

Aalborg Universitet

Differential Equivalence for Linear Differential Algebraic Equations

Tognazzi, Stefano; Tribastone, Mirco; Tschaikowski, Max; Vandin, Andrea

Published in:
I E E E Transactions on Automatic Control

DOI (link to publication from Publisher):
10.1109/TAC.2021.3108530

Publication date:
2022

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Tognazzi, S., Tribastone, M., Tschaikowski, M., & Vandin, A. (2022). Differential Equivalence for Linear
Differential Algebraic Equations. I E E E Transactions on Automatic Control, 67(7), 3484 3493.
https://doi.org/10.1109/TAC.2021.3108530

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 24, 2024

https://doi.org/10.1109/TAC.2021.3108530
https://vbn.aau.dk/en/publications/e01f3c12-9df9-4a4a-8018-ad1f635156a8
https://doi.org/10.1109/TAC.2021.3108530

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3108530, IEEE
Transactions on Automatic Control

Differential Equivalence for Linear Differential Algebraic Equations
Stefano Tognazzi1, Mirco Tribastone2, Max Tschaikowski3 and Andrea Vandin4

Abstract—Differential-algebraic equations (DAEs) are a
widespread dynamical model that describes continuously evolv-
ing quantities defined with differential equations, subject to
constraints expressed through algebraic relationships. As such,
DAEs arise in many fields ranging from physics, chemistry, and
engineering. In this paper we focus on linear DAEs, and develop
a theory for their minimization up to an equivalence relation. We
present differential equivalence, which relates DAE variables that
have equal solutions at all time points (thus requiring them to
start with equal initial conditions) and extends the line of research
on bisimulations developed for Markov chains and ordinary
differential equations. We apply our results to the electrical
engineering domain, showing that differential equivalence can
explain invariances in certain networks as well as analyze DAEs
which could not be originally treated due to their size.

I. INTRODUCTION

Differential-algebraic equations (DAEs) are a popular model
of dynamical systems across many branches of science and en-
gineering. They often arise when describing physical quantities
that evolve continuously and deterministically according to an
ordinary differential equation (ODE), together with constraints
that express properties such as conservation of energy. An
example is RLC electric circuits, where components such as
capacitors and inductors are associated with first-order linear
differential equations while the algebraic constraints impose
Kirchhoff’s conservation laws for voltages in closed loops and
currents at each junction [1]. A more general approach that
leads to DAEs as the underlying dynamics is that of bond
graphs (e.g., [2]), a unifying model for networked physical
systems such as electrical, mechanical, and hydraulic networks.

Solving DAEs is difficult [3]. Compared to ODEs, the initial
condition may not be chosen arbitrarily (provided that the
solution exists), but it has to be consistent, i.e., it has to
satisfy the algebraic constraints. This leads to expensive implicit
schemes that require the solution of a system of equations at
each time step, thus motivating a large body of literature on
model reduction techniques for DAEs (cf. [4], [5], [6] and
references therein). Such techniques are appealing for numerical
purposes since they were proven to be effective for reducing
models of real large-scale systems. However, the reduction is
approximate in general and the reduced model may not carry

1 Stefano Tognazzi is with University of Konstanz, Germany:
stefano.tognazzi@uni-konstanz.de

2 Mirco Tribastone is with IMT Lucca, Italy:
mirco.tribastone@imtlucca.it

3 Max Tschaikowski is with Aalborg University, Denmark:
tschaikowski@cs.aau.dk

4 Andrea Vandin is with Sant’Anna School for Advanced
Studies, Pisa, Italy and DTU Technical University of Denmark:
andrea.vandin@santannapisa.it

This work was supported in part by the PRIN project SEDUCE, no.
2017TWRCNB, the Poul Due Jensen Foundation grant no. 883901, and the
DFF RP1 project REDUCTO no. 9040-00224B.

physical intelligibility (because its variables represent a linear
transformation of the original state space). This limits their
use when the modeler strives to gain mechanistic insights from
the model, for example to explain symmetric behavior in a
design [7], [8].

In this paper we present a technique for reducing linear
DAE systems which is both exact and structure-preserving, in
the sense that the reduction is obtained through a quotienting
up to an equivalence that relates variables that have the same
solutions at all time points. Our line of research can be related
to aggregation of Markov chains [9], [10] and differential
equivalence (DE) for ODE systems [11]. The notion of DE
can be naturally extended to linear DAEs by working on
an equivalent linear ODE system into which a linear DAE
system can be transformed (see Section III). Unfortunately,
such a transformation requires the solution of an ill-conditioned
problem [12], [13].

We circumvent this issue by developing in Section IV a
criterion for differential equivalence over the numerical solution
scheme of the DAE system, instead of the DAE system itself.
The idea is to find a numeric DE by relating numerical solutions
of variables that are equal at all steps, through inspection of
the explicit update law of the numerical solution. Using the
popular backward differentiation formulae as the numerical
solver [14], we prove that a numeric DE is a DE of the original
DAE system, independently of the discretization time step used
in the numerical solver. Moreover, we show that computing the
coarsest numeric DE through a partition refinement algorithm
reduces to computing the coarsest DE of a linear ODE system
that is related to the explicit update law of the numerical solver
(hence, it can be computed in polynomial time [15], [16]).

We apply our theory to benchmark DAEs from electric circuit
theory by showing that numeric DE is i) effective in discovering
symmetries in the topology of the electrical networks and ii)
allows one to analyze circuits that would otherwise issue out-
of-memory errors.

In the special case of semi-explicit linear DAE systems
of index one, it is well-known that index reduction can be
accomplished by inverting the matrix describing the algebraic
constraints in question. Unfortunately, matrix inversion may
suffer from numerical errors in case of large-scale systems and
miss symmetries that would be otherwise present. We address
this by presenting a novel sufficient condition for DE that
can be computed efficiently and that does not require matrix
inversion. The scalability of the approach is demonstrated on
large-scale models for which the computation of numeric GE
causes out-of-memory errors. We also perform an empirical
study on the speedup obtainable by combining our approach
with the state-of-the-art modeling language OpenModelica [17]
and demonstrate runtime gains of up to 3 orders of magnitude.

The present work extends [18] by the aforementioned results

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on September 07,2021 at 07:34:00 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3108530, IEEE
Transactions on Automatic Control

for semi-explicit linear DAE systems and the corresponding
experiments, including the empirical study of OpenModelica.
Further, the proofs of all statements are provided.

Paper outline. Section II sets the scene by presenting
background knowledge on DE and linear DAEs. Building on
that, Section III introduces GDE, while Section IV introduces
numeric GDE and an efficient algorithm for its computation.
Instead, Section V devises an efficiently computable sufficient
condition for GDE, while Section VI presents a thorough
evaluation of numeric GDE. To this end, we apply it to
benchmark models from practice, carry out a scalability analysis
of the aforementioned sufficient condition and study the
speedup obtainable by combining our approach with the state-
of-the-art modeling language OpenModelica. After providing
further discussion on related work in Section VII, the paper
concludes in Section VIII.

II. PRELIMINARIES

Notation. The derivative of variable x w.r.t. variable y is
denoted by ∂yx. The set of variables is given by {xi | i ∈ S},
where S is some finite index set; partitions of S are denoted
by H and G. A partition H of S refines a partition G if and
only if each block of H is a subset of some block of G. We
write BA for the set of functions from A to B. Following the
standard notation, C and xT denote the complex numbers and
the transpose of a vector x ∈ CS , respectively; instead, for an
i ∈ S , ei ∈ RS is such that ei(j) = 1 if i = j and 0 otherwise.
For a given function f : A → B and a set C ⊆ A, f(C)
defines the image of f under C, i.e., f(C) = {f(x) | x ∈ C}.
The subspace spanned by the columns of C ∈ RS×S is denoted
by 〈C〉.

Differential Equivalence. The following notion from [11]
is used to study a family of positive forward invariant sets [19].

Definition 1. Fix a linear ODE system ∂tx = Ax + b with
A∈RS×S and b∈RS .1

• For a partition H of S, we define the algebraic variety
UH = {x ∈ RS | xi − xj = 0 for all H ∈ H, i, j ∈ H}.

• A partition H of S is a differential equivalence (DE) if
x(0) ∈ UH and ∂tx = Ax+ b implies x(t) ∈ UH for all
t > 0.

DE enjoys a geometric characterization in terms of positive
forward invariant sets as stated next.

Theorem 1 (Geometric Differential Equivalence). Given an
ODE system ∂tx = Ax + b, a partition H of S is called
geometric differential equivalence (GDE) if A(UH) + b ⊆ UH.
In particular, H is a DE if and only if H is a GDE.

Proof: See [20, Theorem 3] or [19, Section 10].
The notion of DE allows for the following model reduction.

Theorem 2. Given an ODE system ∂tx = Ax + b, let H =
{H1, . . . ,Hm} be a DE partition.
• For H ∈ H, let iH ∈ H be the representative of H and
S0 = {iH | H ∈ H}. Set further eH ∈ RS by eH(i) = 1

1Sometimes, ODE systems of the form ∂tx = Ax+ b are also called affine
or linear nonhomogeneous.

if i ∈ H and zero otherwise. Then, the reduced ODE
system ∂tx̂ = Âx + b̂ is given by Â = SlASr, b̂ = Slb,
where Â ∈ RS0×S0 and b̂ ∈ RS0 and the transformation
matrices Sl ∈ RS0×S , Sr ∈ RS×S0 are defined via Sl =
(eiH1

, . . . , eiHm
)T and Sr = (eH1

, . . . , eHm
).

• The reduced model ∂tx̂ = Âx̂ + b̂ can be computed
in polynomial time. Moreover, for any x(0) ∈ UH, the
solution of ∂tx = Ax + b is uniquely related to the
solution of ∂tx̂ = Âx̂+ b̂ via x̂(0) = Slx(0). In particular,
x̂(t) = Slx(t) and x(t) = Srx̂(t) for all t ≥ 0.

Proof: See [16].
The coarser a GDE partition H is (i.e., the fewer blocks it

has), the smaller is the reduced system induced by H. For a
given partition G, this motivates to ask whether there exists a
coarsest GDE partitionH that refines some arbitrary partition G.
The next result ensures that this is indeed the case. In fact, the
next result states more. By building upon efficient algorithmic
approaches, it states that the coarsest GDE partition exists and
that it can be computed in polynomial time.

Theorem 3. Fix a linear ODE system ∂tx = Ax+ b and let G
be some partition of S . Then, there exists a coarsest GDE H
partition that refines G and it can be computed in polynomial
time (following common terminology, a partition H refines a
partition G when for any block H ∈ H, there is a block G ∈ G
such that H ⊆ G).

Proof: See [16].
For instance, {{1, 2}, {3}} is a GDE for the ODE system

∂tx = Ax, where A is given below. Matrix Â = SlASr
describing the underlying reduced ODE system ∂tx̂ = Âx̂ is
provided as well.

A =

 1 2 5
2 1 5
3 4 7

 , Â =

(
3 5
7 7

)
,

Sl =
(

1 0 0
0 0 1

)
, Sr =

 1 0
1 0
0 1

 .

It can be shown that the coarsest GDE partition that refines
{{1, 2, 3}} is {{1, 2}, {3}}. This trivially implies that the coars-
est GDE partition that refines {{1, 2}, {3}} is {{1, 2}, {3}}
itself. Instead, the coarsest GDE partition that refines, e.g.,
{{1}, {2, 3, }} is the trivial GDE partition {{1}, {2}, {3}} (the
partition consisting of singleton blocks is always a GDE).

Linear DAEs. Systems of linear differential algebraic
equations (DAEs) satisfy the form E∂tx = Ax + b where
E,A ∈ RS×S and b ∈ RS . In case E is invertible, a linear
DAE system can be directly recast into a linear ODE system
via ∂tx = E−1Ax+E−1b. If E is not invertible, however, the
transformation corresponds to the computation of the Kronecker
normal form, an instance of index reduction [14], [21], which
is ill-conditioned in general [13], unless additional assumptions
are imposed [12].

We summarize several facts from the theory of DAEs [14].

Definition 2. A DAE system E∂tx = Ax+ b is called regular
if, for every initial condition x(0) ∈ RS , there exists either a
unique solution or no solution at all.

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on September 07,2021 at 07:34:00 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3108530, IEEE
Transactions on Automatic Control

Theorem 4. A DAE system E∂tx = Ax+ b is regular if and
only if A− λE is invertible for at least one λ ∈ C. The set of
initial conditions for which a regular DAE admits solutions,
D, is an affine subspace of RS . For any regular DAE system
E∂tx = Ax + b, there exist Â ∈ RS×S and b̂ ∈ RS such
that for any x(0) ∈ D, the solutions of ∂tx̂ = Âx̂ + b̂ and
E∂tx = Ax+ b coincide when subject to x(0) = x̂(0).

Proof: See Chapter 2 in [14].
The above results ensure that any linear DAE system E∂tx =

Ax+b can be expressed as a linear ODE system ∂tx = Âx+ b̂.
As mentioned before, the computation of Â, b̂ and the domain
D relies on the Kronecker normal form [12], [13].

Example 1. Consider the DAE system E∂tx = Ax where

E =

 0 0 1
1 0 2
−3 0 −9

 , A =

 −1 0 0
1 −1 0
0 2 −2

 (1)

Then, it can be proven that E∂tx = Ax admits a unique
solution only when x(0) ∈ D = 〈(1, 0, 0)T , (0,−2, 1)T 〉,
where 〈S〉 denotes the vector space spanned by the vectors in
S. Moreover, the corresponding solution satisfies ∂tx = Âx,
where

Â =

 3 ξ 2(ξ + 1)
2 0 0
−1 0 0

 (2)

for any number ξ. Specifically, matrix Â is not unique.

III. DIFFERENTIAL EQUIVALENCE FOR DIFFERENTIAL
ALGEBRAIC EQUATIONS

We start by lifting the notion of DE to linear DAEs.

Definition 3. Let E∂tx = Ax+b be a regular DAE. A partition
H of S is called a DE of E∂tx = Ax + b if UH ∩ D 6= ∅
and, for any initial condition x(0) ∈ UH ∩ D, it holds that
x(t) ∈ UH ∩ D for all t > 0.

In contrast to the ODE case, we now have to account for the
domain D. This is because only initial conditions x(0) from
D induce a unique solution of E∂tx = Ax+ b. Moreover, it
already suffices to ask for x(t) ∈ UH for all t > 0 instead of
x(t) ∈ UH ∩ D for all t > 0. This is because any solution x
of a regular DAE system E∂tx = Ax+ b has to be contained
in D, see Theorem 4.

Example 2. Consider the running example (1) and let
H = {{1, 2}, {3}}. With this, for any initial condition
(2α, 2α,−α) ∈ UH ∩ D = 〈(2, 2,−1)T 〉, the solution of the
DAE system is given by x(t) = e2t(2α, 2α,−α), where D is
as in Example 1. Overall, H is a DE of (1).

Recall that any linear DAE E∂tx = Ax+b can be expressed
in terms of some ODE system ∂tx = Âx+ b̂. Since any such
ODE system is only uniquely determined on the domain D, a
lifting of GDE to DAEs has so to take D into account. The
next example demonstrates this.

Example 3. Consider example (1). From Example 2, we know
that H = {{1, 2}, {3}} is a DE of E∂tx = Ax+ b.

• Then Â(UH) 6⊆ UH if Â is as in (2) with ξ = 0.
• Then Â(UH) ⊆ UH if Â is as in (2) with ξ = −1.

Regardless of the value of ξ in (2), however, it holds true that
Â(UH ∩ D) ⊆ UH.

Motivated by the above example, GDE is lifted to the domain
of DAEs as follows.

Definition 4. Let E∂tx = Ax+ b be a regular DAE and let
∂tx = Âx + b̂ be a corresponding ODE system. We call H
geometric differential equivalence (GDE) of E∂tx = Ax+ b
if Â(UH ∩ D) + b̂ ⊆ UH and UH ∩ D 6= ∅.

The following generalization of Theorem 1 states that GDE
characterizes DE on the domain of DAEs.

Theorem 5. Let E∂tx = Ax+b be a regular DAE and let
∂tx=Âx+b̂ be an underlying ODE system. A partition H is
a DE if and only if it is a GDE.

Proof: Let us assume that H is a GDE, i.e., we have
that Â(UH ∩D) + b̂ ⊆ UH. Thanks to Theorem 4, this implies
Â(UH∩D)+b̂ ⊆ UH∩D. Moreover, it holds that ∂tx = Âx+b̂.
Hence, for any x(0) ∈ UH ∩ D, we conclude that the Euler
method, if applied to ∂tx = Âx+ b̂, yields a numerical solution
that remains in UH ∩ D. By letting the time step of the Euler
method converge to zero, we observe that the same applies
to the true solution x. Let us now assume that H is a DE.
Then, for any x(0) ∈ UH ∩ D, the solution x remains in UH.
Hence, 1

∆t (x(0 + ∆t)− x(0)) ∈ UH for any ∆t > 0 because
UH is a linear subspace. By considering ∆t→ 0 and noting
that x satisfies the ODE system ∂tx = Âx + b̂, we obtain
Â(x(0)) + b̂ ∈ UH.

Note that the constraint UH ∩D 6= ∅ in Definition 4 ensures
that there actually exist initial conditions to which a GDE
partition can be applied.

We proceed by providing the notion of a reduced model
underlying a GDE.

Definition 5. For a regular DAE system E∂tx = Ax + b,
let ∂tx = Âx + b̂ be an underlying ODE system and let
H = {H1, . . . ,Hm} be a DE partition. Let S0, {iH | H ∈ H},
Sl and Sr be as in Theorem 2. Then, the reduced DAE system
E ∂tx = Ax+ b and the reduced ODE system ∂tx = Â x+ b̂
are given by E = SlESr, A = SlASr, b = Slb, Â = SlÂSr,
b̂ = Slb̂ and the reduced domain D = {Slx | x ∈ UH ∩ D}.

The following can be shown.

Theorem 6. Given a regular DAE system E∂tx = Ax+ b and
let ∂tx = Âx+ b̂ be a corresponding ODE system. Then, for a
DE H, the reduced models E ∂tx = Ax+b and ∂tx = Â x+ b̂
can be computed in polynomial time. Moreover, for any x(0) ∈
UH ∩ D, the solution of E∂tx = Ax + b is uniquely related
to the solution of E ∂tx = Ax + b and ∂tx = Â x + b̂ via
x(0) = Slx(0). In particular, x(t) = Slx(t) and x(t) = Srx(t)
for all t ≥ 0.

Proof: Follows immediately from the definition of DE
and Theorem 4.

Example 4. From Example 2, we know that H={H1, H2}=
{{1, 2}, {3}} is a DE of (1). Together with iH1

= 1 and

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on September 07,2021 at 07:34:00 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3108530, IEEE
Transactions on Automatic Control

iH2
= 3, we conclude that

E =
(0 1
−3 −9

)
A =

(−1 0
2 −2

)
Â =

(3 2
−1 0

)
Sl =

(1 0 0
0 0 1

)
Sr =

 1 0
1 0
0 1

 D = 〈
(

2

−1

)
〉

Since the solution of the running example is given by x(t) =
e2t(2α, 2α,−α)T for all (2α, 2α,−α)T ∈ UH ∩ D, it holds
that Slx(t) = e2t(2α,−α)T = x(t). A direct computation
confirms that x solves E x = Ax and x = Â x for all x(0) =
(2α,−α)T ∈ D. Moreover, x(t) = Srx(t) for all x(0) ∈ D.

IV. NUMERIC GEOMETRIC DIFFERENTIAL EQUIVALENCE

While GDE extends to linear DAEs, finding GDE partitions
hinges on the availability of D. Since the computation of D
relies on the solution of an ill-conditioned problem [13], this
section introduces numeric GDE.

Backward Differentiation Formulae. A popular family
of numerical schemes to solve linear DAE systems are the
so-called backward differential formulae (BDF) [22]. The
general idea is, as in the case of all numerical schemes, to
approximate the true solution of a given linear DAE system
E∂tx = Ax+ b on an interval [0;T] by a sequence of points
x[0], x[1], . . . , x[M] such that x[i] approximates x(ti), where
∆t = T/M and ti = i∆t for all 0 ≤ i ≤M .

The next result [14, Theorem 5.24] ensures 1) that the BDF
solution (x[i])i is well-defined if the time step ∆t is sufficiently
small and; 2) that the numeric solution (x[i])i converges to
the solution of E∂tx = Ax+ b if x(0) = x[0] ∈ D.

Theorem 7. Given a regular linear DAE system E∂tx=Ax+b
and an initial condition x(0) ∈ RS , fix 1 ≤ k ≤ 6 and set
x[−6] = x[−5] = . . . = x[−1] = 0. Then, there exist ∆t0 > 0
and C > 0 that do not depend on ∆t > 0 and which satisfy
the following.
1) For all 0<∆t≤∆t0 there exists a unique x[i] solving the

linear system of equations

(A− α(k,0)
∆t E)x[i] = E

(k∑
l=1

α(k,l)
∆t x[i− l]

)
− b

for all 1 ≤ i ≤ M , where the k-BDF coefficients α(k, ·)
are given in [14];

2) If x is the solution subject to a consistent initial condition
x(0) ∈ D, we have max0≤i≤M‖x(ti) − x[i]‖∞ ≤ C∆tk

for all 0 < ∆t ≤ ∆t0.

Proof: See Theorem 5.24 in [14].

Remark 1. The BDF schemes apply an auto-correction in
the case an inconsistent initial condition x(0) is provided. In
particular, if x(0) /∈ D and ν ≥ 1 denotes the DAE index [14]
of E∂tx = Ax+ b, Theorem 7 remains true and additionally
it holds [14, Remark 5.25] that x[i] ∈ D for all ν ≤ i ≤M .

Armed with the BDF scheme and the convergence result
of Theorem 7, we introduce numeric DE and numeric GDE.
Intuitively, numeric DE and numeric GDE take the roles of
DE and GDE, respectively, if ∆t is sufficiently small. This is

because the ground truth given in terms of the DAE system
E∂tx = Ax + b and the underlying analytical solution x is
replaced, in practical computations, with the BDF scheme of
Theorem 7 and the numerical solution (x[i])i.

Definition 6. Fix a regular DAE system E∂tx = Ax + b,
time step ∆t > 0 and 1 ≤ k ≤ 6 such that (A− α(k,0)

∆t E) is
invertible, set Φ(x) := (A−α(k,0)

∆t E)−1Ex−(A−α(k,0)
∆t E)−1b.

A partition H is called
• numeric DE if, for any x[0] ∈ UH, it holds that x[i] ∈ UH

for all 1 ≤ i ≤M ;
• numeric GDE if Φ(UH) ⊆ UH.

Note that x[i] = Φ(
∑k
l=1

α(k,l)
∆t x[i− l]) for all 1 ≤ i ≤M .

As for the algebraic notions, the following result can be stated
for the numeric ones.

Theorem 8. Given a regular DAE system E∂tx = Ax + b,
1 ≤ k ≤ 6 and ∆t > 0 such that (A− α(k,0)

∆t E) is invertible,
let Φ be as in Definition 6.
• H is numeric DE if and only if H is numeric GDE.
• For any partition G, the coarsest numeric GDE H which

refines G is the coarsest DE of ∂tx = Φ(x) that refines
G; H can be computed in polynomial time.

Proof: Let H be a numeric GDE. Since UH is a linear
space, this yields Φ(

∑k
l=1

α(k,l)
∆t x[i− l]) = x[i] ∈ UH if x[i−

1], . . . , x[i− k] ∈ UH. Recalling that x[−6] = . . . = x[−1] =
0 ∈ UH by definition, we infer that x[i] ∈ UH for all 1 ≤ i ≤
M when x[0] ∈ UH. Conversely, if H is a numeric DE, we
have Φ(α(k,1)

∆t x[0]) = Φ(
∑k
l=1

α(k,l)
∆t x[i− l]) = x[1] ∈ UH for

any x[0] ∈ UH because x[−6] = . . . = x[−1] = 0. Since this
holds for any x[0] ∈ UH and UH is a linear subspace, this
implies that Φ(x[0]) ∈ UH for any x[0] ∈ UH. The second
statement follows from Theorem 1 and 3.

Theorem 8 states that a numeric GDE of the DAE system
E∂tx = Ax + b is a DE of the ODE system ∂tx = Φ(x).
Hence, for any partition G of S, we can use the polynomial
time algorithm of Theorem 3 to compute the coarsest numeric
GDE that refines G.

Numeric GDE allows to speed up numerical computations
by invoking the reduced numerical mapping.

Definition 7. Given a regular DAE system E∂tx = Ax + b,
1 ≤ k ≤ 6 and ∆t > 0 such that (A− α(k,0)

∆t E) is invertible,
assume that H is a numeric GDE. Then, the underlying reduced
mapping Φ : RS0 → RS0 is defined via

x 7→
(
Sl(A− α(k,0)

∆t E)−1ESr
)
x− Sl(A− α(k,0)

∆t E)−1b

with Sl, Sr and S0 as in Definition 5.

Similarly to GDE and DE, the following can be shown.

Theorem 9. Given a regular DAE system E∂tx = Ax + b,
1 ≤ k ≤ 6, ∆t > 0 such that (A− α(k,0)

∆t E) is invertible and
some partition G, the coarsest numeric GDE H that refines
G and the underlying reduced numerical mapping Φ from
Definition 7 can be computed in polynomial time. Moreover,
with x[i] = Φ(

∑k
l=1

α(k,l)
∆t x[i− l]), it holds that x[i] = Srx[i]

for all 1 ≤ i ≤M , provided that x[0] = Srx[0].

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on September 07,2021 at 07:34:00 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3108530, IEEE
Transactions on Automatic Control

Proof: Follows from the definition of numeric GDE and
by noting that matrix inversion can be done in cubic time.

On the Relation of Numeric and Algebraic Notions.
Despite numeric DE and numeric GDE provide an efficient
model reduction technique for practical computations, it is
interesting to ask whether the convergence of the BDF scheme
toward the true analytical solution, ensured by Theorem 7, can
be used to tie GDE to numeric GDE.

The next result is well-known.

Lemma 1. Assume that Xλ ∈ RS×S invertible for all λ0 ≤
λ <∞ and that λ 7→ X−1

λ is differentiable on [λ0;∞). Then
∂λ(X−1

λ) = −X−1
λ · ∂λXλ ·X−1

λ for all λ0 ≤ λ <∞.

Proof: Please refer to introductional texts in linear algebra.

With Lemma 1, the following pivotal auxiliary statement
can be established.

Proposition 1. Given a regular DAE system E∂tx = Ax+ b
and 1 ≤ k ≤ 6, let ∆t0 > 0 be such that (A − α(k,0)

∆t E) is
invertible for all 0<∆t≤∆t0. Then, for all λ≥λ0 = α(k,0)

∆t0
,

the matrices Rλ=(A−λE)−1E and Sλ=(A−λE)−1 are well-
defined and characterized by the Riccati matrix differential
equations ∂λRλ = R2

λ and ∂λSλ = RλSλ on [λ0;∞).

Proof: Since (A−λE)−1 is invertible for all λ0 ≤ λ <∞,
Cramer’s rule ensures that λ 7→ (A− λE)−1 is well-defined
and differentiable on [λ0;∞). With this, Lemma 1 implies that

∂λ
(
(A− λE)−1E

)
= ∂λ

(
(A− λE)−1

)
E

=
(
− (A− λE)−1 · ∂λ(A− λE) · (A− λE)−1

)
E

=
(

(A− λE)−1 · E · (A− λE)−1
)
E

=
(
(A− λE)−1E

)2
,

thus showing ∂λRλ = R2
λ. Since the above calculation implies

also ∂λSλ = RλSλ, the theorem of Picard-Lindelöf completes
the proof.

With this, we are in a position to show the following.

Proposition 2. Given a regular DAE system E∂tx = Ax+ b
and 1 ≤ k ≤ 6, let ∆t0 > 0 be such that (A − α(k,0)

∆t E) is
invertible for all 0 < ∆t ≤ ∆t0. Then, H is numeric GDE for
all 0 < ∆t ≤ ∆t0 whenever H is numeric GDE for ∆t0.

Proof: By assumption, it holds that (A− λ0E)−1b ∈ UH
and Rλ0

(UH) ⊆ UH for λ0 = α(k,0)
∆t0

, where Rλ := (A −
λE)−1E is well-defined for all λ ≥ λ0, see Proposition 1.
With this, we fix an f : RS×S → RS×S such that

a) f(R) = R2 for any R such that ‖R‖ ≤ 2C, where
C := maxλ0≤λ≤λ1

‖Rλ‖ for some arbitrary λ1 > λ0;
b) f is globally Lipschitz continuous on RS×S .

The existence of such an f follows from Kirszbraun’s theorem
(or via smooth cutoff functions). Thanks to b), this allows us
to infer that the Euler method, if applied to ∂λRλ = f(Rλ)
on [λ0;λ1], converges for vanishing step size τ (recall that
standard convergence results of Euler’s method require global
rather than local Lipschitzianity of the drift [22]). In particular,
for sufficiently small τ > 0, we obtain ‖R[i]‖ ≤ 3

2C, where

R[0], R[1], . . . , R[κ] denotes the underlying Euler sequence
with κ = d(λ1−λ0)/τe. Together with property a), this implies
that f(R[i]) = R[i]2 for all 1 ≤ i ≤ κ which, in turn, yields
R[i](UH) ⊆ UH for all 1 ≤ i ≤ κ by a proof by induction
over i and the fact that Rλ0

(UH) ⊆ UH. A combination of all
observations then yields Rλ(UH) ⊆ UH for all λ ∈ [λ0;λ1].

We are left with showing that (A − λE)−1b ∈ UH for all
λ0 ≤ λ ≤ λ1. To this end, we define Sλ := (A − λE)−1

as in Proposition 1 and recall that ∂λSλ = RλSλ. The Euler
sequence underlying this ordinary matrix differential equation
is given, for any time step τ > 0, by S[i+1] = S[i]+τR[i]S[i]
where S[0] = Sλ0 and R[i] = Rτi+λ0 . Starting with the
assumption that S[0]b ∈ UH, a proof by induction over i
ensures that S[i]b ∈ UH for all i ≥ 0 because Rλ(UH) ⊆ UH
for all λ0 ≤ λ ≤ λ1. By replacing the original drift by some
function g that satisfies similar properties to a) and b) from
above, one can infer that Sλb ∈ UH for all λ ≥ λ0.

Proposition 2 states that the variable equivalences identified
in the BDF scheme by a numeric GDE do not depend on the
chosen time step ∆t. Armed with this, the next major result
establishes that numeric GDE implies GDE.

Theorem 10. Given a regular DAE system E∂tx = Ax + b
and 1 ≤ k ≤ 6, let ∆t0 > 0 be such that (A − α(k,0)

∆t E) is
invertible for all 0 < ∆t ≤ ∆t0. If H is a numeric GDE, then
it is also a GDE.

Proof: Assume that H is a numeric GDE and let 1 ≤ ν ≤
|S| be the DAE index of E∂tx = Ax + b. Then, by noting
that x[i] = Φ(

∑k
l=1

α(k,l)
∆t x[i− l]), Remark 1 and x[0] ∈ UH

yield x[ν] ∈ UH ∩ D, thus showing UH ∩ D 6= ∅. Moreover,
thanks to Theorem 8 and Proposition 2, it holds that H is a
numeric DE for all 0 < ∆t < ∆t0. By letting ∆t → 0, this
implies that H is a DE. With this, Theorem 5 yields the claim.

Since ∆t0 is bounded by the inverse of the modulus of the
largest generalized eigenvalue of the matrix pencil A−λE, one
can bound ∆t0 using the generalized Schur decomposition [23].

Remark 2. Numeric GDE is only a sufficient condition for
GDE in general. Indeed, for (1), the matrix (A − λE) is
invertible if and only if λ2 − 3λ+ 2 6= 0. Hence, (A− λE) is
invertible for all λ ≥ 3, meaning that λ0 and ∆t0 can be set to
3 and 1

3 , respectively. A computation of (A− 1
3E)−1E reveals

that the coarsest numeric GDE for ∆t0 (hence, by Theorem 2,
for all 0 < ∆t ≤ ∆t0) is the trivial partition {{1}, {2}, {3}}.
At the same time, Example 2 establishes that {{1, 2}, {3}} is
a GDE of (1).

Even though we expect numeric GDE to coincide with GDE
for most practical models, the above remark demonstrates that
numeric GDE is in general stricter than GDE. At the same
time, the coarsest numeric GDE partition can be computed
in polynomial time, while GDE relies on the solution of an
ill-conditioned problem [13].

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on September 07,2021 at 07:34:00 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3108530, IEEE
Transactions on Automatic Control

V. NUMERIC GEOMETRIC DIFFERENTIAL EQUIVALENCE
AND SEMI-EXPLICITNESS

We next assume that we are given a linear DAE system in
semi-explicit form, i.e., we consider

∂tx = A

(
x

y

)
+ b 0 =

(
B1 B2

)(x
y

)
+ c, (3)

where x and y are conveniently called state and algebraic
variables, respectively. Additionally, we assume that the system
has DAE index one. In this case, it is known [24, Section 2.2]
that B2 is invertible and that the index reduction of (3) is given
by the linear ODE system

∂tx = A

(
x

y

)
+ b ∂ty = −B−1

2 B1

[
A

(
x

y

)
+ b
]

(4)

That is, if (x(0), y(0)) is a consistent initial condition of (3),
then the corresponding solution of (3) can be obtained by
solving (4).

The above discussion shows that the coarsest DE of (4)
gives rise to a DE of (3). It has to be noted, however, that
the computation of (4) relies on matrix inversion, which may
suffer from truncation errors in the case of large-scale systems.

In order to establish our next result, the following auxiliary
statement will be needed.

Lemma 2. Fix an invertible matrix B. Then, H is a DE of
∂tx = Bx if and only if H is a DE of ∂tx = B−1x.

Proof: It suffices to show only one direction, so let us
assume that H is a DE of ∂tx = Bx. For every H ∈ H, let
eH denote the vector with eH(i) = 1 if i ∈ H and eH(i) = 0
otherwise. Since H is a DE, it holds that yH := BeH ∈ UH
for all H ∈ H. The regularity of B, instead, ensures that
{yH | H ∈ H} is a basis of UH. Using this and the fact that
B−1yH = eH ∈ UH for all H ∈ H, we infer that B−1(UH) ⊆
UH, thus showing the claim.

Armed with Lemma 2, we next provide a result that allows
one to obtain a DE of (4) without having to invert a matrix.

Theorem 11. Consider the auxiliary ODE system

∂tx = A

(
x

y

)
+ b ∂ty =

(
B1 B2

)(x
y

)
(5)

which arises from (3) by dropping c and by replacing the
algebraic constraint with a differential constraint. If H =
(H′,G′) is a DE of (5) such that H′ and G′ are partitions of
state and algebraic variables, respectively, then H is also a
DE of (4).

Proof: Let us assume that H = (H′,G′) is a DE partition
of (5), where H′ and G′ are partitions on the index sets of x
and y, respectively. By considering the functions

x 7→
(
B1 B2

)(x
0

)
, y 7→

(
B1 B2

)(0
y

)
,

we infer that B1(UH′) ⊆ UH′ and B2(UG′) ⊆ UG′ . Hence,
Lemma 2 yields B−1

2 (UG′) ⊆ UG′ . This, in turn, allows us
to conclude that B−1

2 B1

[
A(UH′ ,UG′) + b

]
⊆ UG′ because

A(UH′ ,UG′) + b ⊆ UH′ by assumption. Overall, we obtain(
A+ b, B−1

2 B1A+B−1
2 B1b

)
(UH′ ,UG′) ⊆ (UH′ ,UG′),

thus showing the claim. We end the proof by pointing out that
the result can be also shown in the case when c is not dropped.
This may, however, reduce the applicability. Indeed, in the case
one requires that (x, y) ∈ (UH′ ,UG′) implies(

B1 B2

)(x
y

)
+ c ∈ UG′ ,

picking (x, y) = 0 ensures that c ∈ UG′ . Hence, not dropping
c is equivalent to imposing the additional requirement c ∈ UG′

in the premise of the theorem.
Theorem 11 provides an efficient way of finding DE parti-

tions of large-scale DAE systems. In particular, the underlying
computational steps do not involve inversion of matrices or any
other numerical operations that may suffer from non-negligible
truncation errors. At the same time, the coarsest DE of (4)
must not be necessarily the coarsest DE of (3). To see this,
consider the trivial DAE system ∂tx1 = x1, yI = x1. Then, it
holds true that {{1, I}} is a DE which cannot be found using
Theorem 11 because the latter requires the state variables and
algebraic variables to be put into different blocks. This being
said, we wish to stress that the separation of state and algebraic
variables cannot be dropped in Theorem 11. Indeed, {{1, I}}
cannot be a DE of the DAE system

∂tx1 = 2x1 − yI 0 = 2x1 − yI (6)

because x1 6≡ yI. At the same time, {{1, I}} is a DE of the
ODE system arising from (6) by replacing 0 = 2x1 − yI with
∂tyI = 2x1 − yI.

VI. EVALUATION

We next evaluate our results on benchmark models from
the electric engineering literature. Section VI-A focuses on
numeric GDE as implemented in a Matlab prototype, while
Section VI-B focuses on semi-explicit DAEs to which the
results from Section V apply. For the latter, we use the DE for
ODE systems [16] as implemented in the tool ERODE [27],
and report the analysis speedups for OpenModelica [17], to
which ERODE offers exporting capabilities.

A. Evaluation of Numeric GDE

In this section we compare the analysis runtime of the
original models against those of the reduced ones (including
minimization runtime) using the ode15s solver of Matlab,
capable of processing linear (and nonlinear) DAE systems with
DAE index at most one. Experiments have been performed on
a 2.6 GHz Intel running Matlab 2016b; the Matlab command
ode15s has been invoked with standard settings.

a) H-tree model: We start by considering a power
distribution network from [25] which has been adapted by
removing inductances. The network has a hierarchical tree
topology (H-tree), depicted in Figure 1. At each depth i, all
branches have equal resistances and capacitances Ri and Ci,
respectively, whose values are given in Table II. For depths
i ≤ 4, the values were taken from [25], while values for depths
i ≥ 5 have been extrapolated. An H-tree model of depth N
results in a DAE system with 2N + 1 variables, given by the

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on September 07,2021 at 07:34:00 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3108530, IEEE
Transactions on Automatic Control

Vin

R0

C0

R1

R1

C1

C1

R2

R2

R2

R2

C2

C2

C2

C2 . . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Fig. 1: H-tree network adapted from [25].

Model Num. GDE

N |S| Sol. (s) |H| Red. (s) Red. & Sol. (s)

3 9 8.86.E–2 5 4.38E–3 7.38E–3
4 17 1.44E–1 6 9.83E–3 1.56E–2
5 33 1.61E–1 7 1.15E–2 2.02E–2
6 65 1.72E–1 8 2.86E–2 3.46E–2
7 129 1.77E–1 9 3.70E–2 4.56E–2
8 257 2.39E–1 10 5.50E–2 6.61E–2
9 513 2.86E–1 11 8.19E–2 9.84E–2

10 1 025 1.04E+0 12 1.98E–1 2.24E–1
11 2 049 5.05E+0 13 5.40E–1 5.88E–1
12 4 097 3.77E+1 14 9.41E–1 1.03E+0
13 8 193 6.27E+2 15 2.07E+0 2.23E+0
14 16 385 O.M. 16 5.03E+0 5.35E+0

TABLE I: Numerical results for H-trees.

i 2 3 4 5 6 7 8 9 10 11 12 13 14

Ri 6.37 12.75 25.50 50 100 200 400 800 1 600 3 200 6 400 12 800 25 600
Ci 0.300 0.130 0.140 0.070 0.070 0.035 0.035 0.018 0.018 0.009 0.009 0.005 0.005

TABLE II: Resistances and capacitances of the H-tree networks at depths i.

Vin

1 2

3

1

2

3

Fig. 2: Mesh networks adapted from [26].

Model Num. GDE

N |S| |H| Red. (s)

4 106 56 2.48E–1
5 157 82 3.06E–1
6 218 113 3.51E–1
7 289 149 6.41E–1
8 370 190 1.05E+0
9 461 236 1.70E+0

10 561 287 4.26E+0

TABLE III: Numerical results for meshes.

voltages across each capacitor and by the voltage Vin, which
is assumed to have constant value of 5.0V.

Table I considers H-tree networks with increasing depth N
(column |S| gives the state space size). Numeric GDE confirms
the symmetry discussed in [25], namely that the voltages across
the capacitors of same depth are equal at all time points,
resulting in N + 2 partition blocks (column |H|).

Column Sol. provides the computation time of the original
model via ode15s in the case where the time horizon was
set to 2 time units. Column Red. provides the time necessary
for the computation of the coarsest numeric GDE. We can
see that this is always at least one order of magnitude smaller
than the time to analyze the original model. To allow for a
fair comparison, column Red. & Sol. provides the cumulative
runtime for the computation of the coarsest numeric GDE
and the solution of the underlying reduced DAE system via
ode15s. Numeric GDE always led to better performance. In
addition, it allowed us to analyze the case N = 14, whose full
model could not be solved by ode15s due to out of memory
errors.

b) Mesh networks: Figure 2 shows a square transmission
line mesh, adapted from [26], where each line has N = 5
segments of 3 resistor/capacitor series each.2 The variables of

2Every capacitor is connected to the ground, which is not explicitly drawn
to avoid clutter.

the DAE system represent the voltages at each capacitor.
Table III considers seven variants of the network for N

ranging from 4 to 10 for resistances and capacitances equal
to 1 and 0.1, respectively. Columns |S|, |H|, and Red. are
as in Table I. We do not provide the runtime for analyzing
the original and reduced DAEs because both the original and
the reduced DAE systems had index higher than one, which
cannot be handled by ode15s. We wish to point out, however,
that the reduced numerical model from Theorem 9 could be,
in principle, derived. It is interesting to note that, for each N ,
the size of the largest numeric GDE is N + 1 + (|S| −N)/2.
This has a geometric interpretation in that it relates (voltages
of) capacitor nodes placed symmetrically with respect to the
main diagonal of the network (Figure 2 marks nodes within
representative equivalence classes with the same number).

c) Further benchmarks: Table IV considers further bench-
marks of real-world electrical circuits available at https://sites.
google.com/site/rommes/software. All models are given in the
form E∂tx(t) = Ax(t) + Bu(t) where x(t) ∈ Rn is the
system’s state, u(t) represents some m-dimensional input and
B ∈ Rn×m. In order to obtain symmetries that are valid for
any input signal u, we started from an input partition G whose
blocks of variables are affected in the same way by the input,
that is, two variable indices i, j were put into the same block
of G if and only if eTi (Bu) = eTj (Bu) for all u (which is

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on September 07,2021 at 07:34:00 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3108530, IEEE
Transactions on Automatic Control

Model Num. GDE

Name Ref. |S| |H| Red. (s)

bips98 606 [28] 7 135 5 656 5.29E+3
bips98 1142 [28] 9 735 7 225 1.08E+4
bips98 1450 [28] 11 305 8 115 1.73E+4
nopss 11k [29] 11 685 8 015 1.95E+4
mimo46x46 system [30] 13 250 9 132 5.35E+4
bips07 1693 [28] 13 275 9 073 7.59E+4
mimo8x8 system [31] 13 309 9 070 5.14E+4

TABLE IV: Further circuit benchmarks: numerical results.

equivalent to saying that i, j were put into the same block if
and only if eTi (Bek) = eTj (Bek) for all 1 ≤ k ≤ m). For the
experiments, we considered the input b = B1, with 1 being
the m-dimensional vector whose coordinates are all one. This
led to systems of the form E∂tx = Ax+ b.

As in the case of Table III, we only provide column Red. in
Table IV because the original and reduced DAE systems had
index greater than one. We remark that all instances could be
reduced to about 70% of their original size.

B. Evaluation of semi-explicit Models

In this section we study the applicability of the results from
Section V to the benchmarks in Section VI-A, and report on
possible speedup of OpenModelica.

a) Evaluation of semi-explicit Models: We start comput-
ing numeric GDE using DE for a subset of the benchmarks from
Section VI-A given as semi-explicit DAEs, with a focus on the
speed up in the reduction obtained thanks to Theorem 11. In
particular, since all considered models are linear, for computing
DE partitions we can use the polynomial time and space
algorithms from [16], [15].

The results in Section V can be applied to the H-tree
networks because their underlying DAEs have index one. Here
we consider H-tree instances of depth up to 19, starting from
the largest network considered in Section VI-A, depth 14.
The values of the resistances and capacitances for the new
models, reported in Table V, have been extrapolated as done
in Section VI-A. Table VI compares the reduction runtimes of
numeric GDE and DE. Differently from Table I, we do not
provide information about analysis runtime of the original and
reduced DAEs. Focusing on the H-tree network of depth 14,
we can see that the computed numeric GDE and DE coincide,
with the latter computation being two orders of magnitude
faster. More importantly, when computing numeric GDE for
larger models our prototypal implementation fails due to out
of memory problems. Instead, as studied in [15], DE can be
applied to models with millions of variables using the tool
ERODE [27] (in case of ODE systems with polynomial right-
hand sides which cover in particular linear drifts). Here we are
interested in identifying the largest model instance for which
DE has a runtime similar to the of numeric GDE for the one
of depth 14. From the last row of Table VI we can see that
we have to consider an H-tree instance of depth 19 in order to
get a runtime of about 5 seconds for DE.

We end the section by pointing out that Theorem 11 cannot
be applied to the other benchmark models of Section VI-A

i 15 16 17 18 19

Ri 51 200 102 400 204 800 409 600 819 200
Ci 0.0025 0.0025 0.0012 0.0012 0.0006

TABLE V: Specifications for larger H-tree networks.

Model Num. GDE DE

N |S| |H| Time (s) |H| Time (s)

14 16 385 16 5.03E+0 16 8.70E–2
15 32 769 —–O.M.—– 17 1.91E–2
16 65 537 —–O.M.—– 18 4.12E–1
17 131 073 —–O.M.—– 19 8.98E–1
18 262 145 —–O.M.—– 20 1.09E+0
19 524 289 —–O.M.—– 21 5.23E+0

TABLE VI: DE and Num. GDE runtimes on H-trees.

because those are instances of high index problems, i.e., they
have DAE indices higher than one.

b) Speedup of OpenModelica: State-of-the-art modeling
languages for complex systems such as OpenModelica perform
a number of preprocessing steps aimed at simplifying a model
by means of index reduction [17]. Here we illustrate that, in
general, DE constraints xi = xj (where H ∈ H and i, j ∈ H)
are not discovered by the preprocessing of OpenModelica and,
if added manually, can be used to speed it up. To this end, we
analyze models from the largest family considered in this paper:
the H-tree instances. In particular, we consider those with at
least 50 variables, and compute GDEs using DE, therefore
exploiting the results from Section V. The results are provided
in Table VII, where the blocks of columns Original Model,
DE Constraints and DE-Reduced Model refer, respectively,
to the original models, to the models enriched with the DE
constraints of the computed DE, and to the DE-reduced models.
For each block, we provide a column showing the runtime of
each corresponding internal phase reported by OpenModelica.
In particular, the first phase (backend) is the one devoted
to model optimization. For all experiments we provide the
average runtime over 5 independent runs with time horizon 1,
using OpenModelica’s default index reduction method dynamic
state selection [32]3. We used OpenModelica v1.14.1 (64-bit)
running on a Win10 (64-bit) machine with a 2.8 GHz Intel
CPU and 8GB of RAM.

The largest model that OpenModelica could handle within a
time out of 4 hours that we imposed is the one with depth 14.
Instead, it was not even possible to load models with depths
above 16 due to memory constraints. We note that for models
up to depth 10, the overall runtime (Total) is governed by
the compile phase, while the runtime of the backend phase
grows significantly for larger models, and becomes dominant
for depths 13 and 14. Interestingly, the simulation phase is the
one with lowest runtime for models of depth greater than 9.

Considering the models enriched with DE constraints, we can
see that OpenModelica was able to handle also the models that
previously failed due to time out. Indeed, the DE constraints

3In particular, we used the following OpenModelica settings for parameter
simulationOptions: startTime = 0.0, stopTime = 1.0, numberOfIntervals =
500, tolerance = 1e-006, method = ’dassl’, options = ”, outputFormat = ’mat’,
variableFilter = ’.*’, cflags = ”, simflags = ”

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on September 07,2021 at 07:34:00 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3108530, IEEE
Transactions on Automatic Control

Original Model DE Constraints DE-Reduced Model

N Backend Compile Simulation Total Backend Compile Simulation Total Backend Compile Simulation Total

6 3.19E–2 6.57E+0 5.65E–1 7.73E+0 7.58E–3 6.66E+0 5.50E–1 7.84E+0 5.42E–3 6.57E+0 5.74E–1 7.90E+0
7 1.23E–1 6.73E+0 5.99E–1 8.06E+0 1.05E–2 6.61E+0 5.60E–1 7.73E+0 6.50E–3 6.55E+0 5.63E–1 7.62E+0
8 1.48E–1 6.87E+0 6.07E–1 8.26E+0 1.48E–2 6.62E+0 5.70E–1 7.75E+0 6.80E–3 6.71E+0 5.73E–1 8.03E+0
9 5.63E–1 7.83E+0 6.15E–1 9.86E+0 2.58E–2 6.58E+0 5.70E–1 7.75E+0 7.92E–3 6.57E+0 5.52E–1 7.64E+0

10 1.94E+0 1.09E+1 8.77E–1 1.49E+1 4.33E–2 6.73E+0 5.70E–1 7.95E+0 7.98E–3 6.61E+0 5.49E–1 7.80E+0
11 1.31E+1 2.44E+1 1.53E+0 4.08E+1 1.42E–1 6.64E+0 6.30E–1 8.14E+0 9.90E–3 6.56E+0 5.66E–1 7.71E+0
12 9.80E+1 5.28E+1 3.24E+0 1.57E+2 1.96E–1 6.63E+0 6.40E–1 8.19E+0 9.54E–3 6.56E+0 5.47E–1 7.68E+0
13 8.45E+2 1.68E+2 1.21E+1 1.03E+3 3.23E–1 6.65E+0 7.00E–1 8.86E+0 1.03E–2 6.56E+0 5.39E–1 7.67E+0
14 8.12E+3 6.34E+2 1.12E+2 8.88E+3 7.36E–1 6.56E+0 8.50E–1 1.00E+1 1.07E–2 6.57E+0 5.47E–1 7.75E+0
15 ———————- Time Out ———————- 1.67E+0 6.66E+0 1.12E+0 1.22E+1 1.23E–2 6.58E+0 5.80E–1 7.69E+0
16 ———————- Time Out ———————- 3.52E+0 6.66E+0 1.72E+0 1.77E+1 1.22E–2 6.62E+0 5.84E–1 7.84E+0
17 —————— Out of Memory —————— —————— Out of Memory —————— 1.25E–2 6.58E+0 5.61E–1 7.72E+0
18 —————— Out of Memory —————— —————— Out of Memory —————— 1.30E–2 6.61E+0 5.33E–1 7.73E+0
19 —————— Out of Memory —————— —————— Out of Memory —————— 1.43E–2 6.59E+0 5.55E–1 7.72E+0

TABLE VII: Numerical results of H-trees for OpenModelica. All runtimes are seconds. The DE runtime for models with
N ≥ 14 can be found in Table VI, while DE runtimes for smaller models are in the order of few milliseconds.

synthesized by DE allow for much faster analysis, leading
to a runtime 3 orders of magnitude smaller for the model
with depth 14. We can see that all three phases of backend,
compilation and simulation greatly took advantage by the
addition of the DE constraints. In particular, the runtime of the
backend phase grows slowly with the model size, while those
of compilation and simulation remain essentially constant. This
can be explained by the fact that the backend phase is able to
reduce the model to the size of the computed DE partition (i+2
for models of depth i, see Tables I, and VI). This, however,
does not help analyzing models of depth greater than 16 whose
loading still fails due to out of memory errors.

Finally, all DE-reduced models could be analyzed in essen-
tially constant time (at most 8 seconds). Despite averaging
the analysis over 5 runs, the runtime is not monotonically
increasing with the model size. This is due to the quite small
and similar size of the obtained reduced models.

VII. FURTHER DISCUSSION

In [33], the author proposes a technique for the minimization
of polynomial ODE systems in the spirit of DE but which does
not apply to DAE systems. Instead, the recent work [34] extends
classic bisimulation relations for linear systems [35], [36], [37]
to linear DAE systems. While similar in style, [34] is not
comparable to DE. This is because [34] cannot be used to
show that certain variables enjoy identical solutions at all time
points; conversely, unlike [34], DE cannot be used to show
that a linear observation map (i.e., y = Cx for some matrix
C) coincides with the solution of the reduced system. The
symmetry property underlying DE can be aligned to Φ-related
vector fields [38]. However, DE imposes constraints on initial
conditions and establish a reduction of a system instead of
relating two given systems, see Section VII.

The idea of obtaining symmetries of a dynamical system by
studying symmetries of its numerical approximation is related
to geometric numerical integration. There, one studies which
symmetries are preserved by numerical schemes. If applied to
ODE systems, for instance, Runge-Kutta schemes are known
to preserve linear invariants [39, Section IV.1]. However, the
results do not carry over to DAE systems in general. Indeed,

the implicit Euler scheme for DAE systems does not preserve
linear invariants in general, as will be shown later, cf. Remark 2.
A known class of DAE systems whose solutions are known
to preserve certain invariants are, for instance, constrained
mechanical systems [39, Section VII.1].

Since GDE is an extension of DE, we next relate DE
and bisimulation [35], [36], [37]. Essentially, DE provides
a reduction of a single system, while bisimulation relates two
given systems. These two notions can be compared when
the observation maps are not restricted to linear functions.
In this case, the original system and its DE reduction can
be shown to be bisimilar. For instance, {{1, 2}} is a DE
partition of ẋ1 = x1, ẋ2 = x2 because x1(t) = x2(t) for
all t > 0 if x1(0) = x2(0). The corresponding DE reduction
from Definition 5 is ẋ1 = x1. By fixing the quotient system
ẏ1 = y1 and the observation maps (x1, x2) 7→ x1, y1 7→ y1, it
can be shown that B = {((x1, x2), y1) | x1 = x2 = y1} is a
bisimulation. However, for this comparison to be made, one
needs the appropriate observation maps, which are induced by
the DE reduction. Further, the coarsest DE reduction can be
computed in polynomial time for nonlinear ODE systems [16].

VIII. CONCLUSION

This paper introduces geometric differential equivalence
(GDE), a notion for the reduction of differential-algebraic
equations (DAEs) that relates variables when they have equal
solutions at all time points. Unlike related work on ordinary
differential equations, GDE requires a careful treatment of
the domain on which the DAE is defined. Model reductions
underlying GDE can be computed in polynomial time and
were obtained for a number of benchmark models of electrical
circuits. Developing approximate notions is part of future work.

REFERENCES

[1] C.-W. Ho, A. Ruehli, and P. Brennan, “The modified nodal approach to
network analysis,” IEEE Trans. Circuits Syst., vol. 22, no. 6, pp. 504–509,
1975.

[2] P. J. Gawthrop and G. P. Bevan, “Bond-graph modeling,” IEEE Control
Systems, vol. 27, no. 2, pp. 24–45, 2007.

[3] U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary
Differential Equations and Differential-Algebraic Equations. SIAM,
1988.

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on September 07,2021 at 07:34:00 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3108530, IEEE
Transactions on Automatic Control

[4] V. Mehrmann and T. Stykel, “Balanced Truncation Model Reduction for
Large-Scale Systems in Descriptor Form,” in Dimension Reduction of
Large-Scale Systems, 2005, pp. 83–115.

[5] T. Reis and T. Stykel, “Balanced truncation model reduction of second-
order systems,” Mathematical and Computer Modelling of Dynamical
Systems, vol. 14, no. 5, pp. 391–406, 2008.

[6] P. Benner and T. Stykel, Model Order Reduction for Differential-Algebraic
Equations: A Survey. Springer, 2017, pp. 107–160.

[7] M. Sunnaker, G. Cedersund, and M. Jirstrand, “A method for zooming
of nonlinear models of biochemical systems,” BMC Systems Biology,
vol. 5, no. 1, p. 140, 2011.

[8] M. Apri, M. de Gee, and J. Molenaar, “Complexity reduction preserving
dynamical behavior of biochemical networks,” Journal of Theoretical
Biology, vol. 304, pp. 16 – 26, 2012.

[9] A. Abate, L. Brim, M. Ceska, and M. Z. Kwiatkowska, “Adaptive
aggregation of markov chains: Quantitative analysis of chemical reaction
networks,” in CAV, 2015, pp. 195–213.

[10] P. Buchholz, “Exact and Ordinary Lumpability in Finite Markov Chains,”
Journal of Applied Probability, vol. 31, no. 1, pp. 59–75, 1994.

[11] L. Cardelli, M. Tribastone, M. Tschaikowski, and A. Vandin, “Symbolic
computation of differential equivalences,” in POPL, 2016.

[12] J. Demmel and B. Kågström, “The Generalized Schur Decomposition
of an Arbitrary Pencil A-λB: Robust Software with Error Bounds and
Applications. Part I: Theory and Algorithms,” ACM Trans. Math. Softw.,
vol. 19, p. 160174, 1993.

[13] P. Kunkel and V. Mehrmann, “A new look at pencils of matrix valued
functions,” Linear Algebra and its Applications, vol. 212-213, pp. 215 –
248, 1994.

[14] ——, Differential-Algebraic Equations. Analysis and Numerical Solution.
Zurich, Switzerland: EMS Publishing House, 2006.

[15] L. Cardelli, M. Tribastone, M. Tschaikowski, and A. Vandin, “Efficient
syntax-driven lumping of differential equations,” in TACAS, vol. 9636,
2016, pp. 93–111.

[16] ——, “Maximal aggregation of polynomial dynamical systems,” Pro-
ceedings of the National Academy of Sciences (PNAS), vol. 114, no. 38,
pp. 10 029–10 034, 2017.

[17] P. Fritzson, Principles of Object-Oriented Modeling and Simulation with
Modelica 3.3, 2nd ed. Wiley-IEEE Press, 2014.

[18] S. Tognazzi, M. Tribastone, M. Tschaikowski, and A. Vandin, “Backward
invariance for linear differential algebraic equations,” in CDC, 2018,
pp. 3771–3776. [Online]. Available: https://doi.org/10.1109/CDC.2018.
8619710

[19] F. Borrelli, A. Bemporad, and M. Morari, Predictive Control for Linear
and Hybrid Systems. Cambridge University Press, 2017.

[20] M. Tschaikowski and M. Tribastone, “Approximate reduction of heteroge-
nous nonlinear models with differential hulls,” IEEE Trans. Automat.
Contr., vol. 61, no. 4, pp. 1099–1104, 2016.

[21] C. C. Pantelides, “The Consistent Initialization of Differential-Algebraic
Systems,” SIAM Journal on Scientific and Statistical Computing, vol. 9,
no. 2, pp. 213–231, 1988.

[22] C. W. Gear, Numerical Initial Value Problems in Ordinary Differential
Equations. Upper Saddle River, NJ, USA: Prentice Hall PTR, 1971.

[23] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. The
Johns Hopkins University Press, 1996.

[24] K. Brenan, S. Campbell, S. Campbell, and L. Petzold, Numerical Solution
of Initial-Value Problems in Differential-Algebraic Equations, ser. Classics
in Applied Mathematics. SIAM, 1996.

[25] J. Rosenfeld and E. G. Friedman, “Design Methodology for Global
Resonant H-Tree Clock Distribution Networks,” IEEE Trans. VLSI Syst.,
vol. 15, no. 2, pp. 135–148, 2007.

[26] B. N. Sheehan, “ENOR: model order reduction of RLC circuits using
nodal equations for efficient factorization,” in Proceedings 1999 Design
Automation Conference, 1999, pp. 17–21.

[27] L. Cardelli, M. Tribastone, A. Vandin, and M. Tschaikowski, “ERODE:
A tool for the evaluation and reduction of ordinary differential equations,”
in Tools and Algorithms for the Construction and Analysis of Systems
— 23rd International Conference, TACAS, 2017. [Online]. Available:
http://cse.lab.imtlucca.it/∼mirco.tribastone/papers/tacas2017.pdf

[28] F. D. Freitas, J. Rommes, and N. Martins, “Gramian-based reduction
method applied to large sparse power system descriptor models,” IEEE
Transactions on Power Systems, vol. 23, no. 3, pp. 1258–1270, 2008.

[29] J. Rommes, N. Martins, and F. Freitas, “Computing rightmost eigenvalues
for small-signal stability assessment of large scale power systems,” in
IEEE PES General Meeting, July 2010, pp. 1–1.

[30] N. Martins, P. C. Pellanda, and J. Rommes, “Computation of transfer
function dominant zeros with applications to oscillation damping control

of large power systems,” IEEE Trans. Power Syst., vol. 22, no. 4, pp.
1657–1664, 2007.

[31] J. Rommes and N. Martins, “Efficient computation of multivariable
transfer function dominant poles using subspace acceleration,” IEEE
Transactions on Power Systems, vol. 21, no. 4, pp. 1471–1483, 2006.

[32] S. Mattsson, S. E. Mattsson, H. Olsson, H. Elmqvist, and D. A. Lund,
“Dynamic selection of states in dymola,” in Proceedings of Modelica
Workshop, 2000.

[33] M. Boreale, “Algebra, coalgebra, and minimization in polynomial
differential equations,” in FOSSACS, 2017, pp. 71–87.

[34] N. Y. Megawati and A. van der Schaft, “Bisimulation equivalence of
differential-algebraic systems,” Int. J. Control, vol. 91, no. 1, pp. 45–56,
2018.

[35] A. J. van der Schaft, “Equivalence of dynamical systems by bisimulation,”
IEEE Transactions on Automatic Control, vol. 49, 2004.

[36] G. J. Pappas, “Bisimilar linear systems,” Automatica, vol. 39, no. 12, pp.
2035–2047, 2003.

[37] A. Girard and G. Pappas, “Approximate Bisimulations for Nonlinear
Dynamical Systems,” in CDC, 2005, pp. 684–689.

[38] G. J. Pappas, G. Lafferriere, and S. Sastry, “Hierarchically consistent
control systems,” IEEE TAC, vol. 45, no. 6, pp. 1144–1160, 2000.

[39] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration,
2006.

Stefano Tognazzi is a post doctoral researcher at
the University of Konstanz. He received his Master
and Ph.D. in Computer Science from the University
of Udine, Italy and IMT Lucca, Italy, in 2015 and
2018, respectively.

Mirco Tribastone is a Professor at IMT Lucca,
Italy. Prior to joining IMT Lucca he was Associate
Professor at the University of Southampton, UK,
and Assistant Professor at the Ludwig-Maximilians
University of Munich, Germany. He received his
Ph.D. in Computer Science from the University of
Edinburgh, UK, in 2010. He graduated in Computer
Engineering at the University of Catania, Italy.

Max Tschaikowski is a Poul Due Jensen Associate
Professor at Aalborg University, Denmark. Prior to it,
he was a Lise Meitner Fellow at TU Wien, Austria, an
Assistant Professor at IMT Lucca, Italy, a Research
Fellow at the University of Southampton, UK, and
a Research Assistant at the Ludwig-Maximilians
University in Munich, Germany. He was awarded a
Diplom in mathematics (equivalent to a Master) and
a Ph.D. in computer science by the LMU in 2010
and 2014, respectively.

Andrea Vandin is a tenure-track Assistant Professor
at Sant’Anna School for Advanced Studies, Pisa,
Italy, and an Adjunct Associate Professor at DTU
Technical University of Denmark. Prior to it he was
an Associate Professor at DTU and an Assistant
Professor at IMT Lucca, Italy. In 2013-2015 he was
a Senior Research Assistant at the University of
Southampton, UK. He received his PhD in Computer
Science and Engineering from IMT Lucca, Italy. He
graduated in Computer Science at the University of
Pisa, Italy.

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on September 07,2021 at 07:34:00 UTC from IEEE Xplore. Restrictions apply.

