-based loss functions briefly reviewed
in Subsection III-A when N = 4. As in the case of quadruplet
loss in relation to triplet loss, we hypothesize that our proposal
might achieve larger inter-class and smaller intra-class varia-
tion compared to N -pair loss in Figure 2d. This, in turn, could
improve the generalization ability of the embedding extractor.

It is important to set a proper value for the hyperparameter λ
in (11). For example, if the value of λ is too small, embeddings
will tend to collapse into a single point during training, thus
yielding a totally useless solution. We hypothesize that this is
because learning gets just focused on the minimization of the
positive pairs distances. We found it effective (and, to some
extent, fair for comparison purposes) to set λ in such a manner
that the importance of D

(
z
(i)
a , z

(i)
p

)
is equal to that of the set

of distances
{
D
(
z
(i)
a , z

(j)
n

)
; 1 ≤ j ≤ N ; j 6= i

}
, as in N -

pair loss (see Eq. (10)). In other words,

λ =
1

N − 1
. (12)

From (11) and (12), it is easy to show that the importance (i.e.,
weight) of the set of distances among negative embeddings{
D
(
z
(j)
n , z

(k)
n

)
; 1 ≤ j ≤ N − 1; j + 1 ≤ k ≤ N ; j, k 6= i

}
with respect to D

(
z
(i)
a , z

(i)
p

)
increases linearly with

N at a rate of λCN−1,2 = (N − 2)/2, where
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CN−1,2 = (N − 1)(N − 2)/2 accounts for the number
of distances in the above set.

A common practice in deep metric learning is to apply `2-
norm normalization to embeddings so they are constrained to
be on a hypersphere of radius 1, e.g., [19], [31]. Preliminary
experiments using the N -pair loss function with and without
embedding normalization revealed no statistically significant
differences in terms of KWS performance. Nevertheless, the
application of `2-norm normalization to embeddings will facil-
itate further calibration of (11) as explained below. Hence, in
this work, instead of z, we will always employ its normalized
version

z̄ =
z

‖z‖2
, (13)

where ‖·‖
2

is the `2-norm operator.
Finally, let us analyze the range of the argument of the

exponential term in (11). Because embeddings are now con-
strained to be on a hypersphere of radius 1, it is clear that
the distance between any two embeddings z̄1 and z̄2 is within
certain narrower limits. More in particular, it can be stated
that, regardless of the distance function, D(z̄1, z̄2) ∈ [0, dmax],
where dmax is the maximum distance possible. For example,
dmax is 2 for the Euclidean distance, and π, for the great-circle
distance [32]. With this in mind, and taking into account (12),
it is straightforward to realize that a theoretical range of the
argument of the exponential term in (11) is

[−λCN,2dmax, dmax] =

[
−Ndmax

2
, dmax

]
. (14)

A problem with (14) is that, as N increases, the argument of
the exponential term in (11) can be more negative, causing
the value of the exponential term to approach 0. This, in turn,
would cause the optimization of the embedding extractor to
take place along a rather flat section of the loss curve close
to the minimum loss value possible, i.e., 0. This might yield
poor local optima. Therefore, to avoid this problem, we shift
the optimization section along the loss curve by simply adding
a constant K to the argument of the exponential term in (11).
This constant is designed in such a manner that the lower
bound of the new argument of the exponential term in (11) is
equal to the lower bound of the argument of the exponential
term in N -pair loss, that is, −dmax (see Eq. (10)). Thus,

K =
(N − 2)dmax

2
. (15)

With all of these elaborations, namely, considering
Eqs. (12), (13) and (15), our proposed tuple-based loss,
L(CN,2 + 1)-pair, can be finally expressed as in Eq. (16). Despite
its apparent higher complexity in relation to the N -pair loss,
Eq. (16), just like (10), also needs an (N + 1)-tuple as input.
Moreover, while our proposal requires the computation of
CN−1,2 = (N − 1)(N − 2)/2 and (N2 − 5N + 8)/2 more
distances and additions, respectively, with respect to the N -
pair loss, the latter involves the calculation of N − 2 more
exponentiations than our tuple-based loss.

In Section V, L(CN,2 + 1)-pair is shown to be superior, in
terms of both KWS performance and speed of convergence,
to the other related state-of-the-art tuple-based loss functions
reviewed in this paper.

C. Distance Function

Let z̄1 and z̄2 be any two normalized embeddings. In
principle, any (symmetric) distance function D (z̄1, z̄2) : RD×
RD → [0, dmax] could be used by the different tuple-based
loss functions described above.

Preliminary experiments using the N -pair loss were con-
ducted to select a distance function for further experimen-
tation. First, because embeddings are constrained to be on
a hypersphere of radius 1, we found it reasonable from a
geometric point of view to assess the performance provided
by the great-circle distance [32]:

DGC (z̄1, z̄2) = arccos
(
z̄>1 z̄2

)
, (17)

which can be interpreted as the inverse of the cosine similarity
Sc(z1, z2) [33]:

Sc(z1, z2) =
z>1 z2

‖z1‖2‖z2‖2
= z̄>1 z̄2

= cos (DGC (z̄1, z̄2)) .

(18)

In spite of making sense to use the great-circle distance
from a geometric perspective, employing (17) in preliminary
experiments yielded embeddings collapsing into a single point
during training.

We also compared the use of both the Euclidean distance
and its squared version, commonly considered in the deep
metric learning literature, e.g., [19], [28], [31]. In this case,
no embedding collapsing phenomena were noticed, as well
as better KWS performance was observed when utilizing the
Euclidean distance

DE(z̄1, z̄2) = ‖z̄1 − z̄2‖2 (19)

instead of its squared version. Taking into account that
DE(z̄1, z̄2) ∈ [0, dmax = 2], that might be related to the
fact that D2

E(z̄1, z̄2) overestimates actual (non-squared) Eu-
clidean distances above 1 while underestimating them when
DE(z̄1, z̄2) < 1. Thus, the use of D2

E(z̄1, z̄2) instead of
DE(z̄1, z̄2) might produce less inter-class separation and
higher intra-class dispersion (see Subsection V-B for an ex-
perimental validation of this). As a result, all the tuple-based
loss functions evaluated in Section V integrate the Euclidean
distance as in (19).

D. Mining Strategy

It is well-known that, for training, mining non-trivial tuples
—that is, informative tuples that make the loss function “suffi-
ciently” greater than zero— can be of importance to accelerate
convergence and improve performance [34]. For instance, in
[28], the online mining strategy so-called Batch Hard, already
outlined in [19], provides the best person re-identification
performance among several relevant mining approaches. In
short, Batch Hard consists of the selection, on a mini-batch
basis, of the hardest positive and negative samples in terms
of embedding distance with respect to each of the training
samples in the mini-batch in order to form (hard) tuples for
training. Our preliminary experiments using N -pair loss along
with Batch Hard also yielded embeddings collapsing into a
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L(CN,2 + 1)-pair = log

1 + exp

D
(
z̄(i)a , z̄(i)p

)
− 1

N − 1

N∑
j=1
j 6=i

D (z̄(i)a , z̄(j)n

)
+

N∑
k>j
k 6=i

D
(
z̄(j)n , z̄(k)n

)+
(N − 2)dmax

2



(16)

TABLE I: Noisy conditions (i.e., combinations of noise type
and SNR level) covered by the training and validation sets
(mid gray), and by the test set (light gray). Intersection (only
in terms of noisy conditions, and being the noise realizations
different across sets) between the training and validation sets
and the test set is indicated in dark gray.

Noise SNR (dB)
type -10 -5 0 5 10 15 20 Clean

White noise
Babble TRAINING AND VALIDATION SETS
Machine gun
F-16 cockpit
Vehicle interior
Factory1
Bus
Pedestrian street
Factory2
Buccaneer jet cockpit
Café TEST SET
Street junction

single point during an early stage of the training. This fact
was already observed in previous work when using hard tuples
for training [19], [28], and it may be related to hard tuples
producing large attractive (small repelling) gradients from hard
positive (negative) pairs [35].

To address the above issue, we relaxed Batch Hard as
follows. For each of the training samples in the mini-batch, a
hard or a randomly-arranged tuple is formed with a probability
of σ and 1−σ, respectively, where the value of σ is increased
as the training loss decreases. While in this way we are able
to bridge the critical point in relation to the aforementioned
embedding collapsing during an early stage of the training,
we also noticed that, as a trend, the lower the value of σ,
the better the KWS performance. As a consequence, for all
the tuple-based loss functions tested in Section V, we adopt a
straightforward, yet very effective mining strategy consisting
of randomly arranging tuples, on an epoch basis, for each
of the samples in the training set (i.e., avoiding Batch Hard
altogether).

IV. EXPERIMENTAL SETTING

A. Experimental Database

For experimental purposes, a noisy speech corpus was
created from the Google Speech Commands Dataset (GSCD)
[24], which is a speech database comprising one-second long
utterances, each containing one word out of 35 different
possible words. Words can be anywhere within the one-second
long audio segments, namely, words are not evenly segmented.
The GSCD was recorded by 2,618 speakers.

To create our experimental corpus, first, clean speech utter-
ances of the GSCD were identified from the inherently noisy

GSCD recordings. On an utterance basis, noise power was
estimated from the first 100 ms (1,600 samples at a sampling
rate of 16 kHz) of the signal. Then, the remaining signal
samples were employed to calculate the noisy speech power.
From the ratio of these two power values, the a posteriori SNR
was obtained, and the corresponding utterance was considered
to be clean if and only if the a posteriori SNR was greater
than 40 dB. This was done for the training, validation and test
sets originally defined in the GSCD to define equivalent clean
training, validation and test sets.

Furthermore, the clean training, validation and test sets
were split into eight different partitions each. As in the
classical AURORA-2 database [36], each of these partitions
was assigned a type of noise from either NOISEX-92 [37]
or CHiME-3 [38], [39]. Training and validation sets noises
are vehicle interior, factory1, bus, pedestrian street, white
noise, babble, machine gun and F-16 cockpit. Test set noises
are vehicle interior, factory1, bus, pedestrian street, factory2,
Buccaneer jet cockpit, café and street junction2.

Each of the above clean speech partitions was contaminated
with a particular noise type at different SNR levels3 by means
of Filtering and Noise-adding Tool (FaNT) [40]. For both the
training and validation sets, the considered SNR values were,
apart from the clean case, {0, 5, 10, 15, 20} dB. For the test set,
{−10,−5, 0, 5, 10, 15, 20} dB were the chosen SNR values
apart from the clean case as well. Thus, each noisy condition,
i.e., each combination of noise type and SNR level, is evenly
represented by 3,699, 427 and 497 utterances in the training,
validation and test sets, respectively. As a summary, Table I
allows us to see at a glance the different noisy conditions
covered by the training, validation and test sets.

The necessary tools to generate this noisy speech corpus are
publicly available4.

B. Keyword Spotting Model

To test our proposal and comparison techniques, we use the
state-of-the-art deep residual learning model with dilated con-
volutions (architecture res15) reported in [14]. This model
is fed with log-Mel spectrograms computed from one-second
long speech segments using a 30 ms Hann window with a
10 ms shift. Log-Mel spectrograms are normalized to have
zero mean and unit standard deviation by employing global
sample mean and standard deviation values calculated from
the training set. These log-Mel spectrograms are comprised of
K = 40 frequency bins and T = 101 time frames. In addition,

2Specifically, bus, pedestrian street, café and street junction noises are from
CHiME-3.

3In other words, the corpus comprises as many distorted copies of every
clean speech utterance as considered SNR levels. Indeed, noise realizations
are different across both utterances and SNR levels.

4http://ilopez.es.mialias.net/misc/NoisyGSCD.zip
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the output of the global average pooling layer of res15 prior
to the final fully-connected layer with softmax activation is
interpreted as a D = 45-dimensional keyword embedding z.

This model is trained, as in [16]–[18], to spot the following
10 keywords: “yes”, “no”, “up”, “down”, “left”, “right”, “on”,
“off”, “stop” and “go”. Non-keywords are expected to be
classified into the filler class, which is comprised of the
remaining 25 words of the GSCD. Thus, N = 11 in this paper.
All the N = 11 classes are approximately balanced across the
training, validation and test sets.

To train the deep residual learning model either end-to-
end or piecewise —that is, as proposed, first, the keyword
embedding extractor, and then, the linear classifier—, the
following setup is considered. As an optimizer, Adam [41]
with default parameters (i.e., the learning rate is 0.001, β1 =
0.9 and β2 = 0.999) is used. As a regularization method,
early-stopping [42] with a patience of 5 epochs is employed.
The size of the mini-batch is 16 samples/tuples. Practical
implementation was carried out with Keras [43] running on
top of TensorFlow [44].

V. RESULTS AND DISCUSSION

In this section, our proposal and comparison techniques
are evaluated in terms of KWS performance and training
convergence speed. Accuracy, which is the ratio between the
number of correct predictions and the total number of them,
is employed as the primary evaluation metric in this work.
For accuracy computation, a prediction is made by simply
picking the most likely class as indicated by Eq. (3). Accuracy
results are presented along with 95% confidence intervals
from the Student’s t-distribution [45]. To obtain confidence
intervals, n = 5 different neural network models considering
different random weight initialization are trained for each of
the reported experiments. Let µacc and σacc be, respectively, the
sample mean and standard deviation values calculated from the
resulting n = 5 accuracy values from a particular experiment,
we can define confidence intervals as in [45][

µacc − t0.025,n−1
σacc√
n
, µacc + t0.025,n−1

σacc√
n

]
, (20)

where t0.025,n−1 ≈ 2.78 is the 97.5th percentile of the
Student’s t-distribution with ν = n− 1 degrees of freedom.

Apart from accuracy measurements, detection error trade-
off (DET) curves are also presented. These curves represent
pairs of false alarm and false reject rates as a function of the
sensitivity threshold (swept from 0 to 1) setting the minimum
posterior probability value from which a keyword is detected.
DET curves are calculated for each of the keywords and noisy
conditions, and, then, they are averaged. The smaller the area
under a DET curve, the better a system is.

Moreover, Subsection V-C shows streaming KWS results
comprising the processing of a continuous stream of audio
data in which the different word classes are rather unbalanced.
Due to the latter, accuracy is not a good metric in such
circumstances, and, therefore, F-score curves as a function of
the sensitivity threshold are presented instead. F-score, F1, is

defined as the harmonic mean of precision and recall [46],
namely,

F1 =
2

Recall−1 + Precision−1
=

2TP
2TP + FN + FP

, (21)

where 0 ≤ F1 ≤ 1, and TP, FN and FP denote the number of
true positives, false negatives and false positives, respectively.
Similarly to the case of the DET curves, F-score curves are
computed for each of the keywords and noisy conditions, and,
then, they are averaged. The larger the area under an F-score
curve, the better a system is.

A. Evaluated Techniques

We define our baseline system as the state-of-the-art deep
residual learning KWS system of [14] (architecture res15),
which is end-to-end, multi-condition trained by means of
cross-entropy loss. We compare the baseline to systems based
on the res15 architecture, trained using the different tuple-
based loss functions described in Section III: contrastive loss,
triplet loss, quadruplet loss, N -pair loss and (CN,2 + 1)-pair
loss. It should be noticed that, for experimental purposes, all
of these tuple-based loss functions incorporate the softplus
function. Therefore, while triplet loss is as in (8), contrastive
loss needs to be approximated as follows:

LContrastive ∼= δij log
(

1 + exp
{
D
(
z
(i)
1 , z

(j)
2

)})
+ (1− δij) log

(
1 + exp

{
−D

(
z
(i)
1 , z

(j)
2

)})
. (22)

Let us also notice that some training trials using triplet
and quadruplet loss functions yielded keyword embedding
extractors getting stuck in poor local minima. Those triplet
and quadruplet loss trials were replaced by other trials with
“good convergence” to obtain the KWS performance results
reported in this section.

B. Keyword Spotting Results

Keyword spotting accuracy results with 95% confidence
intervals are reported in Table II. These results are broken
down by SNR level, and seen (vehicle interior, factory1, bus
and pedestrian street) and unseen (factory2, Buccaneer jet
cockpit, café and street junction) noises during the training
phase. First, accuracy results prove that the proposed training
strategy integrating a tuple-based loss function is able to
improve (except for Contrastive loss on seen noises) Baseline,
the latter involving traditional end-to-end training exploiting
cross-entropy loss. This is due to our training strategy allowing
for more discriminative and noise-robust keyword embedding
computation. In fact, we should remark that a series of
experiments (not reported in this manuscript) suggests that
our two-stage training strategy might be superior to a single-
stage training approach considering a joint loss function as in,
e.g., L = ω1LCE + ω2L(CN,2 + 1)-pair, where ω1 and ω2 are
loss combination weights. Second, the general trend of these
results reveals that the more examples from different classes
a tuple-based loss function exploits in each update, the better
the KWS performance is.
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TABLE II: Keyword spotting accuracy results, in percentages, with 95% confidence intervals. Results are broken down by
SNR level, and seen (vehicle interior, factory1, bus and pedestrian street) and unseen (factory2, Buccaneer jet cockpit, café
and street junction) noises during the training phase.

SNR (dB)
-10 -5 0 5 10 15 20 Clean Average

Seen noises

Baseline 57.51 ± 0.96 75.94 ± 1.42 88.36 ± 1.30 92.90 ± 0.43 94.59 ± 0.75 95.17 ± 0.74 96.09 ± 0.72 96.45 ± 0.87 87.13 ± 0.60
Contrastive loss 59.73 ± 1.46 75.07 ± 1.74 86.81 ± 0.83 92.56 ± 0.64 94.37 ± 0.29 95.14 ± 0.31 95.85 ± 0.80 96.72 ± 0.36 87.03 ± 0.65

Triplet loss 60.12 ± 2.68 75.70 ± 2.07 86.96 ± 0.78 93.04 ± 0.72 93.86 ± 0.78 95.14 ± 0.87 96.01 ± 0.76 96.67 ± 0.42 87.19 ± 0.91
Quadruplet loss 60.36 ± 1.47 78.00 ± 1.17 87.85 ± 1.17 92.80 ± 0.66 94.40 ± 0.90 95.58 ± 0.59 96.21 ± 0.48 96.88 ± 0.94 87.76 ± 0.68
N -pair loss 60.07 ± 1.73 77.29 ± 0.95 88.72 ± 0.61 93.41 ± 0.50 95.00 ± 0.53 95.92 ± 0.22 96.62 ± 0.64 97.00 ± 0.44 88.00 ± 0.16

(CN,2 + 1)-pair loss 61.84 ± 1.73 78.00 ± 1.97 88.82 ± 0.41 93.48 ± 0.49 95.17 ± 0.82 95.94 ± 0.57 96.76 ± 0.56 96.91 ± 0.57 88.36 ± 0.72

Unseen noises

Baseline 35.11 ± 1.87 62.06 ± 1.40 82.20 ± 1.91 89.75 ± 1.18 92.87 ± 0.92 95.11 ± 1.14 96.11 ± 0.43 96.52 ± 0.64 81.22 ± 0.69
Contrastive loss 38.98 ± 1.74 62.61 ± 2.71 81.19 ± 1.76 89.02 ± 0.87 92.50 ± 1.22 94.29 ± 0.43 95.38 ± 0.84 96.61 ± 0.32 81.32 ± 0.86

Triplet loss 37.78 ± 2.44 62.44 ± 1.14 81.84 ± 1.57 90.13 ± 0.57 93.45 ± 0.47 95.28 ± 0.37 96.01 ± 0.58 96.74 ± 0.59 81.71 ± 0.52
Quadruplet loss 38.26 ± 0.95 63.94 ± 1.37 83.02 ± 1.03 90.11 ± 0.70 93.88 ± 0.61 95.26 ± 0.44 95.94 ± 0.59 96.78 ± 0.48 82.15 ± 0.27
N -pair loss 39.93 ± 2.54 64.86 ± 1.89 83.92 ± 0.68 90.50 ± 0.27 93.81 ± 0.64 95.28 ± 0.50 96.30 ± 0.64 96.98 ± 0.54 82.70 ± 0.52

(CN,2 + 1)-pair loss 41.21 ± 2.63 65.27 ± 1.10 84.67 ± 0.99 92.26 ± 0.15 94.70 ± 0.48 96.20 ± 0.87 96.71 ± 0.49 97.19 ± 0.59 83.53 ± 0.30

TABLE III: Mean intra- and inter-class Euclidean distances with their associated variances on the training and test sets.
Distances on the test set are broken down by seen and unseen noises during the training phase.

Intra-class distance Inter-class distance
Training Test: Seen noises Test: Unseen noises Training Test: Seen noises Test: Unseen noises

Baseline 0.327 ± 0.033 0.423 ± 0.087 0.488 ± 0.103 1.272 ± 0.031 1.234 ± 0.032 1.197 ± 0.032
Contrastive loss 0.084 ± 0.059 0.235 ± 0.208 0.324 ± 0.273 1.482 ± 0.001 1.480 ± 0.001 1.477 ± 0.001

Triplet loss 0.031 ± 0.014 0.199 ± 0.191 0.280 ± 0.255 1.471 ± 0.036 1.470 ± 0.036 1.469 ± 0.036
Quadruplet loss 0.030 ± 0.014 0.196 ± 0.186 0.278 ± 0.253 1.473 ± 0.028 1.472 ± 0.028 1.471 ± 0.028

N -pair loss (D2
E (z̄1, z̄2)) 0.052 ± 0.015 0.236 ± 0.195 0.325 ± 0.260 1.482 ± 0.000 1.478 ± 0.000 1.474 ± 0.000

N -pair loss 0.023 ± 0.015 0.196 ± 0.199 0.278 ± 0.269 1.481 ± 0.005 1.481 ± 0.005 1.480 ± 0.005
(CN,2 + 1)-pair loss 0.018 ± 0.012 0.191 ± 0.204 0.268 ± 0.272 1.483 ± 0.000 1.483 ± 0.000 1.482 ± 0.000

According to Table II, while, in general, there are no
statistically significant differences among the average accuracy
results for seen noises, the best performance for unseen noises
is clearly obtained by the proposed method (∼83.53% acc.)
in a statistically significant manner. In particular, on average,
our training strategy using the (CN,2 + 1)-pair loss function
yields around 12% KWS accuracy relative improvement with
respect to Baseline.

Also from Table II, we can see that, overall, (CN,2+1)-pair
loss provides better performance than N -pair loss, especially
for unseen noises. As already discussed in Subsection III-B,
we hypothesize that our proposal might obtain larger inter-
class and smaller intra-class variation compared to N -pair
loss thanks to that the former also looks for maximizing
the distance among the N − 1 negative examples of each
tuple. In this way, the generalization ability of the keyword
embedding extractor may be improved, and, as a result, the
KWS performance.

The above hypothesis is supported by Table III. This table
reports mean intra- and inter-class Euclidean distances with
their associated variances on the training and test (broken
down by seen and unseen noises) sets. Distance values are
derived with respect to median-estimated class centroids. In
addition, Baseline distances are calculated from (`2-norm)
normalized keyword embeddings for the sake of comparison.
Numbers in Tables II and III are highly correlated, which
comes as no surprise. Thus, distance values in Table III rein-
force the utility of the proposed training strategy incorporating
a tuple-based loss function to achieve more discriminative
and noise-robust keyword embeddings in comparison with
Baseline. In particular, the (CN,2 + 1)-pair loss function helps

for obtaining, on all of the reported sets (i.e., training, test-
seen noises and test-unseen noises) and among all of the tested
techniques, the largest inter-class distances and the shortest
intra-class distances, being particularly remarkable the low
training set intra-class value.

Besides, as mentioned in Subsection III-C, preliminary ex-
periments using N -pair loss revealed that better KWS perfor-
mance could be achieved by utilizing the actual (non-squared)
Euclidean distance DE (z̄1, z̄2) instead of its squared version
D2

E (z̄1, z̄2). We hypothesize that this fact might be related to
D2

E (z̄1, z̄2) overestimating actual Euclidean distances above 1
while underestimating them when these are less than 1 (recall
that DE (z̄1, z̄2) ∈ [0, dmax = 2]). Hence, using the squared
Euclidean distance instead of the non-squared one would yield
less inter-class separation and higher intra-class dispersion.
This hypothesis is very much endorsed by Table III, where, as
can be seen, using D2

E (z̄1, z̄2) instead of DE (z̄1, z̄2) clearly
yields larger mean intra-class distance on the different sets5.

For illustrative purposes, Figure 3 shows a test set (unseen
noises only) keyword embedding representation obtained by
means of t-distributed Stochastic Neighbor Embedding (t-
SNE) [47]. This figure suggests, in agreement with results of
Tables II and III, better class definition and separability for
our training strategy using the (CN,2 + 1)-pair loss function
than for the comparison techniques. This fact is also reflected
by the KWS detection error trade-off curves plotted in Figure
4, in which Baseline shows a more competitive performance
than the indicated by Tables II and III.

Finally, Table IV presents a comparison, in terms of both

5In line with this, N -pair loss (D2
E (z̄1, z̄2)) average KWS accuracy for

seen and unseen noises is 87.71% ± 0.49 and 82.11% ± 0.54, respectively.
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Fig. 3: Test set (unseen noises only) keyword embedding representation obtained by means of t-SNE [47]. Black crosses mark
the location of the class centroids.
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Fig. 4: Keyword spotting detection error trade-off curves for
seen and unseen noises during the training phase.

accuracy and number of model parameters, between Base-
line, our proposal (i.e., (CN,2 + 1)-pair loss), and some of
the most prominent KWS models/techniques when they are
evaluated on the original GSCD. Such most prominent KWS
models/techniques consist of a) a fully-connected, feedforward
neural network (DNN [48]), b) a convolutional neural network
with striding equal to 2 (CNN+strd [48]), c) a recurrent neural
network with an attention mechanism [49] (Att-RNN [50]), d)
a depthwise separable CNN with striding equal to 2 (DSCNN-
strd [51]), e) a variant of TC-ResNet [15] (where TC stands for
“temporal convolution”), and f) an extension of Att-RNN with
multi-head attention (MHAtt-RNN [48]). Numbers reported
for these models/techniques are from [48, Table 2], except for

TABLE IV: State-of-the-art KWS model/technique compar-
ison, in terms of accuracy (%) and number of model pa-
rameters, on the original Google Speech Commands Dataset.
Reported numbers of models/techniques with superscript ? are
from [48, Table 2]. Reported numbers of Att-RNN† are from
[50, Table 2].

Model/technique Accuracy (%) No. of parameters

DNN? 90.6 447k
CNN+strd? 95.6 529k

Baseline 95.93 ± 0.74 238k

Att-RNN† 96.9 202k
DSCNN+strd? 97.0 485k

(CN,2 + 1)-pair loss 97.18 ± 0.14 238k

TC-ResNet? 97.4 365k
MHAtt-RNN? 98.0 743k

Att-RNN, which are from [50, Table 2]. From Table IV, we
see that the application of our proposal to the Baseline deep
residual learning model results in a very competitive position
in the ranking taking also into account the number of model
parameters.
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Fig. 5: Streaming KWS detection error trade-off curves for
seen and unseen noises during the training phase.
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Fig. 6: Streaming KWS F-score curves for seen and unseen
noises during the training phase.

C. Streaming Keyword Spotting

Better capturing the use of KWS in the real world, streaming
KWS comprises the processing of a continuous stream of
audio data in which the different word classes are rather
unbalanced. To perform streaming KWS evaluations, we fol-
low a procedure similar to the one described in [17]. First,
we re-train the different KWS models to spot an additional
silence/background noise class, so now N = 12. As before,
all of the classes —including the silence/background noise
class— are rather balanced for training. Second, a basis test
audio stream is generated by concatenation of test clean speech
and silence fragments. This basis audio stream contains around
150 utterances of each keyword type and near 2,000 non-
keywords, which are randomly intermingled along the audio
sequence. This great word class unbalancing better reflects
what can be expected to observe in real-life applications. The
duration of the basis test audio stream is, approximately, 1
hour and 23 minutes.

Then, again by means of FaNT, this audio stream is suc-
cessively contaminated with the test set noises (i.e., vehicle
interior, factory1, bus, pedestrian street, factory2, Buccaneer
jet cockpit, café and street junction) at the test SNR levels
{−10,−5, 0, 5, 10, 15, 20} dB to generate a total of 8 noise
types × 7 SNR levels = 56 noisy audio sequences for testing,
in addition to the basis clean stream.

At test time, the sequence of posterior probabilities
P (i|X, θ) (i = 1, ..., N ), resulting from employing a one-
second long sliding window with a hop of 250 ms on the
input stream, is processed as in [52].

Figure 5 depicts streaming KWS detection error trade-
off curves. While Baseline again shows a very competitive
performance in terms of DET, our training strategy exploiting

TABLE V: Training times per epoch, in seconds, with 95%
confidence intervals when using different loss functions to
train the keyword embedding extractor.

Loss function Training time
per epoch (s)

Contrastive loss 396.8 ± 0.6
Triplet loss 578.1 ± 0.4
Quadruplet loss 774.3 ± 1.3
N -pair loss 2,247.0 ± 4.0
(CN,2 + 1)-pair loss 2,268.8 ± 5.7
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Fig. 7: Keyword embedding extractor training (solid lines) and
validation (dashed lines) loss curves as a function of the epoch
number. Loss curves were obtained by averaging across five
trials.

the (CN,2 + 1)-pair loss function stands out for unseen noises
as a result of its greater generalization ability. Moreover,
streaming KWS F-score curves are plotted by Figure 6. From
this figure, we can confirm the usefulness of our training
strategy to improve KWS performance, especially in noisy
conditions not seen during the training phase. In addition, we
can clearly note the aforementioned trend whereby the more
examples from different classes a tuple-based loss function
considers in each update, the better the KWS performance is.
As can be observed, (CN,2 + 1)-pair loss outperforms all of
the related tuple-based loss functions.

D. Training Convergence Speed

Generally, fast training convergence of neural networks is
something desirable. Hence, in this subsection we compare
the (CN,2 + 1)-pair loss function with the other evaluated
tuple-based loss functions in terms of training convergence
speed. Notice that all of the following results were obtained
by averaging across five training trials that were run on a GPU
NVIDIA GeForce GTX 1080 Ti.

First, Table V reports training time per epoch (in seconds)
as a function of the different losses. This table shows an
approximately linear relationship between the size of the tuple
used by a loss function and its training time per epoch. In
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TABLE VI: Keyword spotting accuracy results, in percentages,
with 95% confidence intervals, from using res15-narrow
[14] instead of res15 on a noisy version of the Hey Snap-
dragon Keyword Dataset [53]. Results, averaged across SNR
levels, are broken down by seen and unseen noises during the
training phase.

Technique Seen noises Unseen noises

Baseline 89.90 ± 2.22 85.94 ± 3.22
Contrastive loss 93.06 ± 0.81 89.35 ± 0.81
Triplet loss 90.36 ± 1.19 85.98 ± 1.87
Quadruplet loss 92.98 ± 1.23 89.39 ± 1.44
N -pair loss 93.09 ± 0.92 90.24 ± 1.25
(CN,2 + 1)-pair loss 93.37 ± 0.88 90.74 ± 0.78

addition, Figure 7 plots training and validation loss curves as
a function of the epoch number. According to this figure, the
more examples from different classes a loss function exploits
in each update, the faster the training convergence is. This
partially compensates for the larger training times per epoch
associated to loss functions employing bigger tuples. Finally,
it is worth mentioning that, since L(CN,2 + 1)-pair also aims at
maximizing the distance among the N − 1 negative examples
of each tuple, (CN,2+1)-pair loss provides faster convergence
than N -pair loss. Since training times per epoch for N -pair
and (CN,2 + 1)-pair losses are very similar (see Table V),
we can conclude that (CN,2 + 1)-pair loss is able to yield
superior KWS performance than N -pair loss with much less
total training time.

E. On the Proposal Generalizability

To explore the generalizability potential of the proposed
two-stage training strategy and (CN,2 + 1)-pair loss, we also
performed KWS evaluations on a different KWS corpus:
Hey Snapdragon Keyword Dataset (HSKD) [53]. This cor-
pus, recorded by 50 speakers, is comprised of 4,270 utter-
ances, each covering one keyword out of 4 different possible
keywords: “Hey Android”, “Hey Snapdragon”, “Hi Galaxy”
and “Hi Lumina”. Because this corpus is composed by just
clean speech, we followed an equivalent procedure to that of
Subsection IV-A to generate a noisy version of the HSKD.
Furthermore, speech data from the Hey Snips database [54]
were used to populate the filler (non-keyword) class. Notice
that, this time, N = 5, and, like for the (noisy) GSCD, all the
N = 5 classes are rather balanced in the training, validation
and test sets. Speakers do not overlap across sets.

Due to the relatively small size of the noisy HSKD,
we decided to use a lighter deep residual learning model,
res15-narrow [14], instead of res15 for experimental
purposes. Model res15-narrow has nearly 6 times less
parameters than res15, leading to D = 19-dimensional
keyword embeddings z. On this occasion, res15-narrow
is fed with log-Mel spectrograms computed from 1.5-second
long speech segments (i.e., T = 151 time frames). At training
time, the size of the mini-batch is 32 samples/tuples. The rest
of the setup is as indicated in Subsection IV-B.

Table VI shows the KWS accuracy results, in percentages
and with 95% confidence intervals, corresponding to the

experimental framework here described. These results, which
are averaged across SNR levels, are broken down by seen
and unseen noises during the training phase. With relatively
narrow confidence intervals, our training strategy exploiting
the (CN,2 + 1)-pair loss function again yields the highest
average accuracy for both seen and unseen noises, being
remarkable its improvement over Baseline as well as the
competitive performance of Contrastive loss (see Table VI).

VI. CONCLUDING REMARKS

In this work, we have developed a novel tuple-based loss
function along with a training strategy for noise-robust key-
word spotting. The proposed (CN,2 + 1)-pair loss function
extends the concept behind well-known tuple-based loss func-
tions like triplet loss and N -pair loss to obtain larger inter-class
and smaller intra-class variation, as we have experimentally
demonstrated. As a result, we have been able to significantly
improve the generalization ability of a modern KWS model
compared to when the model is end-to-end, multi-condition
trained using cross-entropy loss (which is a standard approach
in the literature). It is worth emphasizing that this has been
achieved by increasing neither the number of parameters nor
the number of multiplications of the KWS model, which is of
importance, since KWS systems are often intended for low-
resource devices.

As future work, we will study the application of this training
strategy exploiting (CN,2 + 1)-pair loss to the mitigation of
other types of distortions as well as to other tasks such as, for
example, speaker recognition and image classification.
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