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Abstract: Retinal artery occlusion (RAO) is a devastating condition with no effective treatment. The
management of RAO could potentially be improved through an in-depth understanding of the
molecular alterations in the condition. This study combined advanced proteomic techniques and
an experimental model to uncover the retinal large-scale protein profile of RAO. In 13 pigs, RAO
was induced with an argon laser and confirmed by fluorescein angiography. Left eyes serving as
controls received a sham laser without inducing occlusion. Retinal samples were collected after
one, three, or six days and analyzed with liquid chromatography—tandem mass spectrometry. In
RAO, 36 proteins were differentially regulated on day one, 86 on day three, and 557 on day six.
Upregulated proteins included clusterin, vitronectin, and vimentin, with several proteins increasing
over time with a maximum on day six, including clusterin, vimentin, osteopontin, annexin-A, signal
transducer, and the activator of transcription 3. On day six, RAO resulted in the upregulation of
proteins involved in cellular response to stress, hemostasis, innate immune response, and cytokine
signaling. Downregulated proteins were involved in transmission across chemical synapses and
visual phototransduction. This study identified the upregulation of multiple inflammatory proteins
in RAO and the downregulation of proteins involved in visual pathways.

Keywords: retinal artery occlusion; proteomics; mass spectrometry; animal models; retinal
ischemia diseases

1. Introduction

Retinal artery occlusion (RAO) is a devastating ophthalmic emergency. The majority
of cases are associated with severe and irreversible vision loss resulting from the infarction
of the inner retinal layers [1]. Although various treatment strategies for acute management
have been studied, no treatment has yet been shown to be effective [2,3].

It is a huge challenge to explore therapies for retinal diseases [4]. Recently, new ocular
nanotherapeutics with multiple bioactive properties for potential use in the management
of retinal disorders have been developed [5]. A basic prerequisite for the development of
effective treatment modalities is to know the molecular mechanisms underlying retinal
cellular damage. However, these mechanisms are not yet fully understood. Although few
previous studies on animal models of RAO have been performed with the identification
of certain molecules that are suggested to play a role, large-scale protein analyses of RAO
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have not yet been performed, and to the best of our knowledge, no method for such
analyses have been established [6–10]. Proteomic techniques provide an in-depth analysis
of involved proteins in the condition under study and has previously been applied in
other ocular diseases to bring new insights into pathological mechanisms and potential
therapeutic targets that can be used in clinical practice [6].

To conduct experimental animal studies on RAO in general, a variety of different
methodological approaches have previously been used [11]. To increase the translational
value of animal models, it is crucial to imitate human disease as closely as possible. Hence,
occlusion of the arteries may be performed in pigs by a laser without adjuvants, as this
was found to be a suitable model of RAO in a recent review [11]. Therefore, this method
was selected in this study to develop and implement an animal model of RAO that was
applicable for large-scale protein analyses and thereby generated new insight into the
pathological processes occurring in RAO.

Here, we report for the first time on retinal large-scale protein changes in RAO,
analyzing an experimental model of laser-induced RAO with advanced proteomic tech-
niques. RAO was induced in a porcine model by applying a laser directly onto a branch
retinal artery. The retinas were then dissected, and samples were prepared for liquid
chromatography—tandem mass spectrometry (LC-MS/MS). These results were validated
using immunohistochemistry.

2. Results
2.1. Induction of Occlusion

Successful occlusion was induced in the right eyes of all pigs (Figures 1 and 2). Retinal
ischemia with ischemic edema was observed in areas supplied by the occluded artery.
Manifest “box-carring” and the segmentation of blood flow were observed downstream of
the occlusion (Figure 1). Fluorescein angiography (FA) showed the impaired filling of the
occluded artery (Figure 3). The FA of all pigs are shown in Supplementary Figure S1. Severe
retinal non-perfusion was observed downstream of the occlusion, consistent with retinal
ischemia, and was successfully induced in RAO (Figure 3). No reperfusion was seen until day
five, when some reperfusion and/or retrograde filling began to appear. A representative FA
and fundus photograph of the control eyes are presented in Supplementary Figure S2.
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Figure 2. Photo obtained one day after induced retinal artery occlusion (black arrowhead). Severe 
retinal ischemia is seen downstream of the occlusion (red dotted line). A watershed zone can be 
observed between the ischemic retina and retinal tissue with normal perfusion (white arrowhead). 
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2.2. Retinal Protein Expression at Various Days after RAO 
After filtering, a total of 3189 proteins were identified by LC-MS/MS, and 2360 pro-

teins were identified and quantified in at least 70% of the samples within each group (Ta-
bles S1 and S2). The data output from MaxQuant is available in Table S3. The principal 
component analysis (PCA) plot showed how day one tended to produce marginal sepa-
ration from the controls, whereas day three was clearly distinguished from the control 
retinas, and day six was even more so (Figure 4). 
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Figure 2. Photo obtained one day after induced retinal artery occlusion (black arrowhead). Severe
retinal ischemia is seen downstream of the occlusion (red dotted line). A watershed zone can be
observed between the ischemic retina and retinal tissue with normal perfusion (white arrowhead).
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Figure 3. Fluorescein angiography from three representative animals performed in eyes with retinal
artery occlusion one, three, or five days after induction of the occlusion. Retinal capillary non-
perfusion (red dotted line) was observed downstream of the site of occlusion (arrow). A watershed
zone between can be seen at the border between retinal non-perfusion and normal perfusion.

2.2. Retinal Protein Expression at Various Days after RAO

After filtering, a total of 3189 proteins were identified by LC-MS/MS, and 2360 pro-
teins were identified and quantified in at least 70% of the samples within each group
(Tables S1 and S2). The data output from MaxQuant is available in Table S3. The principal
component analysis (PCA) plot showed how day one tended to produce marginal separa-
tion from the controls, whereas day three was clearly distinguished from the control retinas,
and day six was even more so (Figure 4).
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Figure 4. PCA plot (principal component analysis). Retinal samples with retinal artery occlusion
collected at day three and day six could be distinguished from the control samples based on their
proteomes. There was little overlap between samples with retinal artery occlusion on day one and
control samples.

The number of proteins with a statistically significant change between the control and
ischemic retina groups was 36 on day one, 86 on day three, and 557 on day six (Figure 5,
Tables S4–S6). The protein changes on day six included 251 upregulated and 306 down-
regulated proteins. On day six, 74 proteins were upregulated with a fold change > 1.75
(Table 1).
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Figure 5. Volcano plots for proteins from ischemic retina samples compared to controls (A) day one,
(B) day three, (C) day six. Significantly regulated proteins with p-value < 0.05 are colored in red.
X-axis corresponds to log2(Fold-change).
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Table 1. Upregulated proteins with fold-change > 1.75 on day six detected by LC-MS/MS, ordered
according to fold-change.

Fold
Change Protein ID Protein Name Gene

Name p-Value Upregulated on
Other Timepoints

83.56 Q14315-2 Filamin-C FLNC <0.00001 Day 1 + Day 3
14.70 P13796 Plastin-2 LCP1 0.00000
14.42 P14287 Osteopontin SPP1 <0.00001 Day 3
11.91 P48819 Vitronectin VTN 0.00043
10.10 Q14764 Major vault protein MVP <0.00001
8.79 P02751-1 Fibronectin FN1 0.00024
8.18 P06867 Plasminogen PLG 0.00131
7.41 P00915 Carbonic anhydrase 1 CA1 0.00487
6.14 P02675 Fibrinogen beta chain FGB 0.00123
5.80 P27594 Interferon-induced GTP-binding protein Mx1 MX1 0.00147
5.17 A7VK00 Interferon-induced GTP-binding protein Mx2 MX2 0.00050
5.12 P02679-2 Fibrinogen gamma chain FGG 0.00045
4.29 P19133 Ferritin light chain FTL 0.00001
4.23 Q29549 Clusterin CLU <0.00001 Day 1 + Day 3
3.67 O75369-2 Filamin-B FLNB <0.00001
3.65 P00450 Ceruloplasmin CP 0.00406
3.46 P18650 Apolipoprotein E APOE <0.00001
3.39 P02067 Hemoglobin subunit beta HBB 0.00010 Day 1 + Day 3
3.07 O62839 Catalase CAT 0.00171
3.01 Q6P1M3 Lethal(2) giant larvae protein homolog 2 LLGL2 <0.00001 Day 3
2.91 Q764M5 Signal transducer and activator of transcription 1 STAT1 0.00001
2.82 O15143 Actin-related protein 2/3 complex subunit 1B ARPC1B 0.00014 Day 3
2.81 Q19S50 Signal transducer and activator of transcription 3 STAT3 <0.00001 Day 3
2.69 P01965 Hemoglobin subunit alpha HBA1 0.00083
2.68 Q15417 Calponin-3 CNN3 0.00003
2.65 P19620 Annexin A2 ANXA2 <0.00001
2.62 Q7M2W6 Alpha-crystallin B chain CRYAB 0.00002 Day 3
2.61 Q29095 Prostaglandin-H2 D-isomerase PTGDS 0.00048
2.58 P17931 Galectin-3 LGALS3 0.00001
2.55 Q8MJ14 Glutathione peroxidase 1 GPX1 0.00834
2.50 P19619 Annexin A1 ANXA1 <0.00001 Day 1 + Day 3
2.50 Q96TA1-2 Niban-like protein 1 FAM129B 0.00004
2.39 P18648 Apolipoprotein A1 APOA1 0.00259
2.37 P50447 Alpha-1-antitrypsin SERPINA1 0.00874
2.35 P02794 Ferritin heavy chain FTH1 0.00106
2.28 P37802 Transgelin-2 TAGLN2 <0.00001 Day 3
2.27 P29700 Alpha-2-HS-glycoprotein AHSG 0.00990
2.26 P02543 Vimentin VIM <0.00001 Day 3
2.25 P08758 Annexin A5 ANXA5 <0.00001
2.23 Q96CX2 BTB/POZ domain-containing protein KCTD12 KCTD12 0.00020
2.20 Q9BUF5 Tubulin beta-6 chain TUBB6 0.00521
2.17 P21333-2 Filamin-A FLNA <0.00001 Day 3
2.12 Q9BX66-9 Sorbin and SH3 domain-containing protein 1 SORBS1 0.00002
2.11 Q96HF1 Secreted frizzled-related protein 2 SFRP2 <0.00001 Day 3
2.09 Q9H223 EH domain-containing protein 4 EHD4 0.00017
2.02 O00161 Synaptosomal-associated protein 23 SNAP23 0.00038
1.99 P46940 Ras GTPase-activating-like protein IQGAP1 IQGAP1 <0.00001
1.98 P14136-3 Glial fibrillary acidic protein GFAP 0.00010
1.98 Q4FAT7 Beta-glucuronidase GUSB 0.00525
1.97 O00299 Chloride intracellular channel protein 1 CLIC1 <0.00001 Day 3
1.94 P40121 Macrophage-capping protein CAPG <0.00001
1.92 P27105 Erythrocyte band 7 integral membrane protein STOM 0.00128

1.92 P04439-2 HLA class I histocompatibility antigen, A-3
alpha chain HLA-A 0.00907
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Table 1. Cont.

Fold
Change Protein ID Protein Name Gene

Name p-Value Upregulated on
Other Timepoints

1.91 Q5GLZ8-6 Probable E3 ubiquitin-protein ligase HERC4 HERC4 0.00045
1.91 P21980-3 Protein-glutamine gamma-glutamyltransferase 2 TGM2 0.00415
1.89 O77564 Glutamate carboxypeptidase 2 FOLH1 0.00466
1.87 P84095 Rho-related GTP-binding protein RhoG RHOG 0.00114

1.86 Q06210-2 Glutamine–fructose-6-phosphate
aminotransferase [isomerizing] 1 GFPT1 0.00918

1.85 O15511 Actin-related protein 2/3 complex subunit 5 ARPC5 0.00003 Day 3
1.85 Q96KP4-2 Cytosolic non-specific dipeptidase CNDP2 <0.00001
1.84 Q14254 Flotillin-2 FLOT2 0.00001 Day 3
1.84 Q29099 Polypyrimidine tract-binding protein 1 PTBP1 0.00006
1.84 Q9UNF1-2 Melanoma-associated antigen D2 MAGED2 0.00026
1.84 Q5TZA2 Rootletin CROCC <0.00001
1.82 P30043 Flavin reductase (NADPH) BLVRB 0.00043 Day 3
1.82 Q863Z0 Proteasome activator complex subunit 2 PSME2 0.00571
1.82 P62495-2 Eukaryotic peptide chain release factor subunit 1 ETF1 0.00009

1.80 Q09666 Neuroblast differentiation-associated
protein AHNAK AHNAK 0.00003

1.80 P09571 Serotransferrin TF 0.00407
1.78 Q5PXT2 LIM and cysteine-rich domains protein 1 LMCD1 0.00044
1.77 Q64L94 Proteasome activator complex subunit 1 PSME1 <0.00001
1.77 Q29116-2 Tenascin TNC 0.00977
1.77 Q6NZI2 Polymerase I and transcript release factor PTRF 0.00001
1.76 P09493-10 Tropomyosin alpha-1 chain TPM1 0.00008

Several of the regulated proteins on day six were also identified as being regulated on
day one or three (Table 1). A number of proteins, including clusterin, osteopontin, annexin
A1, and the signal transducer and activator of transcription 3 (STAT3), showed increasing
label-free quantification (LFQ) values over time with a maximum observed intensity on
day six (Figure 6).
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statistically significant upregulated proteins compared to controls.

2.3. Protein–Protein Interaction Network

A protein–protein interaction network was created for the most upregulated proteins
on day six, and more specifically for 74 proteins with a fold-change > 1.75 using STRING.
Among these proteins, a major cluster of 27 proteins was identified, including vitronectin,
vimentin, glial fibrillary acidic protein (GFAP), clusterin, galectin-3, STAT3, annexin-A1,
and osteopontin (Figure 7). The large majority were involved in either the immune system
process, platelet degranulation, and/or response to stress.
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2.4. Functional Enrichment Analyses

To gain further insights into the potential functional implications of differentially
expressed proteins, functional enrichment analyses were performed on the up- and down-
regulated proteins on day six. The number of statistically significant enriched Reactome
pathways with a false discovery rate (FDR) < 0.05 were 234 for the upregulated proteins
and 166 for the downregulated proteins (Tables S7 and S8). Proteins that were not found in
Reactome are listed in Table S9.

Among the upregulated proteins, enriched pathways included the immune system
(82 proteins, FDR 6.48 × 10−6), cellular response to stress (49 proteins, FDR 1.92 × 10−9),
and hemostasis (29 proteins, FDR 6.77 × 10−3) which are presented along with the most
significant sub-pathways in a hierarchical manner (Figure 8). Other upregulated pathways
included axon guidance, the metabolism of proteins, the metabolism of RNA, and apoptosis
(Figure 8). All proteins in these pathways are listed in Table S10.
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Figure 8. Enriched pathways and their sub-pathways based on all upregulated proteins on day six,
non-exhaustive. Pathways are presented in accordance with the Reactome hierarchical organization.
Coloring refers to the number of regulated proteins, and the x-axis is the statistical significance
expressed as −log10(FDR).

For the downregulated proteins on day six, the enrichment of several pathways in the
neuronal system was evident (Figure 9). Pathways in the downregulated proteins included
transmission across chemical synapses (37 proteins, FDR 2.95 × 10−13), neurotransmitter
receptors and postsynaptic signal transmission (23 proteins, FDR 7.55 × 10−7), and neu-
rotransmitter release cycle (14 proteins, FDR 1.43 × 10−8). The neurotransmitter release
cycle included the proteins synaptotagmin-1 (fold change = 0.72) and complexin-1 (fold
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change = 0.50), while neurofilament light polypeptide (fold change = 0.79) was included in
transmission across chemical synapses.
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Other enriched pathways in the downregulated proteins included the citric acid
(TCA) cycle and respiratory electron transport (39 proteins, FDR 7.37 × 10−14) and the
phototransduction cascade (7 proteins, FDR 5.51 × 10−4). All the proteins in these pathways
are listed in Table S10.

2.5. Immunohistochemistry

For validation, clusterin, vitronectin, and vimentin were investigated with immuno-
histochemistry (Figure 10). Clusterin was tested on both days one and six, while vitronectin
and vimentin were tested on day six only as these were not identified as upregulated on
day one by the LC-MS/MS. In RAO, the staining for clusterin was stronger in the inner
retinal layers (ganglion cell layer, inner plexiform layer, inner nuclear layer, outer plexiform
layer) compared to the control, and staining was stronger on day six compared to day one.
On day six, an increased expression of vitronectin was observed in the inner nuclear layer
and, to a lesser extent, in the inner plexiform and ganglion cell layer of the ischemic retinas
with RAO. RAO was associated with a strong expression of vimentin in the retinal Müller
cells on day six.
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Figure 10. Immunohistochemical staining of ischemic retinas due to RAO and control retinas.
(A–D) In RAO, an increased expression of clusterin was observed in the inner retinal layers on days
one and six. More specifically, RAO was associated with increased levels of clusterin in the nuclei of
the ganglion cell layer and the inner nuclear layer. (E,F) The content of vitronectin on day six was
elevated in the inner retinal layers with strong expression in the nuclei of the inner nuclear layer.
(G,H) Staining for vimentin (day six) with strong expression in Müller cells in the ischemic retinas.
Pronounced gliosis in retinal Müller cells was observed in RAO. Scale bar 30 µm. GCL = ganglion
cell layer, IPL = inner plexiform layer, INL = inner nuclear layer, OPL = outer plexiform layer,
ONL = outer nuclear layer, PRL = photoreceptor layer.
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Furthermore, the retinas with artery occlusion showed clear signs of ischemia with
pronounced retinal atrophy and the disruption of the architecture of inner retinal layers,
which were most prominent on day six compared to day one.

3. Discussion

We presented a model of successfully induced RAO in pigs using a standard argon
laser. LC-MS/MS revealed differentially expressed proteins one, three, and six days after
occlusion, and the number of proteins increased considerably during this time period.
Enriched pathways on day six included immune system pathways and cellular response
to stress.

Occlusions were validated by fundus photography and FA, both of which showed
typical signs of RAO with ischemia. Our findings are very similar to clinical observations
in patients with RAO and in previous animal models [12–14]. Some reperfusion and
retrograde filling began to appear on day five—long after irreversible damage had occurred
and in line with the clinical natural history of RAO [15,16]. In other studies using almost
the same model, Goldenberg-Cohen et al. [10] and Kramer et al. [7] induced RAO by a laser
combined with the photosensitizing agent Rose Bengal and found reperfusion to occur
after only six hours. The various existing animal models of RAO have been discussed
thoroughly elsewhere [11]. The advantages of the model chosen in this study include
the similarity of pigs with humans, the occlusion of the retinal artery only without the
pressure-induced damage of any structures, a noninvasive procedure, and the absence of
dye that is less suited for proteomics.

In this study, the differences in proteins were most pronounced on day six, more subtle
on day three, and especially on day one. As was evident from the immunohistochemical
staining for clusterin and the LFQ values of several proteins, the protein levels most likely
increased over time after the occlusion. Alternatively, the pronounced protein changes
observed on day six, as opposed to days one and three, may potentially be driven by
reperfusion damages. Interestingly, a previous study found only very limited changes in
their short ischemic period, but after one and seven days of subsequent reperfusion, a large
number of differentially expressed genes were identified [17]. The authors hypothesized
that many of the observed changes in an ischemia/reperfusion model were oxygen/energy-
dependent, and indeed, it is often the reperfusion rather than ischemia itself that causes
much of the damage [17,18]. The majority of previous experimental studies are based on
a short duration of ischemia, often followed by reperfusion. In that set-up, the studied
molecular changes may be caused by reperfusion, but it might very well be the changes
taking place during the ischemic phase that is most relevant in retinal artery occlusion as
irreversible damage and subsequent blindness of the retina has already occurred at the
time of reperfusion [11].

The pathway analysis of a large number of differentially expressed proteins on day six
confirmed the upregulation of proteins involved in hemostasis which would be expected
in a successful model of artery occlusion. Other enriched pathways included the innate
immune system and cytokine signaling in immune system processes herein, such as IL-1
and IL-12 signaling. The activation of the immune system is seen in ischemia/reperfusion
damage in general and has received much attention within the field of cerebral ischemia,
including the role of cytokines and the neuroprotective potential of immunomodulation [19].
For instance, the potential of IL-1 receptor antagonists has been investigated [19].

Immune system activation has also been identified in retinal ischemia. Although
different from those shown in our study, Kramer et al. [7] demonstrated an increase in the
proinflammatory cytokines TNF-α, IL-6, and MIP-2 (murine equivalent to IL-8) within the
first day and normalizing at day seven in their animal study on laser-induced central RAO
in mice. The source of this peak of protein changes after a few hours, as opposed to six
days in the present study, may be the relatively short ischemic period of only six hours.

The enrichment analysis also showed a downregulation in pathways in the neuronal
system, such as transmission across chemical synapses. A previous proteomic study
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by Tian et al. [20] used a mouse model based on high intraocular pressure with only
60 min of ischemia and also found synapse-related protein networks to be downregulated,
including the protein synaptotagmin-1 when simultaneous retinal atrophy was evident.
Likewise, synaptotagmin-1 was also downregulated in our study, as were complexin-1 and
neurofilament light polypeptide, which was also involved in transmission across chemical
synapses and found in previous studies from our group on retinal vein occlusion [21,22].
The downregulation of synaptotagmin-1, complexin-1, and neurofilament light polypeptide
is likely to reflect degenerative changes following ischemia and is in line with the observed
downregulation of the phototransduction cascade. It is worth noting that the study by
Tian et al. [20] additionally found annexin A1, GFAP, and vimentin to be upregulated,
which is consistent with our findings.

We found both vimentin and GFAP to be upregulated (by fold-change 2.26 and
1.98, respectively), and vimentin was validated by IHC. Vimentin and GFAP are both
intermediate filaments and are well known to be upregulated in Müller cells and astrocytes
in general in the CNS as a response to stress, for instance, ischemia [23–26]. More specifically,
elevated levels of vimentin and GFAP have previously been identified in a pig model of
ischemic reperfusion induced by high intraocular pressure [23].

Clusterin was upregulated on days one and six and validated by IHC. Clusterin acts
as a chaperon, relates to proteostasis (protein homeostasis), and is linked to protective
mechanisms associated with the survival of the cell and organism [27]. It has been shown to
be associated with a wide range of diseases, including ophthalmic diseases such as retinal
vein occlusion, diabetic retinopathy, and age-related macular degeneration [6]. In addition,
clusterin has previously been shown to be upregulated in ischemic tissue, including the
retina, although the latter seems to have received less attention [28].

Likewise, vitronectin has also been found to be increased in cerebral ischemia [29].
Vitronectin is predominantly produced in the liver and can be released into the bloodstream.
In the case of acute tissue injury, it can contribute to thrombus formation, the stability of
vessel occlusion, and the following immune and inflammatory responses [30]. A recent
study on induced strokes in mice found the leakage of vitronectin into the brain to be
detrimental but in female mice only [31].

Numerous of the most upregulated proteins and those included in the major cluster
in our study were found in previous studies from our group on retinal vein occlusion,
which also resulted in retinal ischemia. Proteins that were upregulated in our study
and in experimental retinal vein occlusion included fibronectin, annexin A1, galectin-3,
alpha-crystallin B chain, vimentin, annexin A2, STAT1, GFAP, osteopontin, vitronectin,
and clusterin [21,22]. Specifically, aqueous fibronectin was recently found to correlate
with the severity of macular edema and visual acuity in patients with branch retinal
vein occlusion [32]. Further studies are encouraged to elucidate the significance of these
proteins in RAO and retinal ischemia in general and further on the potential of future
treatment targets.

The regulated proteins identified by mass spectrometry were not corrected for multiple
hypothesis testing; however, the p-value was lowered to 0.01. As the study was based
on the discovery of proteomics in a new model, the priority was to minimize the risk of
type two errors. Furthermore, we judged that a minority of false positives would not
significantly change the findings of important biochemical pathways [33].

The pathway analysis was carried out separately for the up and down-regulated
proteins due to their involvement in different pathways, and a combined analysis was,
therefore, less clear; however, it did not result in drastically different results.

The more subtle changes in proteins on day one could potentially be further inves-
tigated with more power, i.e., the use of more animals. However, the use of animals is
always a balancing of potential benefits and ethical considerations, especially as pigs are
large and expensive animals.



Int. J. Mol. Sci. 2023, 24, 7919 13 of 17

4. Materials and Methods
4.1. Animals

Thirteen female Danish Landrace pigs of approximately 20 kg were used for this exper-
iment. All animals were anesthetized with an intramuscular injection of 5 mL Zoletil 50 Vet
(a mixture of tiletamine 6.25 mg/mL and zolazepam 6.25 mg/mL; Virbac, Carros, France),
ketamine 6.25 mg/mL (Ketaminol Vet; MSD, Rahway, NJ, USA), butorphanol 1.25 mg/mL
(Dolorex; MSD, Rahway, NJ, USA), and xylain 6.25 mg/mL (Rompun Vet; Bayer, Lev-
erkusen, Germany. The eyes were anesthetized with oxybuprocaine hydrochloride 0.4%
(Bausch & Lomb, Rochester, NY, USA) and tetracaine 1% (Bausch & Lomb, Rochester,
NY, USA), followed by dilatation with tropicamide 0.5% (Mydriacyl; Bausch & Lomb,
Rochester, NY, USA) and phenylephrine 10% (Metaoxidrin; Bausch & Lomb, Rochester, NY,
USA). To prevent the corneal surface from drying and, thereby, compromising the view
of the retina, Systane Ultra eye drops (Polyethylene Glycol 400, Propylene Glycol; Alcon,
Copenhagen, Denmark) were applied regularly. This study was approved by the Danish
Animal Experiments Inspectorate (permission number 2019-15-0201-01651).

4.2. Induction of RAO

In each animal, RAO was induced in the right eye using a standard argon laser
(532 nm), which was applied by indirect ophthalmoscopy directly on the superior branch
retinal artery adjacent to the optic disc. The laser was applied until the stagnation of
retinal blood flow and paleness consistent with retinal ischemia appeared. Approximately
200 applications with an exposure of 200–300 ms were used for each occlusion. The power
gradually increased to 400–600 mW. In the left eye, which served as a control, an identical
area of laser applications was created in a corresponding area but without major vessels.

4.3. Validation of RAO

Experimental RAO was considered successful when indirect ophthalmoscopy showed
the formation of thrombotic material, the segmentation of the blood column in the artery,
and paleness of the retina supplied by the occluded branch artery, which was consistent
with retinal ischemia. In all pigs, this occlusion was further validated by fluorescein
angiography (FA) (Heidelberg fluorescein angiography and RETI-map-animal, Roland
Consult, Berlin, Germany) and fundus photographs (Optomed Aurora, Oulo, Finland)
prior to enucleation or the day before.

4.4. Sample Preparation

For proteomic analysis, eyes with RAO were collected on day one (n = 4), day three
(n = 2), and day six (n = 5), along with the control eyes (n = 11). The animals were euthanized
immediately after enucleation. The eyes were placed on ice, and the globes were opened
by incisions into the sclera two mm posterior to the limbus. The anterior compartment and
the vitreous body were removed. For LC-MS/MS, retinas were peeled from the eyecup,
placed in an Eppendorf tube, and stored at −80 ◦C until further use.

4.5. Mass Spectrometry
4.5.1. Preparation of Samples for Proteomic Analysis

Twenty-two pig retinal samples (11 controls and eyes with RAO, including four from
day one, two from day three, and five from day six) were prepared for proteomic analysis
using the suspension trapping (STrap) method [34]. In short, the retinal tissue was dissolved
in a 600 µL lysis buffer (5% SDS, 50 mM TEAB) and sonicated on ice. After incubation
for 5 min. at 99 ◦C with agitation (600 rpm), samples were centrifuged at 16,000× g for
10 min, and the protein concentration was measured by infrared spectrometry as previously
described [35]. One hundred µg of each sample was processed with S-Trap mini spin
columns from Protifi (Huntington, NY, USA) following the protocol as described by the
manufacturer. Alkylation was performed using TCEP and iodoacetamide before tryptic
digestion, which was performed overnight at 37 ◦C in a wet chamber. Peptides were then
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eluded from the columns and quantified by fluorescence as described [35]. Finally, the
peptides were dissolved at a concentration of 1 µg/µL in 0.1% formic acid.

4.5.2. Liquid Chromatography—Tandem Mass Spectrometry

Analyses were performed by injecting 2 µg in quadruplicate into the mass spectrometry
platform consisting of an Ultimate 3000 nano LC connected to an Orbitrap Fusion Tribrid
MS (Thermo Fisher Scientific, Waltham, MA, USA). Peptides were eluted over two hours
by mixing buffer A (99.9% water, 0.1% formic acid) with increasing concentrations of buffer
B (99.9% acetonitrile, 0.1% formic acid). This universal method was used with the settings
described [36].

A total of 88 raw data files were entered into MaxQuant version 1.6.6.0 for LFQ
analysis [37] and searched against the Uniprot Sus scrofa database and the Homo sapiens
database downloaded on 8 November 2020. Generally, the default settings were used in
MaxQuant, including a false discovery rate (FDR) of 0.01 for protein identification and
peptide spectrum matches. Digestion with Trypsin was used instead of Trypsin/P, an LFQ
minimum ratio count was set to 1, and the match between the runs function was used.

4.5.3. Statistical Analysis

Data were further processed with Perseus version 1.6.14.0 (Max Planck Institute
of Biochemistry, Martinsried, Germany) [38] and filtered from potential contaminants,
proteins identified in the reverse database, and proteins only identified by post-translational
modifications. At least two unique peptides were required for identification. Data were
log2 transformed, and the mean of the valid values in the technical replica was used as
the protein level in each biological sample. Only proteins identified in at least 70% of the
biological samples within each group were included. The median coefficient of variation
in the proteins in each sample ranged between 13.7% and 19.9%, with a mean of 16.2%.
Student’s t-test was used for the statistical analysis of protein changes. Proteins were
considered significantly regulated if p < 0.01.

Unsupervised PCA was obtained through Perseus to assess trends in proteome
changes throughout the different days and was compared to the control samples. Prior
to PCA, data were filtered to include proteins that could be identified in all samples. Vol-
cano plots were produced in Perseus. Scatter plots of the LFQ intensity levels for selected
proteins were made in GraphPad Prism 9.5.1 (GraphPad Software, La Jolla, CA, USA).

4.5.4. Bioinformatic Analyses

Regulated proteins on day six were selected for further bioinformatic analyses. The
protein–protein interaction network and cluster analysis were performed in STRING ver-
sion 11.5 [39] for proteins with a fold-change > 1.75. The UniProt Homo sapiens accession
number was used, and the minimum required interaction score was set to 0.400. The
network was clustered by MCL using an inflation parameter of 2.5. Functional enrichment
analyses were performed in Reactome (Pathway Browser version 3.7, database release
83) [40]. Separate analyses were carried out for all the up and downregulated proteins.
Based on these data, a bar chart was made in Microsoft Excel version 16.7 and Adobe
Illustrator version 23.0.2.

4.6. Immunohistochemistry

Immunohistochemistry was performed to compare RAO at day one (n = 1) vs. control
(n = 1) and RAO at day six (n = 1) vs. the control (n = 1). Complexes comprised the retina,
choroid, and sclera were immersed in a fixative solution containing 750 mL 0.1 M phosphate
buffer, 100 mL formalin, and 150 mL distillated water for 12 h at 4 ◦C. Hereafter, the retinas
were stored in a phosphate buffer pH 7.4 at 4 ◦C until further use. Immunohistochemistry
was performed as previously described [21] with a mouse monoclonal IgG anti-vimentin
antibody (AB8069, Abcam, Cambridge, UK) 1:2000, a rabbit polyclonal anti-clusterin
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antibody (MyBiosource, San Diego, CA, USA) 1:400, and a mouse monoclonal IgG anti-
vitronectin antibody (66398-1-Ig, Proteintech, Manchester, UK) 1:400.

5. Conclusions

The presented animal model proved suitable for the proteomic analyses of RAO.
RAO was successfully induced, lasted for several days, and resulted in the regulation of
numerous proteins as identified by LC-MS/MS, especially on day six. Of these, various
proteins have been previously linked to ischemia, including clusterin, vimentin, and
vitronectin. Furthermore, several enriched pathways corresponded well with a reaction
to RAO, including cellular response to stress, hemostasis, innate immune response, and
cytokine signaling, as well as the downregulation of proteins involved in transmission
across chemical synapses and visual phototransduction.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms24097919/s1.
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