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Passivity-Oriented Design of LCL-type
Grid-Connected Inverters with Luenberger

Observer-based Active Damping
Jiancheng Zhao, Student Member, IEEE, Chuan Xie, Senior Member, IEEE, Kai Li, Member, IEEE,

Jianxiao Zou, Member, IEEE, and Josep M. Guerrero, Fellow, IEEE

Abstract—The frequency-domain passivity theory offers an
effective way to assess the stability of inverters in a complex
grid. In this paper, a unified impedance model, suitable for either
inverter-current control (ICC) or grid-current control (GCC) of
LCL-type grid-connected inverters (GCIs) with observer-based
capacitor current feedback active damping (OAD), is built to
facilitate the passivity-based stability assessment and controller
parameter design. With the passivity analysis, it is found that
when the anti-resonant frequency of LCL-filter is in certain
ranges, i.e., (0.056ωs, 0.20ωs) for ICC and (0.046ωs, 0.23ωs) for
GCC, all frequencies’ passive output admittance of the inverter
can be achieved via proposed parameter design guidelines. Due to
the utilization of the observer and all frequencies’ passive output
admittance property, not only extra current sensors for active
damping can be saved, but also the inverter can be connected
and stably operated in a grid regardless of the grid impedance.
The validity of the theoretical analysis and effectiveness of the
proposed method is verified by using experimental results on a
laboratory prototype.

Index Terms—voltage source inverter, observer-based active
damping, LCL-filter, passivity, external stability, harmonic sta-
bility

I. INTRODUCTION

The grid-connected inverters (GCIs) are very popular in
renewable energy power systems, such as photovoltaic [1],
wind turbines [2], energy storage [3], active power filter [4],
etc. The proliferation of GCIs in the power grid would bring
challenges to system stability, such as the harmonic stability
issues that emerged in recent years [5]. The frequency-domain
passivity-based control of GCIs emerges as a promising so-
lution to mitigate harmonic instability caused by dynamic
interactions between inverters and the power grid systems
[5], [6]. By imposing a nonnegative-real-part in the closed-
loop output admittance of GCI, i.e., Real{Y (jω) ≥ 0} or
6 Z(jω) ∈ [−90◦, 90◦],∀ω, the GCI will not destabilize the
connected electrical system [5].
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An amount of research works have been devoted to the field
of passivity evaluation and enhancement for GCIs [6]–[18]. It
has been found that the computation and pulse width modula-
tion (PWM) delays have significant effects on the passivity of
the GCI [6]. Given the time delay of 1.5Ts, for example, the
one-sixth of the sampling frequency (ωx = ωs/6) was found
as the critical frequency [7]. For the inverter-current-control
(ICC) of LCL-type GCI, the negative-real-part region of GCI’s
output admittance is (ωx, ωs/2) [7]–[9], where ωs/2 is the
Nyquist frequency, while for the gird-current-control (GCC),
the negative-real-part region of GCI’s output admittance is
between the ωa and ωx, where ωa =

√
1/(L1Cf ) which is

the antiresonant frequency of the inverter-side inductance and
filter capacitor of the LCL filter and could be either lower or
higher than ωx. For the passivity enhancement of the GCI’s
output admittance, the works can be categorized in two: one
is reducing the time delay directly [10] or compensating for
the time delay by the predictive method [11]–[13]; another
is the virtual impedance method that in terms of inserting
damping terms into the admittance (e.g., passive or active
damping method). For the ICC-GCI, Harnefors et al. proposed
the grid voltage feedforward active damping plus capacitor-
current feedback active damping (CCF-AD) to lift the non-
negative-real-part region up to the Nyquist frequency [8].
However, an extra analog circuit-based high-pass filter is added
and increases the cost as well as implementation complex-
ity. For the GCC-GCI, the proportional-integral CCF-AD is
proposed to enhance the overall non-negative-real-part region
[14]. Whereas the negative-real-part region remains and still
may trigger the system resonance. Akhavan et al. propose a
biquad filter-based delay compensation method for CCF-AD to
reshape the output admittance to be passive up to the Nyquist
frequency [15]. Nevertheless, the biquad filter complicates the
parameter selection and algorithm implementation. Xie et al.
proposed a general admittance model based sub-admittance
combination method, which achieved all frequencies’ passivity
of the output admittance suitable for both ICC-GCI and GCC-
GCI. Nonetheless, current sensors used for CCF-AD are still
required and will increase the system cost [9].

The observer can estimate the un-sampled state of the
inverter to save the additional sensors. In paper [19], the
Luenberger observer is used to save additional current sensors
for the state space current controller. The extended-state ob-
server is used to avoid using the voltage sensors in paper [20].
The sensorless current control solution relying on the Kalman
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filter is also proposed in the paper [21]. Although the Kalman
filter can be described as a statistically optimal estimator, its
drawback is that the process noise parameters are needed for
tuning the observer [22]. The observer-based active damping
(OAD) can successfully stabilize LCL-type GCI [16], [17],
where additional current sensors are not required. However,
it is known to be only valid for the inductive-impedance grid
condition, and their effectiveness of stabilization in complex
grid impedance conditions is unknown. In other words, the
passivity property of the LCL-type GCI’s output admittance
with OAD yet has been studied.

In this paper, all frequencies’ passive output admittance is
achieved for both the converter-side and the grid-side current-
controlled LCL-type grid-connected inverters by using a CCF-
OAD without using additional current sensors. The system
stability is guaranteed regardless of grid impedance value and
the number of paralleled inverters. The main contributions can
be summarized as follows.

1) A unified impedance model for both ICC-GCI and GCC-
GCI with CCF-OAD to facilitate the passivity-based
stability assessment and controller parameter design is
derived in Section II.

2) In Section III, controller parameter design guidelines
are given, and the passivity evaluation of GCI’s output
admittance is conducted. It is found that when the anti-
resonant frequency of LCL-filter are in certain ranges,
i.e., (0.056ωs, 0.20ωs) for ICC and (0.046ωs, 0.23ωs)
for GCC, all frequencies’ passive output admittance of
the GCI can be achieved.

The merits of the proposed method are as follow:
1) Thanks to all frequencies’ passive output admittance of

the inverter, it can be connected to a grid regardless of
the grid impedance. Current sensors used for CCF-AD
are saved for both the ICC-GCI and GCC-GCI.

2) As the method is elaborated in the stationary reference
frame without coupling between the two axes, it is
applicable for both the signal-phase and three-phase
grid-connected voltage source inverters.

II. SYSTEM MODELLING AND ANALYSIS
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Fig. 1. Configuration of the studied three-phase GCI with an LCL filter.

Fig.1 shows the configuration of the studied three-phase
grid-connected inverter (GCI) system with an LCL filter. In

the figure, L1, L2, and Cf are the inverter-side inductor,
grid-side inductor, and filter capacitor, respectively. Lg is the
grid inductor, and Cg represents the power factor correction
(PFC) capacitor connected at the point of coupling (PoC). The
parasitic resistances of all inductors are neglected for the worst
case with zero passive dampings [5]–[7].

For the control part, both the single-loop inverter-current-
control (ICC, i1) and grid-current-control (GCC, i2) control
objectives are considered. In addition, PoC voltage (v2) is used
as the inputs of the feedforward filter (Gf ) and the phase
lock loop (PLL). Gc is the phase-compensated proportional-
resonant (PR) current controller implemented in the stationary
αβ reference frame, as shown in equation (1). The CCF-AD
is also carried out to facilitate reshaping the output admittance
of the GCI to be passive. Unlike the direct capacitor current
feedback in [9], the capacitor current in this paper is obtained
via a Luenberger observer, consequently, extra current sensors
for capacitor currents can be saved and CCF-OAD is achieved.

Gc(s) = Kcp +Kcr
s cosφ1 − ω1 sinφ1
s2 + ωrcs+ ω2

1

(1)

where Kcp, Kcr, ω1, ωrc, and φ1 are the proportional gain,
resonant gain, resonant angular frequency, cutoff angular fre-
quency, and compensation angle of the PR controller, respec-
tively.

A. Model of the LCL Filter
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Fig. 2. (a) Circuit, (b) state-space and (c) s-domain model of the LCL filter.

For the LCL filter plant illustrated in Fig.2(a), the state
variables are selected as x = [i1 i2 vc]

T . The voltages
v1 and v2 are the input of the plant; The currents i1, i2 and
ic are the selected outputs. Thus, the dynamics of the selected
outputs can be represented in the state-space form as (2).

ẋ =

 0 0 − 1
L1

0 0 1
L2

1
Cf

− 1
Cf

0


︸ ︷︷ ︸

A

x+

 1
L1

0
0


︸ ︷︷ ︸
B1

v1 −

 0
1
L2

0


︸ ︷︷ ︸
B2

v2

is =
[
(1− S) S 0

]︸ ︷︷ ︸
C

x

ic =
[
1 −1 0

]︸ ︷︷ ︸
H

x

(2)
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In the equation, the value of S in matrix C can be either
0 or 1, representing the ICC or GCC, respectively. (is = i1
when S = 0, is = i2 when S = 1). Thus, the unified s-domain
model of the LCL filter can be achieved, as shown in (3) and
(4).

is = C(sI −A)−1B1︸ ︷︷ ︸
Y1

v1 − C(sI −A)−1B2︸ ︷︷ ︸
Y2

v2 (3)

and

ic = H(sI −A)−1B1︸ ︷︷ ︸
Yc1

v1 −H(sI −A)−1B2︸ ︷︷ ︸
Yc2

v2 (4)

B. Model of the Observer
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Fig. 3. Control block diagram of GCI with CCF-OAD in z-domain.

Fig.3 shows the control block diagram of GCI with CCF-
OAD in z-domain. Since the observer is digitally implemented,
the corresponding difference equation of the discrete observer
is given in equation (5).

x̂k+1 = Adx̂k +Bd1vo,k −Bd2v2,k +Kd(is,k − îs,k)
îs,k = Cx̂k

(5)

where, Ad, Bd1, and Bd2 is discretized from the A, B1, and
B2, respectively, by using the zero-order-hold discretization
method because of the equivalence between the PWM process
and the zero-order-hold. Ts is the sampling period of the
digital control, and Kd is the observer gain, which is designed
by the pole placement method, as shown in appendix A.

As shown in Fig.3, the observed capacitor current could be
with or without one-step prediction as follow:

îc,k+p = Hx̂k+p (6)

where, p = 0, 1.
Then, the model of the discrete observer in z-domain can

be derived as:

îc,k+p = Yd1 (z) vo,k − Yd2 (z) v2,k +Gdk (z) is,k (7)

where,

Yd1 (z) = zpH(zI −Ad +KdC)
−1
Bd1

Yd2 (z) = zpH(zI −Ad +KdC)
−1
Bd2

Gdk (z) = zpH(zI −Ad +KdC)
−1
Kd

(8)

and p = 0, 1.

Although the observer is directly designed in the z-domain
for higher precision of the digital system, the impedance model
is inherently in the s-domain. For the impedance analysis
compatiability, the z-domain observer model is transferred
back to the s-domain by substituting z with esTs , as shown in
(9).

îc = Yd1 (s) vo − Yd2 (s) v2 +Gdk (s) i2 (9)

where,

Yd1 (s) = espTsH
(
esTsI −Ad +KdC

)−1
Bd1

Yd2 (s) = espTsH
(
esTsI −Ad +KdC

)−1
Bd2

Gdk (s) = espTsH
(
esTsI −Ad +KdC

)−1
Kd

(10)

C. Impedance Model of the GCI Seen from Sampling Position
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Fig. 4. Control block diagrams of GCI with (a) CCF-AD and (b) CCF-OAD
in s-domain.

The impedance models of the GCI with CCF-AD and CCF-
OAD are both depicted in Fig.4 for the sake of comparison.
Since the single-side updated PWM is implemented in this
paper, the time delay contains one sampling period of digital
control delay Gd and a half sampling period of average PWM
delay Gz . Thus, the total time delay is 1.5Ts, as shown in
(11). The parameter kPWM is the proportional factor of the
PWM, and kPWM = 1, generally.

Gdz(s) = e−Tss︸ ︷︷ ︸
Gd

kPWM
1− e−sTs

sTs︸ ︷︷ ︸
Gz

≈ kPWMe
−1.5Tss (11)

As shown in Fig.4, the output current of GCI seen from the
sampling position can be expressed as (12).

is = Gii
ref
s − Yiv2 (12)
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where, Gi(s) and Yi(s) are the closed-loop transfer function
and the equivalent output admittance for the GCI with CCF-
AD, respectively. Applying Mason rules to the Fig.4(a) can
result in

Gi(s) =
GcGdzY1

1 +GcGdzY1 − kadGdzYc1
(13)

Yi(s) =

(
Y2 (1− kadGdzYc1)
+kadYc2GdzY1 −GfGdzY1

)
1 +GcGdzY1 − kadGdzYc1

(14)

By contrast, for the GCI with CCF-OAD as shown in
Fig.4(b), the corresponding closed-loop transfer function and
the equivalent output admittance are

Gi(s) =
GcGdzY1

1 +GcGdzY1 − kad (GdYd1 +GdzY1Gdk)
(15)

Yi(s) =

(
Y2 (1− kadGdYd1)
+kadYd2GdzY1 −GfGdzY1

)
1 +GcGdzY1 − kad (GdYd1 +GdzY1Gdk)

(16)

D. Impedance Model of the GCI Seen from the PoC
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Fig. 5. The equivalent circuit of the (a) ICC-GCI, (b) GCC-GCI seen from
the sampling position, and (c) the unified equivalent circuit seen from the
PoC.

Combining (3), (4), (12) with the LC-type grid impedance
adopted in Fig.1, the equivalent circuit for the overall system
can be depicted as shown in Fig.5, in which Figs.5(a) and (b)
are for GCC and ICC, respectively, and are unified in Fig.5(c).
The grid current i2 of the GCI seen from the PoC side can be
represented as

i2 = Gcii
ref
s − Yciv2 (17)

where
Gci(s) = SGi + (1− S) (1−Gi1)Gi (18)

Yci(s) = SYi + (1− S) [(1−Gi1)Yi + Yi1] (19)

and, Gi1 = Yc1
Y1

, Yi1 = Yc1Y2

Y1
− Yc2, S = 0, 1.

E. The Grid Impedance and Stability Criterion

According to Fig.5(c), the relationship between v2 and E
can be expressed as:

v2 =
sLg

1 + s2LgCg︸ ︷︷ ︸
Zg

i2 +
1

1 + s2LgCg︸ ︷︷ ︸
Gv

E (20)

Substituting (20) into (17), the overall closed-loop current
response seen from the E, which is the stiff grid voltage behind
the grid impedance, can be derived as:

i2 =
Gci

1 + YciZg
irefs − YciGv

1 + YciZg
E (21)

Equation (21) is equivalent to the circuit diagram, as shown
in Fig.5(c). According to equation (21), the stable conditions
of the whole system are:

1) Gci has no right-half plane poles.
2) YciZg satisfies the Nyquist stabilization condition.
The first stability condition is called internal stability, which

is determined by the poles of the current loop transfer function
Gci and has been extensively studied. The second stability
condition is the external stability that represents the stability
of the interaction between the GCI and the grid, which can
be analyzed by applying the Nyquist criterion to the ratio of
grid and GCI impedance, i.e., YciZg . However, if Zg and
Yci are both passive, then the second stability condition is
guaranteed. As long as Zg represents a resistive-inductive-
capacitive (RLC) network, it is obviously passive. Remaining
is, thus, to make Yci passive.

III. CONTROLLER PARAMETERS SELECTION AND
STABILITY ANALYSIS

A. Current Controller and Active damping Parameters Selec-
tion

An analytical parameter design guidelines for the current
controller and CCF-AD parameters selection to realize all
frequencies passive output admittance has been introduced in
detail in [9]; It is cited here but with some minor modifications
as follows.

For a current controller in (1), there are four parameters
need to be tuned. With a given phase margin φm, typically set
to be (π/6, π/3), controller parameters can be calculated as

ωc =
π
2−φm
1.5Ts

Kcp = ωcL1

Kcr =
Kcpωc

10
φ1 = 1.5ω1Ts
ωrc = 0.003

(22)

The proportional gains for CCF-AD can be calculated as

kad =

(
ω2
a

ω2
x

− S
)
kcp (23)

where, ωa =
√

(1/(L1Cf ), ωx = 1/6ωx. Then it will be
demonstrated that the above design guidelines are still valid for
CCF-OAD from the perspective of both internal and external
system stabilities.
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Fig. 6. Zeros and poles of Gi for various types of GCI and ωa varies from
0.07ωx to 2.1ωx.

B. Internal Stability for the GCI with OAD

The pole-zero map of Gi with ωr varies from 0.1ωx to
3ωx are depicted in Fig.6. To figure out the different internal
stability regions of the system for different conditions. As
shown in Fig.6 (a) and (b), without CCF-AD, the stable regions
for ICC and GCC are respectively ωr < ωx and ωr > ωx,
where ωr is the resonant frequency of LCL filter and poles of
Gi locates inside the unit circle. Note that this conclusion is in
line with the one in [23], [24]. When CCF-AD is enabled with
parameters given in (23), the poles of Gi locate inside the unit
circle in case that ωa < 1.7ωx as shown in Fig.6 (c) and (d),
which means that the internal stability is ensured regardless
of the location of ωr, which agrees with the conclusion in

[9]. When CCF-AD is replaced by the CCF-OAD and both
without and with one-step prediction are considered. Note that
observers without or with one-step prediction are respectively
denoted as OAD and POAD briefly. The stable regions for
CCF-OAD and CCF-POAD for ICC and GCC are respectively
figured out from Fig.6 (e) to (h) and also listed in Table I,
according to which, the following conclusions can be made:

1) Compared with CCF-AD, the CCF-OAD almost hasn’t
changed the internal stability regions for both ICC and
GCC.

2) CCF-POAD shrank sharply the internal stability regions
for ICC but, only a little for GCC.

Considering the sharp shrinkage of the internal stability
regions of CCF-POAD for ICC, which is not recommended.
Although the stable range of CCF-POAD is smaller than
the CCF-OAD for GCC, yet the CCF-POAD is recommend
because of the constraints of the output admittance’s passivity
which will be further explained in the next section.

TABLE I
INTERNAL STABLE REGIONS FOR CCF-OAD AND CCF-POAD

ICC GCC
CCF-OAD ωa < 1.7ωx ωa < 1.7ωx

CCF-POAD ωa < 0.5ωx ωa < 1.4ωx

C. Passivity for the GCI with CCF-OAD or CCF-POAD

By set Gf to 0, the Real{Yci(jω)} of the GCI with CCF-
AD are in the first place plotted in Fig.7 for the sake of
comparison and validation of the correctness of the admittance
model. It can be seen from the figure all frequencies’ passive
output admittance are achieved for both ICC and GCC with
CCF-AD regardless of ωa, which complies with the conclusion
in [9] and validates the correctness of the admittance model.
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Fig. 7. Real{Yci(jω)} that neglecting the feedforward filter (Gf = 0) and
ωa varies from 0.07ωx to 2.1ωx.

Then, Real{Yci(jω)} of GCI are plotted in Fig.8. for
four different conditions, i.e., ICC with CCF-OAD and CCF-
POAD, GCC with CCF-OAD and CCF-POAD, it can be
seen that negative regions appeared which indicates the de-
terioration of the output admittance’s passivity. Nevertheless,
the negative Real{Yci(jω)} in the high-frequency range can
be compensated by the voltage feedforward which will be
demonstrated in the next section. Meanwhile, the positive
Real{Yci(jω)} near the critical frequency, i.e., ωx will co-
incidently correct the negative Real{Yci(jω)} induced by the
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Fig. 8. Real{Yci(jω)} of the GCI with OAD that neglecting the feedforward
filter (Gf = 0) and ωa varies from 0.07ωx to 2.1ωx.

voltage feedforward as shown in Fig.9. According to Fig.8 and
9, the characteristics of output admittance for ICC with CCF-
OAD and GCC with CCF-POAD satisfy these requirements.
It also answered the question why the CCF-POAD rather than
CCF-OAD is recommended for GCC that been posted in the
previous section.
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Fig. 9. Real{Yci,f (jω)} (the admittance that related to the feedforward part
) and ωa varies from 0.07ωx to 2.1ωx (kf = 1).

D. Passivity of the GCI plus Voltage Feedforward

For the objectives of inrush current suppression at startup
process as well as output admittance reshaping, the voltage
feedforward that consists of a proportional term and band-

pass filter with unit gain at the fundamental frequency and
adjustable gain is adopted in this paper, which is the form of

Gf (s) = kf + (1− kf )
αf (s cosφ2 − ω1 sinφ2)

s2 + αfs+ ω2
1

(24)

where kf is the voltage feedforward gain, αf and φ2 are
the cutoff frequency and phase-lead angular of the bandwidth
filter, respectively. αf is typically set to be a small value, e.g.,
αf = 0.01ωs, φ2 is set to compensate the phase-lag at the
grid frequency ω1, i.e., φ2 = 1.5ω1Ts.

The admittance with respect to the voltage feedforward can
be split out from (18) for further passivity-oriented parame-
ter selection for the voltage feedforward. The corresponding
admittance can be expressed as

Yi,f (s) =
−GfGdzY1

1 +GcGdzY1 − kad (GdYd1 +GdzY1Gdk)
(25)

Replacing Yi(s) in (21) with Yi,f (s), the feedforward cor-
responding admittance seen from the PoC can be achieved,
which is denoted by Yci,f (s) and its real part is drawn in
Fig.9. It can be seen that the passivity properties of the voltage
feedforward related output admittance are complementary with
that of the current control loop. i.e., Fig.8(a) with Fig.9(a) and
Fig.8(d) with Fig.9(d). Hence, by the appropriate selection of
feedforward gain, all frequencies passive output admittance
can be achieved. It can also be seen that there are overlapping
negative real part regions in Fig.8(b) and Fig.9(b) as well as
Fig.8(c) with Fig.9(c), all frequencies’ passive output admit-
tance are definitely not achieveable, this is the reason why
CCF-POAD and CCF-OAD are not recommended for ICC
and GCC, respectively.
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Fig. 10. Real{Yci(jω)} for the ICC with the CCF-OAD and ωa varies from
0.07ωx to 0.21ωx.
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Fig. 11. Real{Yci(jω)} for the GCC with the CCF-POAD and ωa varies
from 0.07ωx to 0.21ωx.
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Then, the Real{Yci(jω)} for ICC with CCF-OAD and GCC
with CCF-POAD plus feedforward are drawn in Fig.10 and
Fig.11, respectively. Then, the boundaries for realization of
all frequencies’ passive output admittance for the CSC-OAD
and CSC-POAD are roughly refined out:
• ICC with CCF-OAD: 0.056ωs ≈ 0.35ωx < ωa <

1.2ωx ≈ 0.20ωs
• GCC with CCF-POAD: 0.046ωs ≈ 0.28ωx < ωa <

1.4ωx ≈ 0.23ωs

IV. EXPERIMENTAL VERIFICATION

For validating the correctness of the theoretical analysis and
the effectiveness of the proposed controller parameter design
method, an experimental setup is built up in the laboratory
as shown in Fig.12. The setup consists of four three-phase
inverters with LCL filters, one of them is performed as the
grid-connected inverter under test. The control algorithm is
implemented in the dSPACE 1005 platform for real-time con-
trol. The power stage parameters are listed in Table II for the
controller parameters design. Without loss of generality, two
cases with the resonant frequencies of LCL-filter either beyond
(Case 1: Cf = 9.8µF ) or below (Case 2: Cf = 24.8µF ) the
critical frequency, i.e., ωx, are considered.

dSPACE

IGBT Driver

Inductors

Capacitors
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Sensors

DC Power

PC with 

Control Desk 

Grid

dSPACE

IGBT Driver

Inductors

Capacitors
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Sensors
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Control Desk 

Grid

Fig. 12. Hardware picture for the experimental setup.

In this paper, the open-loop phase margin φm is set to
15π/36 radians (75 degrees). Then, the current controller
parameters as well as the proportional gains for CCF-AD
can be analytically calculated according to (22) and (23),
respectively, and the resultant are listed in Table II.

The voltage feedforward gains can be graphically deter-
mined by plotting curves of Real{Yci(jω)}. Fig.13 shows the
curves of Real{Yci(jω)} for different cases with kf varies
from 0 to 1. As see in Fig.13, for both control objectives, i.e.,
ICC or GCC, and for both cases, an appropriate kf can be
graphically found out to realize all frequencies’ passive output
admittance. The specific values of kf used in experiments for
different cases are also listed in Table II.

Since the observer depends on the parameters of the LCL
filter, i.e., converter-side inductance (L1), grid-side inductance
(L2), and the capacitance (Cf ). The influence of variations
of those parameters on the passivity of the inverter output

TABLE II
CONTROLLER PARAMETERS

Power Stage Parameters
Parameters Values

LCL filter converter-side inductance (L1) 1.4mH
LCL filter grid-side inductance (L2) 1.4mH

LCL filter capacitance(Cf ) 9.8µF / 24.8µF
Grid frequency (f1/ω1) 50Hz/100π

Grid voltage (Ph-Ph) (Erms) 150V
Direct voltage (Vdc) 350V

Common Parameters
Parameters Values

Sampling period/frequency (Ts/fs) 1e-4s/10kHz
Feedforward Filter cutoff frequency (αf ) 100π

PR controller (αc) 0.03ωs

PR controller (kcr) 500
PR controller (ωc) π

Observer dominant frequency (ωd) 0.5ωs

Observer damping factor (ζ) 0.707
Particular Parameters

Types of GCI
Case 1: ωa = 0.85ωx Case 2: ωa = 0.5ωx

kad kf kad kf
ICC-OAD 0.66kcp 0.2 0.26kcp 0.05

GCC-POAD −0.34kcp 0.4 −0.74kcp 0.5
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Fig. 13. Real{Yci(jω)} of the GCC type GCI (kf varies from 0.0 to 1.0).

admittance is analyzed. According to Fig.13, for either ICC or
GCC, case one exhibits a relatively poor overall passivity for
output admittance, hence only case one is analyzed. According
to Fig.14, for ICC with CCF-OAD, all frequencies passive
output admittance can be ensured if the inductor and filter
capacitor of the LCL filter have tolerances of (−30%, 8%)
and (−28%, 5%), respectively. Fig.15 shows that GCC with
CCF-POAD has a wider allowable tolerance of power stage
parameters than that of ICC with CCF-OAD.

Before conducting experiments, theoretical stability assess-
ments are performed by using Bode plots of both inverter
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Fig. 14. Real{Yci(jω)} of the ICC with CCF-OAD type GCI with the LCL
parameters variation (Case 1, i.e., ωa = 0.5ωx, kf = 0.05).
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Fig. 15. Real{Yci(jω)} of the GCC with CCF-POAD type GCI with the
LCL parameters variation (Case 1, i.e., ωa = 0.5ωx, kf = 0.5).

output admittance and grid admittance. Normally, the stability
in terms of PM can be interpreted by the phase difference at the
intersection point of the magnitude responses of the inverter
output admittance and grid admittance [25], [26], viz., the
phase difference over 180 degrees indicates instability and vice
versa. Since the passive output admittance in all frequencies is
achieved with the proposed method, viz., the system stability
is ensured regardless of the intersection locations of the
magnitude responses of the inverter output admittance and grid
admittance. When disabling the proposed method, negative-
real-part regions of the output admittance appear, at where
if the intersection locations of the magnitude responses of

the inverter output admittance and grid admittance occurring
may lead to the system instability. In this paper, the LC-type
resonant circuit is used to simulate the grid impedance (see in
Fig.1) to build the instability conditions intentionally.

A. Passivity-based Stability Verification for the ICC with CCF-
OAD type GCI
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Fig. 16. Resonant analyze of the ICC-GCI with CCF-OAD where ωa =
0.85ωx (Case 1 with Lg = 1.4mH and Cg = 3.5µF ).
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Fig. 17. Experiment results of ICC-GCI with CCF-OAD where ωa = 0.85ωx

(Case 1 with Lg = 1.4mH and Cg = 9.8µF ).

Fig.16 shows the bode diagram of the admittance for the
VSC with the LCL parameter in case 1 and the grid admittance
1/Zg . For the GCC without active damping, the system has
two possible resonant frequencies (i.e., 1.8kHz and 3.3kHz).
Fig.17 shows the experimental result corresponding to the
senario in Fig.16. The inverter-side current (i1) is stable for
the GCI with CCF-OAD. However, the current becomes to
resonant when the CCF-OAD is turnoff (Without AD). The
real-time fast Fourier transform (FFT) of the resonant current
shows that the experimental resonant frequency are 1.7kHz
and 3.46kHz. The experimental results is consistent with the
theoretical analysis in Fig.16.
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Fig. 18. Resonance analyze of the ICC-GCI with CCF-OAD where ωa =
0.5ωx (Case 2 with Lg = 2.0mH and Cg = 15.0µF ).
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Fig. 19. Experiment results for the ICC-GCI with CCF-OAD where ωa =
0.5ωx (Case 2 with Lg = 2.0mH and Cg = 15.0µF ).

Fig.18 shows admittances for the ICC-CCF-OAD with
power stage parameters in case 2. For the GCC without active
damping, the possible resonant frequency of the system is
1.67kHz. Fig.19 shows the experimental results corresponding
to the senario in Fig.18. The system is stable with the proposed
CCF-OAD, but is resonant at 1.7kHz when the CCF-OAD is
disabled. The experimental result agrees with the theoretical
analysis.

B. Passivity-based Stability Verification for the GCC with
CCF-POAD type GCI

Fig.20 shows the bode diagram of the admittance for the
GCC with CCF-POAD type GCI with LCL parameters in
case 1. There are two possible resonant frequencies for the
GCI without active damping, which are 1.47kHz and 2.68kHz.
Fig.21 is the experimental result corresponding to the senario
in Fig.20. The real resonant frequency is 1.2kHz and 2.6kHz.
There is a small deviation between the experimental and
theoretical analytical results.

Fig.22 shows the bode diagram of the admittance for the
GCC-CCF-POAD type GCI with LCL parameters in case 2.
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Fig. 20. Resonance analyze of the GCC-GCI with CCF-POAD where ωa =
0.85ωx (Case 1 with Lg = 1.4mH and Cg = 6.3µF ).
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Fig. 21. Experimental results of the GCC-GCI with CCF-POAD where ωa =
0.85ωx (Case 1 with Lg = 1.4mH and Cg = 6.3µF ).

For the VSC without active damping, the system may be
resonant at the high frequencies. And the possible resonant
frequencies are 0.91kHz and 1.67kHz. Fig.23 shows the
experimental results corresponding to Fig.22. According to the
FFT analysis result, the real resonant frequency are 0.96kHz
and 1.96kHz. And the system is stable with the proposed
CCF-POAD method.

V. CONCLUSION

This paper builds a unified impedance model for both
inverter current control (ICC) and grid-current control (GCC)
LCL-type grid-connected inverters (GCIs) with observer-based
capacitor current feedback active damping (CCF-OAD). After
the passivity assessment and controller parameter optimiza-
tion, it is found that when the antiresonant frequency of
LCL-filter are in certain ranges, i.e., (0.056ωs, 0.20ωs) for
ICC and (0.046ωs, 0.23ωs) for GCC, all frequencies’ passive
output admittance of the GCI can be achieved under the
proposed controller parameters design guidelines. And one-
step prediction of the observer is required for GCC to ensure
all frequencies’ passive output admittance, while it is yet not
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Fig. 22. Resonance analyze of the GCC-GCI with CCF-POAD where ωa =
0.5ωx (Case 2 with Lg = 2.0mH and Cg = 15.0µF ).
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Fig. 23. Experiment results of the GCC-GCI with CCF-POAD where ωa =
0.5ωx (Case 2 with Lg = 2.0mH and Cg = 15.0µF ).

needed for ICC. In addition, it is also found that GCC with
CCF-POAD has a wider allowable tolerance of power stage
parameters than that of ICC with CCF-OAD.

APPENDIX A
THE POLE PLACEMENT OF THE OBSERVER

The closed-loop poles of the observer can be selected
according to the open-loop poles of the plant, which are roots
of the plant’s characteristic equation (2), i.e., |sI −A| =
s(s2 + ω2

r), where ωr is the resonant frequency of the LCL
filter. There are three open-loop poles, two complex conjugate
poles (the resonant poles) at the resonant frequency and a real
pole at zero frequency. In order to achieve a fast and damped
response observer, the pole at zero frequency is moved to
a higher frequency and the resonant poles are damped with
factor ζ (typically, ζ = 0.7 is used) [27], which gives three
closed-loop poles as

ps0 = −ωd
ps1 = −ωr(ζ − j

√
1− ζ2)

p∗s1 = −ωr(ζ + j
√
1− ζ2)

(26)

Then, the above s-domain poles are mapped into z-domain
with the relationship z = esTs , which gives

pz0 = e−ωdTs

pz1 = e
−ωr

(
ζ−j
√

1−ζ2
)
Ts

p∗z1 = e
−ωr

(
ζ+j
√

1−ζ2
)
Ts

(27)

Finally, the characteristic equation of the discrete observer
is derived as:

|zI −Ad +KdC| = (z − pz0) (z − pz1) (z − p∗z1) (28)

where the observer gain Kd can be achieved by using the
MATLAB command place().

Kd = [kd1 kd2 kd3]
T = place(A′d, C

′,
[
pz0 pz1 p∗z1

]
)′

The performance of the observer is dominated by its domi-
nant pole, i.e., pz0, to be more intuitive, the Bode plots for the
error transfer function of the observer (29) with the dominant
pole at different frequencies are plotted in Fig.24.

eis =
îs − is
is

= 1− C(zI −Ad +KdC)
−1Kd (29)

It can be seen from Fig.24, a high frequency of the dominant
pole pz0 leads to smaller observer error, which is desired
for the capacitor current feedback active damping (CCF-AD)
and inverter output admittance reshaping. However, further
increasing the frequency of the dominant pole beyond nyqusit
frequency will no long improve the accuracy of the observer.
Hence, the frequency of the dominant pole of the observer is
recommended to be set as the Nyquist frequency.
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Fig. 24. The stable tracking error of the observer for the ICC-GCI with CCF-
OAD where and ωa = 0.85ωx.
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