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More-stable EPLL
Saeed Golestan, Senior Member, IEEE, Jose Matas, Abdullah M. Abusorrah, Senior Member, IEEE, and Josep M.

Guerrero, Fellow IEEE

Abstract—The enhanced PLL (EPLL) is one of the most
famous PLLs in single-phase applications and a versatile tool
for different signal processing applications, especially for the grid
synchronization of power converters. Recently, it has been proved
that the EPLL has a quite narrow stable zone (compared to its
unstable zone) in the positive parameter space from a small-signal
point of view. This zone will be even more narrow if maintaining
a minimum stability margin is required. This paper aims to
modify the EPLL structure to improve its stability margin and,
at the same time, make it unconditionally stable in the positive
parameter space from a small-signal point of view.

Index Terms—Enhanced phase-locked loop (EPLL), single-
phase systems, synchronization.

I. INTRODUCTION

The EPLL is one of the most famous PLLs in single-phase
applications. The block diagram representation of this PLL
can be observed in Fig. 1 [1], in which v is the single-phase
input signal, V̂1, θ̂1 and ω̂ are estimates of the amplitude,
phase angle, and angular frequency of this signal, respectively,
and kp, ki, and kv are the control gains.1 From the structural
point of view, the EPLL looks a bit different from a typical
single-phase PLL, which is often based on a synchronous
reference frame PLL (SRF-PLL) and a fictitious (β-axis)
signal generator [2]. However, mathematically speaking, it is
equivalent to a single-phase SRF-PLL that generates its β-
axis input signal directly using the estimated phase angle and
amplitude [3].

The EPLL has received considerable research attention over
the past two decades. A part of these research activities has
focused on applying the EPLL and its extended versions
to different signal processing applications. For instance, in
addition to the synchronization of power converters in both
single-phase and three-phase applications, the EPLL and its
extended versions have been widely employed for the de-
tection and separation of fundamental and disturbance (dc,
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1Throughout this paper, kp = kv is assumed. This selection is often
considered as an optimal choice in the literature [1].
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Abstract—The enhanced PLL (EPLL) is one of the most
famous PLLs in single-phase applications, and a versatile tool
for different signal processing applications, especially for the grid
synchronization of power converters. Recently, it has been proved
that the EPLL has a quite narrow stable zone (compared to its
unstable zone) in the positive parameter space from a small-signal
point of view. This zone will be even more narrow if maintaining
a minimum stability margin is required. This paper aims to
modify the EPLL structure to improve its stability margin and,
at the same time, make it unconditionally stable in the positive
parameter space from a small-signal point of view.

Index Terms—Enhanced phase-locked loop (EPLL), single-
phase systems, synchronization.

I. INTRODUCTION

The EPLL is one of the most famous PLLs in single-phase
applications. The block diagram representation of this PLL
can be observed in Fig. 1 [1], in which v is the single-phase
input signal, V̂1, θ̂1 and ω̂ are estimation of the amplitude,
phase angle, and angular frequency of this signal, respectively,
and kp, ki, and kv are the control gains.1 From the structural
point of view, the EPLL looks a bit different from a typical
single-phase PLL, which is often based on a synchronous
reference frame PLL (SRF-PLL) and a fictitious (β-axis)
signal generator [2]. However, mathematically speaking, it is
equivalent to a single-phase SRF-PLL that generates its β-
axis input signal directly using the estimated phase angle and
amplitude [3].

The EPLL has received considerable research attention over
the past two decades. A part of these research activities has
focused on applying the EPLL and its extended versions
to different signal processing applications. For instance, in
addition to the synchronization of power converters in both
single-phase and three-phase applications, the EPLL and its
extended versions have been widely employed for the de-
tection and separation of fundamental and disturbance (dc,
harmonics, and interharmonic) components of power signals
[4], [5], computation of synchrophasors [6]–[8], fault analysis
[9], estimation of parameters of electromagnetic oscillations
[10], and implementations of robust resonant controllers [11]
among other applications.

Improving the EPLL filtering capability and/or dynamic
performance in the grid synchronization applications has also
been a main focus of research in the past years. In [12],
for instance, an adaptive method to improve the start-up and
phase jump tracking ability of the EPLL without affecting its
filtering capability is proposed. In [13] and [14], including
inloop filters and window functions into the EPLL control
loops to provide a more smooth estimation of the grid voltage

1Throughout this paper, kp = kv is assumed. This selection is often
considered as an optimum choice in the literature [1].
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Fig. 1. (a) Conventional EPLL.

parameters under noisy conditions is introduced. In [5], adding
a dc offset estimation/rejection loop to the EPLL to provide
an estimation of the input dc component and, at the same
time, make the EPLL immune to the disturbance effect of the
dc offset is proposed. In [15], including a single nonadaptive
band-pass filter before the EPLL input and a compensator
in its output is proposed. The band-pass filter rejects the dc
offset and attenuates the input harmonics, and the compensator
corrects errors caused by the band-pass filter under off-nominal
frequencies. In [16], including an adaptive filter based on
delayed signal cancellation operators before the EPLL input to
improve its filtering capability without considerably affecting
its dynamic response is proposed.

Despite the fact that the EPLL is structurally robust under
extreme scenarios such as low sampling frequencies and fixed-
point implementations with a limited number of bits [10], [11],
recently it has been proved that it has a quite narrow stable
zone (compared to its unstable zone) in the positive parameter
space from a small-signal point of view [17]. This stable zone
becomes even more narrow if maintaining a minimum stability
margin is required.

To deal with the above-mentioned problem, a More-robust
EPLL (MrEPLL), which is simply realized by adding some
nonlinear terms to the traditional EPLL, is presented. An
analytic linear time-periodic (LTP) model for the MrEPLL is
then obtained, and its stability is investigated. It will also be
shown that the MrEPLL has a more decent stability margin
compared to the EPLL. It will also be demonstrated that the
MrEPLL, contrary to the EPLL, is unconditionally stable in
the positive parameter space from a small-signal point of view.

II. MREPLL

Assume that the single-phase input signal of the EPLL is
as (1), where V1 and θ1 are the amplitude and phase angle of
this signal.

v(t) = V1 cos(θ1) (1)
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Fig. 1. Conventional EPLL.

harmonics, and interharmonic) components of power signals
[4], [5], computation of synchrophasors [6]–[8], fault analysis
[9], estimation of parameters of electromagnetic oscillations
[10], and implementations of robust resonant controllers [11],
among other applications.

Improving the EPLL filtering capability and/or dynamic
performance in the grid synchronization applications has also
been a main focus of research in the past years. In [12],
for instance, an adaptive method to improve the start-up and
phase jump tracking ability of the EPLL without affecting its
filtering capability is proposed. In [13] and [14], including
inloop filters and window functions into the EPLL control
loops to provide a more smooth estimation of the grid voltage
parameters under noisy conditions is introduced. In [5], adding
a dc offset estimation/rejection loop to the EPLL to provide an
estimation of the input dc component and, at the same time,
make the EPLL immune to the disturbing effect of the dc offset
is proposed. In [15], including a single nonadaptive band-pass
filter before the EPLL input and a compensator in its output
is proposed. The band-pass filter rejects the dc offset and
attenuates the input harmonics, and the compensator corrects
errors caused by the band-pass filter under off-nominal fre-
quencies. In [16], including an adaptive filter before the EPLL
input is proposed. This filter, which is based on delayed signal
cancellation operators, improve the EPLL filtering capability
without considerably affecting its dynamic response.

Despite the fact that the EPLL is structurally robust under
extreme scenarios such as low sampling frequencies and fixed-
point implementations with a limited number of bits [10], [11],
recently it has been proved that it has a quite narrow stable
zone (compared to its unstable zone) in the positive parameter
space from a small-signal point of view [17]. This stable zone
becomes even more narrow if maintaining a minimum stability
margin is required.

To deal with the above-mentioned problem, a More-stable
EPLL (MsEPLL), which is simply realized by adding some
nonlinear terms to the traditional EPLL, is presented in this
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Fig. 2. More-robust EPLL (MrEPLL).

In this case, the governing nonlinear differential equations
(GNDEs) of the EPLL can be simply obtained from Fig. 1
as

˙̂ω = ∆ ˙̂ω = ki

2V̂1

[V1 sin(θ1 − θ̂1)
+V̂1 sin (2θ̂1))) −V1 sin (θ1 + θ̂1)))] (2)

˙̂
θ1 = ω̂ + kp

ki
∆ ˙̂ω (3)

˙̂
V 1 = kv

2
[V1 cos(θ1 − θ̂1) − V̂1

+V1 cos (θ1 + θ̂1))) − V̂1 cos (2θ̂1)))]. (4)

The highlighted terms in (2) and (4) are some double-
frequency terms, which are equal to zero in the steady state,
i.e., when V1 = V̂1 and θ1 = θ̂1. However, dynamics of these
terms adversely affect the EPLL small-signal stability [17].
This fact suggests that the EPLL small-signal stability may be
improved by mitigating the adverse effects of these terms. To
this end, as shown in Fig. 2, adding some double-frequency
terms to the EPLL structure is suggested. This structure is
referred to as the MrEPLL here. Note that the signal ∆ ˙̂ω
and, therefore, the highlighted double-frequency terms in Fig.
2, are equal to zero in the steady state.2 Note also that
the double-frequency term 1

2
sin(2θ̂1) in Fig. 2 is equal to

sin(θ̂1) cos(θ̂1). Therefore, implementing the MrEPLL does
not involve the calculation of additional trigonometric func-
tions.

2A hidden assumption here is that the single-phase input signal is without
harmonics. Note that in the presence of harmonics, the signal ∆ ˙̂ω may contain
some oscillatory ripples depending on the EPLL bandwidth.

A. LTP Modeling

Considering (1) as the input signal of the MrEPLL in Fig.
2, its GNDEs can be obtained as

∆ ˙̂ω = ki

2V̂1

[V1 sin(θ1 − θ̂1) + V̂1 sin(2θ̂1) − V1 sin(θ1 + θ̂1)] (5)

˙̂
θ1 = ω̂ + kp

ki
∆ ˙̂ω+ 1

2ω̂
sin (2θ̂1)))∆ ˙̂ω (6)

˙̂
V 1 = kv

2
[V1 cos(θ1 − θ̂1) − V̂1 + V1 cos(θ1 + θ̂1) − V̂1 cos(2θ̂1)]

+ V̂1

ω̂
sin2(((θ̂1)))∆ ˙̂ω. (7)

Considering the definitions made in (8), in which each param-
eter is defined as a nominal value (indicated by the subscript
n) plus a small perturbation (indicated by ∆), (5) can be
linearized as shown in (9) at the bottom of the page.

V1 = Vn +∆V1, θ1 = θn +∆θ1, ω = ωn +∆ω

V̂1 = Vn +∆V̂1, θ̂1 = θn +∆θ̂1, ω̂ = ωn +∆ω̂
(8)

Note that θn = ∫ ωndt =ωnt + ϕn. Without loss of generality,
ϕn = 0 is assumed in this paper.

In a similar manner, one can obtain (10) and (11) by
substituting (8) into (6) and (7) and linearizing them.

∆
˙̂
θ1 ≈ ∆ω̂ + kp

ki
∆ ˙̂ω + 1

2ωn
sin(2θn)∆ ˙̂ω (10)

∆
˙̂
V 1 ≈ kv

2
[{1 + cos(2θn)}∆Ve − Vn sin(2θn)∆θe]

+Vn
ωn

1 − cos(2θn)
2

∆ ˙̂ω (11)

Using (9)-(11), which are a set of LTP differential equations
in the time domain, the LTP model of the MrEPLL can be
obtained as depicted in Fig. 3(a). Note that the only difference
of this model compared to the EPLL LTP model, which is
shown in Fig. 3(b) [17], lies in the parts marked with green
color. These parts are the result of linearizing the double-
frequency terms (green-color terms) in Fig. 2.

To evaluate the accuracy of the obtained LTP model, a time-
domain comparison between the MrEPLL and its LTP model
as shown in Fig. 4 is carried out. The comparison is conducted
in the Matlab/Simulink. The control parameters of the MrE-
PLL and its LTP model are considered as kp = kv = 444 and
ki = 49348 [17]. A small voltage sag test is considered for
the comparison here. The result of this test can be observed
in Fig. 5. As shown, the prediction of the LTP model is well-
matched to the actual results. Note that changing the type of

∆ ˙̂ω =
≈ ki

2Vn
(1−∆V̂1

Vn
)³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

ki

2(Vn +∆V̂1) [
≈Vn(∆θ1−∆θ̂1)³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(Vn +∆V1) sin(∆θ1 −∆θ̂1)+

≈−Vn(∆θ1−∆θ̂1) cos(2θn)−(∆V1−∆V̂1) sin(2θn)³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(Vn +∆V̂1) sin(2θn + 2∆θ̂1) − (Vn +∆V1) sin(2θn +∆θ1 +∆θ̂1) ]

≈ ki
2
[(1 − cos(2θn))

∆θe³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(∆θ1 −∆θ̂1)− sin(2θn)
∆Ve³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(∆V1 −∆V̂1) /Vn] (9)
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Fig. 2. More-stable EPLL (MsEPLL).

paper. An analytic linear time-periodic (LTP) model for the
MsEPLL is then obtained, and its stability is investigated. It
will be shown that the MsEPLL has a more decent stability
margin compared to the EPLL. It will also be demonstrated
that the MsEPLL, contrary to the EPLL, is unconditionally
stable in the positive parameter space from a small-signal point
of view.

II. MSEPLL

Assume that the single-phase input signal of the EPLL is
as (1), where V1 and θ1 are the amplitude and phase angle of
this signal.

v(t) = V1 cos(θ1) (1)

In this case, the governing nonlinear differential equations
(GNDEs) of the EPLL can be simply obtained from Fig. 1
as

˙̂ω = ∆ ˙̂ω = ki

2V̂1

[V1 sin(θ1 − θ̂1)
+V̂1 sin (2θ̂1))) −V1 sin (θ1 + θ̂1)))] (2)

˙̂
θ1 = ω̂ + kp

ki
∆ ˙̂ω (3)

˙̂
V 1 = kv

2
[V1 cos(θ1 − θ̂1) − V̂1

+V1 cos (θ1 + θ̂1))) − V̂1 cos (2θ̂1)))]. (4)

The highlighted terms in (2) and (4) are some double-
frequency terms, which are equal to zero in the steady state,
i.e., when V1 = V̂1 and θ1 = θ̂1. However, the dynamics of these
terms adversely affect the EPLL small-signal stability [17].
This fact suggests that the EPLL small-signal stability may be
improved by mitigating the adverse effects of these terms. To
this end, as shown in Fig. 2, adding some double-frequency

terms to the EPLL structure is suggested. This modification
has been inspired from the adaptive notch filter structure [18].
Note that the signal ∆ ˙̂ω and, therefore, the highlighted double-
frequency terms in the MsEPLL structure, are equal to zero
in the steady state.2 Note also that the double-frequency term
1
2

sin(2θ̂1) in Fig. 2 is equal to sin(θ̂1) cos(θ̂1). Therefore,
implementing the MsEPLL does not involve the calculation
of additional trigonometric functions.

A. LTP Modeling

Considering (1) as the input signal of the MsEPLL in Fig.
2, its GNDEs can be obtained as

∆ ˙̂ω = ki

2V̂1

[V1 sin(θ1 − θ̂1) + V̂1 sin(2θ̂1) − V1 sin(θ1 + θ̂1)] (5)

˙̂
θ1 = ω̂ + kp

ki
∆ ˙̂ω+ 1

2ω̂
sin (2θ̂1)))∆ ˙̂ω (6)

˙̂
V 1 = kv

2
[V1 cos(θ1 − θ̂1) − V̂1 + V1 cos(θ1 + θ̂1) − V̂1 cos(2θ̂1)]

+ V̂1

ω̂
sin2(((θ̂1)))∆ ˙̂ω. (7)

Considering the definitions made in (8), in which each param-
eter is defined as a nominal value (indicated by the subscript
n) plus a small perturbation (indicated by ∆), (5) can be
linearized as shown in (9) at the bottom of the page.

V1 = Vn +∆V1, θ1 = θn +∆θ1, ω = ωn +∆ω

V̂1 = Vn +∆V̂1, θ̂1 = θn +∆θ̂1, ω̂ = ωn +∆ω̂
(8)

Note that θn = ∫ ωndt =ωnt + ϕn. Without loss of generality,
ϕn = 0 is assumed in this paper.

In a similar manner, one can obtain (10) and (11) by
substituting (8) into (6) and (7) and linearizing them.

∆
˙̂
θ1 ≈ ∆ω̂ + kp

ki
∆ ˙̂ω + 1

2ωn
sin(2θn)∆ ˙̂ω (10)

∆
˙̂
V 1 ≈ kv

2
[{1 + cos(2θn)}∆Ve − Vn sin(2θn)∆θe]

+Vn
ωn

1 − cos(2θn)
2

∆ ˙̂ω (11)

Using (9)-(11), which are a set of LTP differential equations
in the time domain, the LTP model of the MsEPLL can be
obtained as depicted in Fig. 3(a). Note that the only difference

2A hidden assumption here is that the single-phase input signal is without
harmonics. Note that in the presence of harmonics, the signal ∆ ˙̂ω may contain
some oscillatory ripples depending on the EPLL bandwidth.

∆ ˙̂ω =
≈ ki

2Vn
(1−∆V̂1

Vn
)³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

ki

2(Vn +∆V̂1) [
≈Vn(∆θ1−∆θ̂1)³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(Vn +∆V1) sin(∆θ1 −∆θ̂1)+

≈−Vn(∆θ1−∆θ̂1) cos(2θn)−(∆V1−∆V̂1) sin(2θn)³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(Vn +∆V̂1) sin(2θn + 2∆θ̂1) − (Vn +∆V1) sin(2θn +∆θ1 +∆θ̂1) ]

≈ ki
2
[(1 − cos(2θn))

∆θe³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(∆θ1 −∆θ̂1)− sin(2θn)
∆Ve³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(∆V1 −∆V̂1) /Vn] (9)
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Fig. 3. (a) LTP model of the MrEPLL. (b) LTP model of the EPLL.
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the test (for example, considering a phase jump instead of the
voltage sag) does not considerably affect the accuracy of the
LTP model. However, the magnitude of the disturbance may
have a considerable impact on accuracy. For example, if a 0.5-
p.u. voltage sag instead of the 0.1-p.u. voltage sag is applied,
the model demonstrates a reduced accuracy. The reason is that
obtaining the LTP model of the MrEPLL (or, generally, any
nonlinear system) involves assuming small-signal perturba-
tions around its working points/trajectories. Applying a large-
signal disturbance contradicts this assumption and, therefore,
causes some inaccuracies.

B. Open-Loop Harmonic Transfer Function (HTF)

To facilitate the understanding of the procedure for obtain-
ing the open-loop HTF of the MrEPLL, consider the signal y1

in Fig. 3(a). In the time domain, this signal is equal to

y1(t) = (1 + cos(2θn))∆Ve(t) − Vn sin(2θn)∆θe(t). (12)

Replacing the trigonometric functions in (12) by their equiv-
alent expressions in terms of exponential, i.e., cos(2θn) =
0.5(ejωpt + e−jωpt) and sin(2θn) = −j0.5(ejωpt − e−jωpt),
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Fig. 5. Accuracy assessment of the LTP model of the MrEPLL under 0.1-p.u.
voltage sag test.

where ωp = 2ωn, and applying the Laplace transform results
in

y1(s) = ∆Ve(s) + 1

2
∆Ve(s − jωp) + 1

2
∆Ve(s + jωp)

−Vn [ j
2

∆θe(s + jωp) − j
2

∆θe(s − jωp)] . (13)

Substituting s by s+jmωp (m ∈ Z) in (13) and arranging the
resulting equations in a matrix form gives (14) at the bottom
of the next page. This matrix equation, which is of infinite
dimension, is the HTF of (12). Considering the above way of
formulation, one can easily obtain the open-loop HTF of the
MrEPLL as (15) at the bottom of the next page. Note that
some terms of (15) have been already described in (14). The
remaining terms are described in (16).

Following a similar procedure as above, the open-loop HTF
of the EPLL may also be obtained from its LTP model (Fig.
3(b)) as shown in (17) at the bottom of the next page.

III. COMPARISON OF EPLL AND MREPLL

A. Stability Region

Transfer functionGhtf
ol,MrEPLL(s) =

K³¹¹¹¹¹¹¹·¹¹¹¹¹¹µ(kp/2)Lhtf
ol,MrEPLL(s) in

(15), as mentioned before, is the open-loop HTF of the MrE-
PLL. According to the Generalized LTP Nyqusit stability crite-
rion, the small-signal stability of the MrEPLL can be assessed
by obtaining the open-loop eigenloci of Lhtf

ol,MrEPLL(s) for s
belonging to a strip defined by −jωp/2 < Im(s) < jωp/2 and
counting the number of encirclement of the point −1/K +j0.3

3Lhtf
ol,MrEPLL(s) is of infinite dimension. Therefore, a truncated version of

it should be considered for the stability analysis.
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Fig. 3. (a) LTP model of the MsEPLL. (b) LTP model of the EPLL.
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Fig. 3. (a) LTP model of the MrEPLL. (b) LTP model of the EPLL.
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the test (for example, considering a phase jump instead of the
voltage sag) does not considerably affect the accuracy of the
LTP model. However, the magnitude of the disturbance may
have a considerable impact on accuracy. For example, if a 0.5-
p.u. voltage sag instead of the 0.1-p.u. voltage sag is applied,
the model demonstrates a reduced accuracy. The reason is that
obtaining the LTP model of the MrEPLL (or, generally, any
nonlinear system) involves assuming small-signal perturba-
tions around its working points/trajectories. Applying a large-
signal disturbance contradicts this assumption and, therefore,
causes some inaccuracies.

B. Open-Loop Harmonic Transfer Function (HTF)

To facilitate the understanding of the procedure for obtain-
ing the open-loop HTF of the MrEPLL, consider the signal y1

in Fig. 3(a). In the time domain, this signal is equal to

y1(t) = (1 + cos(2θn))∆Ve(t) − Vn sin(2θn)∆θe(t). (12)

Replacing the trigonometric functions in (12) by their equiv-
alent expressions in terms of exponential, i.e., cos(2θn) =
0.5(ejωpt + e−jωpt) and sin(2θn) = −j0.5(ejωpt − e−jωpt),
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Fig. 5. Accuracy assessment of the LTP model of the MrEPLL under 0.1-p.u.
voltage sag test.

where ωp = 2ωn, and applying the Laplace transform results
in

y1(s) = ∆Ve(s) + 1

2
∆Ve(s − jωp) + 1

2
∆Ve(s + jωp)

−Vn [ j
2

∆θe(s + jωp) − j
2

∆θe(s − jωp)] . (13)

Substituting s by s+jmωp (m ∈ Z) in (13) and arranging the
resulting equations in a matrix form gives (14) at the bottom
of the next page. This matrix equation, which is of infinite
dimension, is the HTF of (12). Considering the above way of
formulation, one can easily obtain the open-loop HTF of the
MrEPLL as (15) at the bottom of the next page. Note that
some terms of (15) have been already described in (14). The
remaining terms are described in (16).

Following a similar procedure as above, the open-loop HTF
of the EPLL may also be obtained from its LTP model (Fig.
3(b)) as shown in (17) at the bottom of the next page.

III. COMPARISON OF EPLL AND MREPLL

A. Stability Region

Transfer functionGhtf
ol,MrEPLL(s) =

K³¹¹¹¹¹¹¹·¹¹¹¹¹¹µ(kp/2)Lhtf
ol,MrEPLL(s) in

(15), as mentioned before, is the open-loop HTF of the MrE-
PLL. According to the Generalized LTP Nyqusit stability crite-
rion, the small-signal stability of the MrEPLL can be assessed
by obtaining the open-loop eigenloci of Lhtf

ol,MrEPLL(s) for s
belonging to a strip defined by −jωp/2 < Im(s) < jωp/2 and
counting the number of encirclement of the point −1/K +j0.3

3Lhtf
ol,MrEPLL(s) is of infinite dimension. Therefore, a truncated version of

it should be considered for the stability analysis.
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Fig. 4. Model verification procedure.

of this model compared to the EPLL LTP model, which is
shown in Fig. 3(b) [17], lies in the parts marked with green
color. These parts are the result of linearizing the double-
frequency terms (green-color terms) in Fig. 2.

To evaluate the accuracy of the obtained LTP model, a time-
domain comparison between the MsEPLL and its LTP model
as shown in Fig. 4 is carried out. The comparison is con-
ducted in the Matlab/Simulink. The control parameters of the
MsEPLL and its LTP model are considered as kp = kv = 444
and ki = 49348 [17]. A small voltage sag test and a small
phase jump test are considered for the comparison here. The
results of these tests can be observed in Fig. 5. As shown, the
predictions of the LTP model are closely matched to the actual
results. Note that changing the type of the test (for example,
considering a frequency jump instead of the voltage sag or
phase jump) does not considerably affect the accuracy of the
LTP model. However, the magnitude of the disturbance may
have a considerable impact on accuracy. For example, if a 0.5-
p.u. voltage sag instead of the 0.1-p.u. voltage sag is applied,
the model demonstrates a reduced accuracy. The reason is that
obtaining the LTP model of the MsEPLL (or, generally, any
nonlinear system) involves assuming small-signal perturba-
tions around its working points/trajectories. Applying a large-
signal disturbance contradicts this assumption and, therefore,
causes some inaccuracies.
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the test (for example, considering a phase jump instead of the
voltage sag) does not considerably affect the accuracy of the
LTP model. However, the magnitude of the disturbance may
have a considerable impact on accuracy. For example, if a 0.5-
p.u. voltage sag instead of the 0.1-p.u. voltage sag is applied,
the model demonstrates a reduced accuracy. The reason is that
obtaining the LTP model of the MrEPLL (or, generally, any
nonlinear system) involves assuming small-signal perturba-
tions around its working points/trajectories. Applying a large-
signal disturbance contradicts this assumption and, therefore,
causes some inaccuracies.

B. Open-Loop Harmonic Transfer Function (HTF)

To facilitate the understanding of the procedure for obtain-
ing the open-loop HTF of the MrEPLL, consider the signal y1

in Fig. 3(a). In the time domain, this signal is equal to

y1(t) = (1 + cos(2θn))∆Ve(t) − Vn sin(2θn)∆θe(t). (12)

Replacing the trigonometric functions in (12) by their equiv-
alent expressions in terms of exponential, i.e., cos(2θn) =
0.5(ejωpt + e−jωpt) and sin(2θn) = −j0.5(ejωpt − e−jωpt),
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Fig. 5. Accuracy assessment of the LTP model of the MrEPLL under 0.1-p.u.
voltage sag test.

where ωp = 2ωn, and applying the Laplace transform results
in

y1(s) = ∆Ve(s) + 1

2
∆Ve(s − jωp) + 1

2
∆Ve(s + jωp)

−Vn [ j
2

∆θe(s + jωp) − j
2

∆θe(s − jωp)] . (13)

Substituting s by s+jmωp (m ∈ Z) in (13) and arranging the
resulting equations in a matrix form gives (14) at the bottom
of the next page. This matrix equation, which is of infinite
dimension, is the HTF of (12). Considering the above way of
formulation, one can easily obtain the open-loop HTF of the
MrEPLL as (15) at the bottom of the next page. Note that
some terms of (15) have been already described in (14). The
remaining terms are described in (16).

Following a similar procedure as above, the open-loop HTF
of the EPLL may also be obtained from its LTP model (Fig.
3(b)) as shown in (17) at the bottom of the next page.

III. COMPARISON OF EPLL AND MREPLL

A. Stability Region

Transfer functionGhtf
ol,MrEPLL(s) =

K³¹¹¹¹¹¹¹·¹¹¹¹¹¹µ(kp/2)Lhtf
ol,MrEPLL(s) in

(15), as mentioned before, is the open-loop HTF of the MrE-
PLL. According to the Generalized LTP Nyqusit stability crite-
rion, the small-signal stability of the MrEPLL can be assessed
by obtaining the open-loop eigenloci of Lhtf

ol,MrEPLL(s) for s
belonging to a strip defined by −jωp/2 < Im(s) < jωp/2 and
counting the number of encirclement of the point −1/K +j0.3

3Lhtf
ol,MrEPLL(s) is of infinite dimension. Therefore, a truncated version of

it should be considered for the stability analysis.
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Fig. 5. Accuracy assessment of the LTP model of the MsEPLL. (a) 0.1-p.u.
voltage sag test. (b) 10○ phase jump test.

B. Open-Loop Harmonic Transfer Function (HTF)

To facilitate the understanding of the procedure for obtain-
ing the open-loop HTF of the MsEPLL, consider the signal
y1 in Fig. 3(a). In the time domain, this signal is equal to

y1(t) = (1 + cos(2θn))∆Ve(t) − Vn sin(2θn)∆θe(t). (12)

Replacing the trigonometric functions in (12) by their equiv-
alent expressions in terms of exponential, i.e., cos(2θn) =
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0.5(ejωpt + e−jωpt) and sin(2θn) = −j0.5(ejωpt − e−jωpt),
where ωp = 2ωn, and applying the Laplace transform results
in

y1(s) = ∆Ve(s) + 1

2
∆Ve(s − jωp) + 1

2
∆Ve(s + jωp)

−Vn [ j
2

∆θe(s + jωp) − j
2

∆θe(s − jωp)] . (13)

Substituting s by s+jmωp (m ∈ Z) in (13) and arranging the
resulting equations in a matrix form gives (14) at the bottom of
the page. This matrix equation, which is of infinite dimension,
is the HTF of (12). Considering the above way of formulation,
one can easily obtain the open-loop HTF of the MsEPLL as
(15). Note that some terms of (15) have been already described
in (14). The remaining terms are described in (16).

Following a similar procedure as above, the open-loop HTF
of the EPLL may also be obtained from its LTP model (Fig.
3(b)) as shown in (17).

III. COMPARISON OF EPLL AND MSEPLL

A. Stability Region

Transfer function Ghtf
ol,MsEPLL(s) =

K³¹¹¹¹¹¹¹·¹¹¹¹¹¹µ(kp/2)Lhtf
ol,MsEPLL(s) in

(15), as mentioned before, is the open-loop HTF of the MsE-
PLL. According to the Generalized LTP Nyqusit stability crite-
rion, the small-signal stability of the MsEPLL can be assessed
by obtaining the open-loop eigenloci of Lhtf

ol,MsEPLL(s) for s
belonging to a strip defined by −jωp/2 < Im(s) < jωp/2 and
counting the number of encirclement of the point −1/K +j0.3

3Lhtf
ol,MsEPLL(s) is of infinite dimension. Therefore, a truncated version of

it should be considered for the stability analysis.

Fig. 6 shows the eigenloci of the transfer matrix
Lhtf
ol,MsEPLL(s) for different value of γ, which is the only

control parameter in this transfer matrix. It is observed
that by increasing the value of γ, an eigenvalue curve of
Lhtf
ol,MsEPLL(s) gets closer to the negative real axis. However,

regardless of the value of γ, it does not intersect the negative
real axis and, therefore, cannot encircle the point −1/K+j0 for
positive K. Considering that Lhtf

ol,MsEPLL(s) has no unstable
pole, it can be concluded that the MsEPLL is stable for positive
K = kp/2 and, therefore, positive kp. The same observation
and stability conclusion can be made for any other value of γ.
It means that the MsEPLL is stable in the positive parameter
space, i.e., kp > 0 and ki > 0, from a small-signal point of
view.

For the case of the EPLL, however, the situation is different
[17]. This fact can be better visualized in Fig. 7, which shows
the eigenloci of the transfer matrix Lhtf

ol,EPLL(s) for different
value of γ. For instance, in Fig. 7(a), which corresponds to
γ = 50, an eigenvalue curve of Lhtf

ol,EPLL(s) intersects the
negative real axis at −5.08e−4. According to the Generalized
LTP Nyqusit stability criterion, it means that the EPLL,
which its open-loop HTF is Ghtf

ol,EPLL(s) = KLhtf
ol,EPLL(s),

remains stable if K = kp
2
< 1

5.08e−4
= 1968.5 or, equivalently,

kp < 3937. Similarly, according to Fig. 7(b) and (c), which are
corresponding to γ = 500 and γ = 1000, respectively, it can be
concluded that the EPLL remains stable if K = kp

2
< 1

6.56e−3
=

152.4 and K = kp
2
< 1

0.0148
= 67.6 or, equivalently, kp < 304.9

and kp < 135.1. It is clear that by increasing the value of γ,
the stable range of kp is decreased. Fig. 8, which shows the
stability region of the EPLL when γ = ki/kp changes in the
range of 50 to 1000, helps to better visualize this fact.
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(a) (b) (c)

Fig. 6. Eigenloci of the transfer matrix Lhtf
ol,MrEPLL(s) for different value of γ. (a) γ = 50. (b) γ = 500. (c) γ = 1000.

(a) (b) (c)

Fig. 7. Eigenloci of the transfer matrix Lhtf
ol,EPLL(s) for different value of γ. (a) γ = 50. (b) γ = 500. (c) γ = 1000.
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Fig. 6 shows the eigenloci of the transfer matrix
Lhtf
ol,MrEPLL(s) for different value of γ, which is the only

control parameter in this transfer matrix. It is observed

that by increasing the value of γ, an eigenvalue curve of
Lhtf
ol,MrEPLL(s) gets closer to the negative real axis. However,

regardless of the value of γ, it does not intersect the negative
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ol,EPLL(s) for different value of γ. (a) γ = 50. (b) γ = 500. (c) γ = 1000.
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⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎡⎢⎢⎢⎢⎢⎢⎣
⋮

∆Ve(s − jωp)
∆Ve(s)

∆Ve(s + jωp)⋮
⎤⎥⎥⎥⎥⎥⎥⎦´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∆V htf
e (s)

−Vn
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⋱ ⋱ ⋱⋱ 0 j
2

0⋱ − j
2

0 j
2
⋱

0 − j
2

0 ⋱⋱ ⋱ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ahtf

sin

⎡⎢⎢⎢⎢⎢⎢⎣
⋮

∆θe(s − jωp)
∆θe(s)

∆θe(s + jωp)⋮
⎤⎥⎥⎥⎥⎥⎥⎦´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∆θhtf
e (s)

(14)

[∆V̂ htf
1 (s)

∆θ̂htf
1 (s) ] = kp2

K̄

[Ghtf
a (s) Vnγ

2ωn
Ghtf
a (s) (I −Ahtf

cos)
0 γ

2ωn
Ghtf
a (s)Ahtf

sin +Ghtf
b (s)] [I +A

htf
cos −VnAhtf

sin− 1
Vn
Ahtf

sin I −Ahtf
cos

]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Lhtf
ol,MrEPLL(s)

[∆V htf
e (s)

∆θhtf
e (s) ] (15)

γ = ki
kp
,Ga(s) = 1

s
,Gb(s) = s+γ

s2

Ghtf
a (s) = diag (⋯,Ga(s − jωp),Ga(s),Ga(s + jωp),⋯)

Ghtf
b (s) = diag (⋯,Gb(s − jωp),Gb(s),Gb(s + jωp),⋯)

∆θ̂htf
1 (s) = [⋯,∆θ̂1(s − jωp),∆θ̂1(s),∆θ̂1(s + jωp),⋯]T

∆V̂ htf
1 (s) = [⋯,∆V̂1(s − jωp),∆V̂1(s),∆V̂1(s + jωp),⋯]T

(16)

[∆V̂ htf
1 (s)

∆θ̂htf
1 (s) ] = kp2

K̄

[Ghtf
a (s) (I +Ahtf

cos) −VnGhtf
a (s)Ahtf

sin− 1
Vn
Ghtf
b (s)Ahtf

sin Ghtf
b (s) (I −Ahtf

cos)]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Lhtf

ol,EPLL(s)
[∆V htf

e (s)
∆θhtf

e (s) ] (17)

Fig. 6 shows the eigenloci of the transfer matrix
Lhtf
ol,MrEPLL(s) for different value of γ, which is the only

control parameter in this transfer matrix. It is observed

that by increasing the value of γ, an eigenvalue curve of
Lhtf
ol,MrEPLL(s) gets closer to the negative real axis. However,

regardless of the value of γ, it does not intersect the negative
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Fig. 7. Eigenloci of the transfer matrix Lhtf
ol,EPLL(s) for different value of γ. (a) γ = 50. (b) γ = 500. (c) γ = 1000.
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real axis and, therefore, cannot encircle the point −1/K+j0 for
positive K. Considering that Lhtf

ol,MrEPLL(s) has no unstable
pole, it can be concluded that the MrEPLL is stable for positive
K = kp/2 and, therefore, positive kp. The same observation
and stability conclusion can be made for any other value of γ.
It means that the MrEPLL is stable in the positive parameter
space, i.e., kp > 0 and ki > 0, from a small-signal point of
view.

For the case of the EPLL, however, the situation is different
[17]. This fact can be better visualized in Fig. 7, which shows
the eigenloci of the transfer matrix Lhtf

ol,EPLL(s) for different
value of γ. For instance, in Fig. 7(a), which corresponds to
γ = 50, an eigenvalue curve of Lhtf

ol,EPLL(s) intersects the
negative real axis at −5.08e−4. According to the Generalized
LTP Nyqusit stability criterion, it means that the EPLL,
which its open-loop HTF is Ghtf

ol,EPLL(s) = KLhtf
ol,EPLL(s),

remains stable if K = kp
2
< 1

5.08e−4
= 1968.5 or, equivalently,

kp < 3937. Similarly, according to Fig. 7(b) and (c), which are
corresponding to γ = 500 and γ = 1000, respectively, it can be
concluded that the EPLL remains stable if K = kp

2
< 1

6.56e−3
=

152.4 and K = kp
2
< 1

0.0148
= 67.6 or, equivalently, kp < 304.9

and kp < 135.1. It is clear that by increasing the value of γ,
the stable range of kp is decreased. Fig. 8, which shows the
stability region of the EPLL when γ = ki/kp changes in the
range of 50 to 1000, helps to better visualize this fact.

In summary, the MrEPLL is unconditionally stable in the
positive parameter space from a small-signal point of view.
The EPLL, however, has a considerable unstable zone.

B. Stability Margin

The main aim of this section is to conduct a comparison
between the EPLL and MrEPLL from the stability margin
point of view. Three case studies, which are corresponding to
three sets of control parameters, are considered.4

1) Case 1: In this case, the control parameters of the EPLL
and MrEPLL are considered as kp = kv = 444 and γ = ki/kp =
111.14 [17]. This set of parameters, which is marked by a

4Note for reviewers: Because of the current Covid-19 situation, our lab
is closed and, therefore, only simulation results are presented in this version.
Hopefully, if the paper received a revision, and reviewers deemed it necessary,
we will provide experimental results and include them in the revised version.

green star in Fig. 8, is in the stable zone of the EPLL and
away from its stability border.

Fig. 9(a) shows the open-loop LTP Nyquist plots of the
EPLL and MrEPLL for Case 1. Note that the open-loop
eigenloci of both the EPLL and MrEPLL intersect the lower
half of the unit circle and also the real axis at two points. It
means that they have two eigenvalue phase margins (PMs) and
two eigenvalue gain margins (GMs). The eigenvalue PMs and
GMs of the EPLL and MrEPLL, which indicate how close
their open-loop eigenloci are to the critical point −1+ j0, can
be observed above Fig. 9(a). It is observed that the MrEPLL
has a rather more decent stability margin than the EPLL.

To verify the above observation, a comparison between the
EPLL and MrEPLL in response to a phase jump test is carried
out. The results of this test can be seen in Fig. 10(a). It can be
observed that the MrEPLL has a lower overshoot in estimating
the phase, frequency, and amplitude and, therefore, has a more
damped dynamic response. For instance, the overshoot of the
MrEPLL in estimating the phase angle is 38%, while it is
around 50% for the case of the EPLL. Note that the PM of
a control system and its overshoot in response to a step input
are closely related to each other; A lower PM always results
in a larger overshoot [18].

In this stage, it can be interesting to see whether the
enhanced stability margin of the MrEPLL compared to the
EPLL causes a negative effect on its filtering capability. To
this end, a comparison between the EPLL and MrEPLL under
a harmonically-distorted grid condition is carried out. In this
test, the grid voltage contains harmonics of order 3, 5, 7, and
9. The magnitudes of these components are 0.05, 0.04, 0.03,
and 0.02 p.u., respectively, which results in a total harmonic
distortion (THD) around 7.3%. The result of this test can
be observed in Fig. 10(b). No large difference between the
filtering capability of the EPLL and MrEPLL is observed.

2) Case 2: In this case, the control parameters of the EPLL
and MrEPLL are considered kp = kv = 550 and γ = ki/kp =
300. This set of parameters, which is marked by a × character
in Fig. 8, is in the stable zone of the EPLL, but close to the
stability border.

Fig. 9(b) shows the open-loop LTP Nyquist plots of the
EPLL and MrEPLL and highlights their eigenvalue PMs and
GMs. It is observed that an open-lop eigenvalue curve of the
EPLL is very close to the critical point −1+j0 and, therefore,
causes a low PM and GM. Such a low PM is expected to
cause a highly oscillatory dynamic response for the EPLL.
The MrEPLL, however, has a quite decent stability margin.

To verify the above observation, the comparison of the
EPLL and MrEPLL in response to 10○ phase jump test is
repeated. As expected, the transient response of the EPLL is
highly oscillatory. The MrEPLL, however, has a much more
damped dynamic response and reaches the steady state in a
short while after the phase jump.

3) Case 3: In this case, kp = kv = 600 and γ = ki/kp = 300
are selected. This set of parameters, which is marked by a red
diamond in Fig. 8, is in the unstable zone of the EPLL, but
close to the stability border.

Fig. 9(c) shows the open-loop LTP Nyquist plots of the
EPLL and MrEPLL. As shown, an eigenvalue curve of the

Page 5 of 7 IEEE-TPEL

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Fig. 8. Small-signal stability region of the EPLL.

In summary, the MsEPLL is unconditionally stable in the
positive parameter space from a small-signal point of view.
The EPLL, however, has a considerable unstable zone.

B. Stability Margin

The main aim of this section is to conduct a comparison
between the EPLL and MsEPLL from the stability margin
point of view. Three case studies, which are corresponding to
three sets of control parameters, are considered.

1) Case 1: In this case, the control parameters of the EPLL
and MsEPLL are considered as kp = kv = 444 and γ = ki/kp =
111.14 [17]. This set of parameters, which is marked with a

green star in Fig. 8, is in the stable zone of the EPLL and
away from its stability border.

Fig. 9(a) shows the open-loop LTP Nyquist plots of the
EPLL and MsEPLL for Case 1. Note that the open-loop
eigenloci of both the EPLL and MsEPLL intersect the lower
half of the unit circle and also the real axis at two points. It
means that they have two eigenvalue phase margins (PMs) and
two eigenvalue gain margins (GMs). The eigenvalue PMs and
GMs of the EPLL and MsEPLL, which indicate how close
their open-loop eigenloci are to the critical point −1+ j0, can
be observed above Fig. 9(a). It is observed that the MsEPLL
has a rather more decent stability margin than the EPLL.

To verify the above observation, a comparison between the
EPLL and MsEPLL in response to a phase jump test is carried
out. The results of this test can be seen in Fig. 10. It can be
observed that the MsEPLL has a lower overshoot in estimating
the phase, frequency, and amplitude and, therefore, has a more
damped dynamic response. For instance, the overshoot of the
MsEPLL in estimating the phase angle is 38%, while it is
around 50% for the case of the EPLL. Note that the PM of
a control system and its overshoot in response to a step input
are closely related to each other; A lower PM always results
in a larger overshoot [19].

2) Case 2: In this case, the control parameters of the EPLL
and MsEPLL are considered kp = kv = 550 and γ = ki/kp =
300. This set of parameters, which is marked with a × character
in Fig. 8, is in the stable zone of the EPLL, but close to the
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Fig. 9. Open-loop LTP Nyquist plots of the EPLL and MrEPLL for different sets of control parameters. (a) Case 1. (b) Case 2. (c) Case 3. In all cases, to
avoid confusion, only one eigenvalue PM of the EPLL and MrEPLL is highlighted.
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Fig. 10. A comparison between the EPLL and MrEPLL under Case 1 (kp = kv = 444 and γ = ki/kp = 111.14). (a) 10○ phase jump test. (b) harmonically-
distorted grid condition.

EPLL encircles the critical point −1 + j0, which makes it
unstable. The MrEPLL, however, has a decent stability margin.

To verify the above observations, the control parameters of
the EPLL and MrEPLL are initially set to the values selected
in Section III-B2 (Case 2). Suddenly, the control parameters
are changed to the values selected in this section (Case 3).
At the same time, an extremely small phase jump (1○ phase
jump) is also applied. The result of this test can be observed
12. As expected the EPLL becomes unstable. The MrEPLL,
however, remains stable.

By obtaining its open-loop eigenloci or using time-domain
simulation results, it can be shown that the MrEPLL is stable

at any point in the unstable zone of the EPLL in Fig. 8.

IV. CONCLUSIONS

Improving the stability properties of the EPLL as a versatile
signal processing tool in different engineering applications
was the main motivation of this paper. To this end, a so-
called MrEPLL was presented. By deriving an LTP model
for the MrEPLL and obtaining its open-loop HTF, it was
demonstrated that the MrEPLL (contrary to the conventional
EPLL) is unconditionally stable in the positive parameter space
from a small-signal point of view. It was also demonstrated
that the MrEPLL always has a more decent stability margin
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Fig. 9. Open-loop LTP Nyquist plots of the EPLL and MsEPLL for different sets of control parameters. (a) Case 1. (b) Case 2. (c) Case 3. In all cases, to
avoid confusion, only one eigenvalue PM of the EPLL and MsEPLL is highlighted.
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avoid confusion, only one eigenvalue PM of the EPLL and MrEPLL is highlighted.
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Fig. 10. A comparison between the EPLL and MrEPLL under Case 1 (kp = kv = 444 and γ = ki/kp = 111.14). (a) 10○ phase jump test. (b) harmonically-
distorted grid condition.

EPLL encircles the critical point −1 + j0, which makes it
unstable. The MrEPLL, however, has a decent stability margin.

To verify the above observations, the control parameters of
the EPLL and MrEPLL are initially set to the values selected
in Section III-B2 (Case 2). Suddenly, the control parameters
are changed to the values selected in this section (Case 3).
At the same time, an extremely small phase jump (1○ phase
jump) is also applied. The result of this test can be observed
12. As expected the EPLL becomes unstable. The MrEPLL,
however, remains stable.

By obtaining its open-loop eigenloci or using time-domain
simulation results, it can be shown that the MrEPLL is stable

at any point in the unstable zone of the EPLL in Fig. 8.

IV. CONCLUSIONS

Improving the stability properties of the EPLL as a versatile
signal processing tool in different engineering applications
was the main motivation of this paper. To this end, a so-
called MrEPLL was presented. By deriving an LTP model
for the MrEPLL and obtaining its open-loop HTF, it was
demonstrated that the MrEPLL (contrary to the conventional
EPLL) is unconditionally stable in the positive parameter space
from a small-signal point of view. It was also demonstrated
that the MrEPLL always has a more decent stability margin
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Fig. 10. A comparison between the EPLL and MsEPLL under Case 1 (kp =
kv = 444 and γ = ki/kp = 111.14) and in response to 10○ phase jump test.

stability border.
Fig. 9(b) shows the open-loop LTP Nyquist plots of the

EPLL and MsEPLL and highlights their eigenvalue PMs and
GMs. It is observed that an open-lop eigenvalue curve of the
EPLL is very close to the critical point −1+j0 and, therefore,
causes a low PM and GM. Such a low PM is expected to
cause a highly oscillatory dynamic response for the EPLL.
The MsEPLL, however, has a quite decent stability margin.

To verify the above observation, the comparison of the
EPLL and MsEPLL in response to 10○ phase jump test is
repeated. As expected, the transient response of the EPLL is
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Fig. 12. A comparison between the EPLL and MrEPLL in response to 1○
phase jump. Before the phase jump, the control parameters are set to the
values selected in Section III-B2. At the same moment with the phase jump,
the control parameters are changed to the values selected in Section III-B3.

compared to the conventional EPLL. All these observations
were verified using some numerical tests.
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Fig. 11. A comparison between the EPLL and MsEPLL in response to 10○
phase jump test under Case 2 (kp = kv = 550 and γ = ki/kp = 300).

highly oscillatory. The MsEPLL, however, has a much more
damped dynamic response and reaches the steady state in a
short while after the phase jump.

3) Case 3: In this case, kp = kv = 600 and γ = ki/kp = 300
are selected. This set of parameters, which is marked with a
red diamond in Fig. 8, is in the unstable zone of the EPLL,
but close to the stability border.

Fig. 9(c) shows the open-loop LTP Nyquist plots of the
EPLL and MsEPLL. As shown, an eigenvalue curve of the
EPLL encircles the critical point −1 + j0, which makes it
unstable. The MsEPLL, however, has a decent stability margin.
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Fig. 12. A comparison between the EPLL and MrEPLL in response to 1○
phase jump. Before the phase jump, the control parameters are set to the
values selected in Section III-B2. At the same moment with the phase jump,
the control parameters are changed to the values selected in Section III-B3.

compared to the conventional EPLL. All these observations
were verified using some numerical tests.
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Fig. 12. A comparison between the EPLL and MsEPLL in response to 1○
phase jump. Before the phase jump, the control parameters are set to the
values selected in Section III-B2. At the same moment with the phase jump,
the control parameters are changed to the values selected in Section III-B3.

To verify the above observations, the control parameters of
the EPLL and MsEPLL are initially set to the values selected
in Section III-B2 (Case 2). Suddenly, the control parameters
are changed to the values selected in this section (Case 3).
At the same time, an extremely small phase jump (1○ phase
jump) is also applied. The result of this test can be observed
12. As expected the EPLL becomes unstable. The MsEPLL,
however, remains stable.

By obtaining its open-loop eigenloci or using time-domain
simulation results, it can be shown that the MsEPLL is stable
at any point in the unstable zone of the EPLL in Fig. 8. For
instance, Fig. 13, which shows the time-domain simulation
results of the MsEPLL in response to a large-signal test (60○
phase jump), supports this fact. Note that the selected control
parameters, i.e., kp = kv = 4000 and γ = ki/kp = 1000, are
corresponding to the upper right-hand corner of the positive
parameter space in Fig. 8. Note also that the results of the
EPLL are not shown as it is unstable.

C. Further Investigations

In this section, further comparative investigations between
the EPLL and MsEPLL are conducted. Throughout these
studies, the control parameters of the EPLL and MsEPLL are
set to the same values selected in Section III-B1.

First, it can be interesting to see whether the enhanced
stability margin of the MsEPLL compared to the EPLL causes
a negative effect on its filtering capability. To this end, a com-
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that the results of the EPLL is not shows as it is unstable in this case.
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Fig. 14. Experimental setup.

parison between the EPLL and MsEPLL under a harmonically-
distorted grid condition is carried out. The grid voltage signal
is considered as a sinusoid that has been clipped to 0.8 p.u. at
both the top and bottom. Note that such a signal is correspond-
ing to a total harmonic distortion (THD) approximately equal
to 9%. Both the simulation and experimental results of this
test are presented. The experimental setup can be observed in
Fig. 14. It can be observed in the obtained results (see Fig.
15) that the EPLL and MsEPLL have a comparable filtering
capability. It means that the enhanced stability margin of the
MsEPLL compared to the EPLL does not negatively affect its
filtering ability.

Considering that voltage sags are a common disturbance
in power systems, and V̂1 (which is an estimation of the
grid voltage amplitude) is a key component in realizing the
MsEPLL (see highlighted terms in Fig. 2), a comparison
between the EPLL and MsEPLL under a voltage sag scenario
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Fig. 15. A comparison between the EPLL and MsEPLL under a harmonic-
rich grid condition. (a) Simulation results. (b) Experimental results. Note that
the phase error signal in the experimental results cannot be shown as the
actual phase angle is unknown.

can be interesting. To this end and, at the same time, to highly
excite their nonlinearities, a severe voltage sag (0.8 p.u.) is
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Fig. 16. A comparison between the EPLL and MsEPLL under a 0.8-p.u.
voltage sag. (a) Simulation results. (b) Experimental results. Note that the
phase error signal in the experimental results cannot be shown as the actual
phase angle is unknown.

considered. The simulation and experimental results of this test
can be observed in Fig. 16. As shown, no very large difference
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between the transient behavior of the EPLL and MsEPLL is
observed.

IV. CONCLUSIONS

Improving the stability properties of the EPLL, which is a
versatile signal processing tool in different engineering appli-
cations, was the main motivation of this paper. To this end, a
so-called MsEPLL was presented. By deriving an LTP model
for the MsEPLL and obtaining its open-loop HTF, it was
demonstrated that the MsEPLL (contrary to the conventional
EPLL) is unconditionally stable in the positive parameter space
from a small-signal point of view. It was also demonstrated
that the MsEPLL always has a more decent stability margin
compared to the conventional EPLL. All these observations
were verified using some numerical tests.

In addition to improving the EPLL stability properties, this
paper may contribute towards improving the stability proper-
ties of other single-phase synchronization systems. The reason
is that the EPLL, as shown in [3], has a close relationship
with a large number of single-phase synchronization systems.
Therefore, a similar approach as that presented in this paper
may be used for improving the stability properties of these
single-phase synchronization systems.
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