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TO THE EDITOR:

EBV-positive DLBCL frequently harbors somatic mutations
associated with clonal hematopoiesis of indeterminate potential
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Clonal hematopoiesis (CH) is a common aging-related phenomenon in which hematopoietic stem cells
acquire somatic gene mutations.1,2 CH of indeterminate potential (CHIP) designates a term for CH
without cytopenia and dysplastic hematopoiesis.3 Somatic variants in DNMT3A, TET2, and ASXL1 (all
epigenetic regulators) account for over 75% of mutations involved in CHIP.1,4,5 They are regularly found
in myeloid malignancies but much less frequently in lymphoid malignancies such as diffuse large B-cell
lymphoma (DLBCL), the most common type of B-cell lymphoma.

Epstein-Barr virus (EBV)-positive DLBCL is a distinct entity in the recent World Health Organization
classification of lymphoid neoplasms.6 We identified 104 cases of EBV-positive DLBCL defined by
positive expression of EBV-encoded small RNA with a cutoff of 10% tumor cells.7 To illuminate the
mutational landscape, we performed targeted RNA-seq using an Illumina TruSight RNA Pan-Cancer
Panel (Genomic Testing Cooperative, Irvine, CA) with previously described methods.8 Sequencing
was successful for 99 cases, which predominantly had a nongerminal center cell-of-origin (77%,
supplemental Table 1). We compared the mutational landscape in these EBV-positive cases to that in
381 EBV-negative DLBCL cases sequenced with the same panel8 and to those revealed by DNA
sequencing in our (387 EBV-negative DLBCLs)9 and others’ previous large-scale studies (Table 1) in
which EBV status in DLBCL was not explicitly acknowledged.10-12 We found that, first, TET2, ASXL1,
and DNMT3A, the top 3 CHIP-related genes, were mutated in 39.4%, 19.2%, and 18.2% of EBV-
positive DLBCL cases (Figure 1A), in contrast to the significantly lower 4.7%, 0.26%, and 0.52% in
EBV-negative DLBCL cases overall and the 3.3%, 0%, and 0% in the EBV-negative activated B-cell–
like (ABC) subset sequenced by the same targeted RNA-seq panel. In previous genomic sequencing
studies, TET2, ASXL1, and DNMT3A mutations occurred only in 8.1%, 3.1%, 0.9% of the Schmitz et al
cohort,10 2.24%, 0.75%, 0% of the Chapuy et al cohort,11 7.0%, 0%, 4.9% of the Reddy et al cohort,12

and 8.27%, 0.52%, 3.62% of EBV-negative DLBCL cases in our DNA sequencing cohort. Second,
TP53, the fourth most frequently mutated gene in CHIP,2,5 were mutated in ~42% of EBV-positive
ber 2022; prepublished online on Blood
; final version published online 3 April
s.2022008550.

study.
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Table 1. Top 10 recurrent genetic mutations by targeted RNA-seq in our EBV-positive or -negative DLBCL cases and by DNA sequencing in

other DLBCL cohorts

Group

EBV-positive DLBCLs,

n = 99

EBV-negative

DLBCLs, n = 381

Reddy et al, 2017,

n = 1001

Schmitz et al, 2018,

n = 574

Chapuy et al, 2018,

n = 304

Rank Gene % Gene % Gene % Gene % Gene %

1 TP53 42.4 KMT2D 24.4 KMT2D 24.8 KMT2D 31.4 KMT2D 24.7

2 TET2 39.4 MYD88 16.8 BCL2 17.4 PIM1 27.5 PIM1 22.0

3 APC 31.3 TP53 16.5 MYD88 17.2 MYD88 26.8 TP53 21.4

4 PTPN11 20.2 CARD11 11.8 HIST1H1E 16.9 TP53 23.0 MYD88 18.1

5 ASXL1 19.2 EZH2 10.0 PIM1 16.6 HLA-B 21.6 BCL2 17.4

6 DNMT3A 18.2 ACACA 8.9 CREBBP 11.4 BTG2 18.3 CREBBP 16.8

7 SMAD4 18.2 CD79B 8.4 CARD11 11.3 TMSB4X 16.7 CD79B 14.5

8 SOCS1 16.2 BCL10 7.9 SPEN 10.1 TNFAIP3 16.7 BTG1 14.1

9 ETV6 16.2 CD58 6.6 TP53 9.9 HLA-A 16.0 SGK1 14.1

10 STAG2 15.1 CREBBP 6.0 ARID1A 9.7 B2M 15.9 TNFRSF14 13.8
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DLBCL cases (compared to the 16.5% frequency in overall
EBV-negative DLBCL cases and the 13.3% in EBV-negative ABC
subset, supplemental Figure 1A-B), representing the highest TP53
mutation rate in hematologic cancer. Most (88.2%) TP53 muta-
tions occurred in the DNA binding domain and were predominantly
missense mutations (88.3%), whereas 62.5% of mutations in other
p53 domains were nonsense mutations (supplemental Table 2).
p53 inactivation and the expression of oncogenes from EBV in
aging hematopoietic stem cells or lymphoid progenitor cells could
have facilitated DLBCL pathogenesis. Third, MYD88 mutations
occurred in only 4 patients with EBV-positive DLBCL (only 1 had
the L265P mutation). The mutation rate (4%) was significantly
lower than the expected ~20% frequencies in overall DLBCL
(Table 1) and 34% in our ABC subset of EBV-negative cases
(supplemental Figure 1B). Finally, the landscape of genetic drivers
in EBV-positive DLBCL was also different from that of other EBV-
associated cancers, including Burkitt lymphoma,13 extranodal NK/
T-cell lymphoma,14 EBV-positive PTLD, nasopharyngeal carci-
noma,15,16 and gastric cancer.17,18 Despite the lacking of normal
tissues and blood or bone marrow samples, these data suggest
that somatic mutations in CHIP genes, including TP53, TET2,
ASXL1, and DNMT3A, may play roles in EBV-mediated DLBCL
pathogenesis. This retrospective study was conducted following
data collection protocols involving no more than minimal risk to
subjects with a waiver of the written consent requirement approved
by the institutional review boards of Duke University and each
participating institution.

Niroula et al5 have classified CHIP variants into myeloid-CHIP
(M-CHIP, 56 genes) and lymphoid-CHIP (L-CHIP, 235 genes)
based on their recurrence in myeloid and lymphoid malignancies,
and demonstrated that M-CHIP vs L-CHIP carriers have stark dif-
ferences in the incidence of myeloid vs lymphoid neoplasm
development. The 3 most frequent CHIP, DNMT3A, TET2, and
ASXL1 mutated in 87% of individuals with M-CHIP and 73% of all
CHIP individuals,5 are M-CHIP and frequent driver mutations in
myelodysplastic syndrome, acute myeloid leukemia, and myelo-
proliferative neoplasms.3,21,22 Some less frequent CHIP variants
are lymphoid driver mutations and proposed as L-CHIP,5 including
KMT2D, SPEN, ARID1A, and MYD88 frequently mutated in
DLBCL.10-12 Yet, both TET2 and DNMT3A are frequently mutated
11 APRIL 2023 • VOLUME 7, NUMBER 7
in some lymphoid neoplasms of T-cell lineage including angioim-
munoblastic T-cell lymphoma/peripheral T-cell lymphoma of follic-
ular T-helper cell origin,23 and both TET2 and ASXL1 mutation
frequencies are high in plasmablastic lymphoma.24 Among the top
10 mutated genes in our EBV-positive cases (Figure 1A), 7 are
M-CHIP genes (TP53, TET2, PTPN11, ASXL1, DNMT3A, ETV6,
and STAG2) in addition to 1 L-CHIP (SOCS1). In contrast, 8 of the
12 most frequently mutated genes in EBV-negative DLBCL in
supplemental Figure 1 are L-CHIP genes in addition to 3 M-CHIP
(TP53, EZH2, and CREBBP).5 EBV-positive DLBCL may repre-
sent the first identified B-cell lymphoma subtype overwhelmingly
associated with M-CHIP and high frequencies of variants in all the
3 most common CHIP driver genes, crossing the line for the
lineage of incident malignancies drawn between M-CHIP and
L-CHIP drivers.

Moreover, we have noted that CHIP mutations are frequently found
in another DLBCL population. Lee et al25 identified 6 genes that
are more significantly altered in DLBCL with African ancestry than
DLBCL with European ancestry: ATM, MGA, SETD2, TET2,
KMT2C, and DNMT3A; all 6 genes had somatic alterations in over
10% of DLBCL with African ancestry. These results were obtained
from an unsupervised model-based Admixture global ancestry
analysis of the Reddy et al cohort.12 It is striking that all 6 genes
more frequently mutated in DLBCL with African ancestry are CHIP
genes: TET2 and DNMT3A are among the 3 dominant CHIP
genes, SETD2 is among the top 25 M-CHIP genes, and ATM,
MGA, and KMT2C are among the top 11 L-CHIP genes.5 Of note,
ATM is the most commonly altered gene in DLBCL with African
ancestry (22%, compared to 7.75% in DLBCL with European
ancestry, 13.1% in our EBV-positive DLBCL cases, 4.65% in our
EBV-negative DLBCLs, and 3.5% and 2.2% in two previously
reported large DLBCL cohorts10,11, respectively; Table 1). A single
nucleotide polymorphism in the TET2 locus (rs144418061, not
detected in our EBV-positive DLBCL cases) exclusively present in
individuals with African ancestry confers an over 2-fold increased
risk of CHIP.4 It is unclear whether this variant is associated with an
increased risk of subsequent DLBCL. Nonetheless, the reported
findings implicate that CHIP may play a more profound role in the
pathogenesis of DLBCL with African ancestry than DLBCL with
European ancestry.
RESEARCH LETTER 1309
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Figure 1. Mutation landscape in EBV-positive DLBCL and summary of putative premalignancies to lymphoid neoplasms. (A) Mutation distribution plots for the top 10

mutated genes by RNA-seq in 99 patients with EBV-positive DLBCL. (B) Schematic illustration of the 3 premalignant conditions as potential precursors to lymphoid neoplasms.

CHIP are regularly found in myeloid malignancies but much less frequently in lymphoid malignancies. Our study showed high frequencies of CHIP gene mutations in EBV-positive

DLBCL. Virtually all multiple myeloma (MM) and chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL) are preceded by MGUS and MBL, respectively19

(highlighted by solid outlines in the figure). There are 2 types of MGUS. The lymphoid type, secreting IgM, may progress to Waldenström macroglobulinemia (WM), DLBCL (most

likely the ABC subtype with MYD88 mutation), occasionally CLL/SLL, or amyloid light-chain amyloidosis. The nonimmunoglobulin M (IgM) type (secreting IgG, IgA, Ig light

chain only, IgD, or IgE) may progress to MM, plasmacytoma, or AL amyloidosis.20 MBL may progress to CLL/SLL, marginal zone B-cell lymphoma, or mantle cell lymphoma, and the

former 2 can transform into DLBCL. L-CHIP carriers have a higher risk of CLL/SLL and other lymphoid malignancies than individuals without L-CHIP.5 Therefore, all 3 types of

precursors can precede DLBCL and CLL/SLL.
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CHIP is now recognized as a potential hematologic premalignancy
condition, along with monoclonal gammopathy of undetermined
significance (MGUS) and monoclonal B-cell lymphocytosis (MBL).
MBL and MGUS represent expansions of lymphoid lineage-
committed cells (postgerminal center B cells or memory B cells),
whereas CHIP involves hematopoietic stem cells or less mature
progenitor cells.3 By definition, CHIP excludes MGUS and MBL,3

yet an individual with CH could have elevated monoclonal para-
protein (MGUS) or clonal B-cell populations (MBL). Like MGUS
and MBL, most patients with CHIP will never develop an overt
neoplasm. The rate of progression from CHIP to hematologic
cancer appears to be 0.5% to 1% per year, similar to MBL and
MGUS.3 As shown in Figure 1B, all 3 types of putative precursors
have the potential to precede DLBCL and chronic lymphocytic
leukemia/small lymphocytic lymphoma. In summary, different from
1310 RESEARCH LETTER
other DLBCL subtypes, EBV-positive DLBCL and DLBCL with
African ancestry have high frequencies of CHIP variants. CHIP can
be a precursor state for a broader range of hematologic cancer,
including both myeloid and lymphoid neoplasms. However, myeloid
or lymphoid malignancies do not have an obligate CHIP precursor.
The findings in our study may help understand the lymphoma-
genesis of EBV-positive DLBCL and DLBCL with African ancestry
and have therapeutic implications.
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