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SOUP: Spatial-Temporal Demand Forecasting
and Competitive Supply in Transportation

Bolong Zheng, Qi Hu, Lingfeng Ming, Jilin Hu, Lu Chen, Kai Zheng, Christian S. Jensen, Fellow, IEEE

Abstract—We consider a setting with an evolving set of requests for transportation from an origin to a destination before a deadline
and a set of agents capable of servicing the requests. In this setting, an authority assigns agents to requests such that the average idle
time of the agents is minimized. An example is the scheduling of taxis (agents) to meet incoming passenger requests for trips while
ensuring that the taxis are empty as little as possible. We address the problem of spatial-temporal demand forecasting and competitive
supply (SOUP) in two steps. First, we build a granular model that provides spatial-temporal predictions of requests. Specifically, we
propose a Spatial-Temporal Graph Convolutional Sequential Learning (ST-GCSL) model that predicts requests across locations and
time slots. Second, we provide means of routing agents to request origins while avoiding competition among the agents. In particular,
we develop a demand-aware route planning (DROP) algorithm that considers both the spatial-temporal predictions and the
supply-demand state. We report on extensive experiments with real-world data that offer insight into the performance of the solution
and show that it is capable of outperforming the state-of-the-art proposals.

Index Terms—Spatial-temporal request forecasting, graph convolutional networks, route planning

F

1 INTRODUCTION

The near-ubiquitous deployment of smartphones has en-
abled transportation network companies such as Didi Chux-
ing [1], Uber [3], and Lyft [2] to operate ride-hailing plat-
forms that enable the servicing of transportation requests
by means of fleets of drivers. In this setting, drivers accept
requests and move to the origins of requests to complete
the requests. Such platforms have reduced significantly the
amounts of time drivers are idle and the amounts of time
spent waiting for service by prospective passengers, thus
improving the traffic efficiency of a city. In this setting,
historical requests provide insight into the movement pat-
terns of passengers and drivers, which is beneficial for many
applications such as traffic prediction, transportation supply
scheduling, and route planning.

We study the problem of spatial-temporal demand
forecasting and competitive supply (SOUP) in the con-
text of transportation services, which encompasses spatial-
temporal forecasting of service requests as well as the plan-
ning of routes for agents to active requests in a manner that
minimizes the average idle time of all agents. In addition
to drivers (agents) looking for passengers (requests), this
kind of competitive assignment problem occurs in urban

• Kai Zheng is the corresponding author.
• Bolong Zheng, Qi Hu, Lingfeng Ming are with Huazhong University of

Science and Technology.
E-mail: {bolongzheng, huqi11, lingfengming}@hust.edu.cn

• Jilin Hu and Christian S. Jensen are with Aalborg University.
E-mail: {hujilin, csj}@cs.aau.dk

• Lu Chen is with Zhejiang University.
E-mail: {luchen}@zju.edu.cn

• Kai Zheng is with University of Electronic Science and Technology of
China.
E-mail: {zhengkai}@uestc.edu.cn

Manuscript received April 19, 2005; revised September 17, 2014.

transportation settings, e.g., drivers looking for parking and
drivers looking for electric charging stations.

Our focus is on a population of drivers servicing an
evolving set of requests for transportation from an origin to
a destination within a given time window. The drivers are
often called taxis. Most existing proposals on crowdsourced
taxis focus either on how to better match taxis with service
requests to maximize global revenue [21], [38], [46] or on
how to learn taxi and passenger movement patterns from
trajectory data to guide route planning [9], [26], [29], [42].
Once a taxi drops off a passenger and completes a request,
no further instructions are provided to the taxi to reduce the
time it is idle before servicing the next request. Rather, taxis
may either stay stationary or may move towards regions
with expected high demand, which may lead to competi-
tion. We aim to develop a data-driven solution that assigns
a route to a taxi as soon as the taxi becomes idle such that
the average time taxis are idle is minimized.

Overall, we address two sub-problems:

1) Dynamic request patterns. In order to help agents ser-
vice new requests quickly, we need to know the request
patterns across the road network of a city. We first
choose carefully a spatial granularity for partitioning
a road network and a temporal granularity for parti-
tioning time in order to achieve accurate predictions
of requests. We then build a corresponding model that
predicts future requests.

2) Competition among agents. If all agents tend to move
towards hot regions to find new requests, they will
compete if the supply-demand ratio is high, which
causes the so-called “herding” effect. To eliminate this
effect, we develop a route planning strategy that assigns
agents to destinations with supply-demand balance.

The framework we propose consists of an offline com-
ponent and an online component. The former comprises
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TABLE 1
Summary of Notations

Notation Definition

G = (V,E,W ) A road network
A = {ai} A set of mobile agents
Ω = {ωj} A set of requests
Ii = {Iik} The set of idle times of agent ai
R = {ri} A set of regions on road network
T = {ti} A set of time slots during a day
r∗ The search route
Ggeo = (R,Ageo) A geographical region correlation graph
Gsem = (R,Asem) A semantic region correlation graph
Ageo, Asem The adjacency matrix of Ggeo and Gsem
C The number of channels for network input
Di

j The number of requests in ri in time slot tj
Di The request sequence of region ri
Dj The request vector at time slot tj
D̂t+1 The predicted request vector
Ψt The context feature vector at time slot t
Z, Z

′
The input and output of an STCM

cf The final context features
Γl The temporal convolution kernel at l-th layer
Θl The spectral kernel of GC at l-th layer

an end-to-end deep learning model, called spatial-temporal
graph convolutional sequential learning (ST-GCSL), that is
capable of predicting requests at different locations and
times. The online component comprises a demand-aware
route planning (DROP) algorithm that exploits both the
available spatial-temporal information on requests and the
supply-demand state to guide idle agents.

The major contributions are summarized as follows:
• We propose a spatial-temporal graph convolutional

model ST-GCSL that captures spatial, temporal, and
short-term spatial-temporal dependencies and accu-
rately predicts future requests.

• We develop DROP to assign routes that take into ac-
count both the available spatial-temporal request infor-
mation and the supply-demand state.

• We report on experiments that suggest that the pro-
posed ST-GCSL and DROP outperform state-of-the-art
baseline methods.

The rest of the paper is organized as follows. We detail
the problem addressed in Section 2. In Section 3, we present
the multi-level partitioning and the ST-GCSL algorithm.
Section 4 presents the DROP algorithm. The experimental
study is covered in Section 5. The related work is the topic
of Section 6. Finally, Section 7 concludes the paper.

2 PRELIMINARIES

We proceed to introduce the background settings and to
formalize the SOUP problem. Frequently used notation is
summarized in Table 1.

2.1 Settings
The problem setting encompasses four types of entities: a
road network, mobile agents (taxis), requests (passengers),
and an assignment authority.

Definition 1 (Road Network). A road network is defined as a
weighted directed graph G = (V,E,W ), where V is the set of

nodes, E is the set of edges, and W is the set of edge weights.
Each edge e(u, v) ∈ E that starts from node u to v has a positive
weight w(u, v) ∈W , i.e., travel time on the edge.

Definition 2 (Mobile Agent). We assume a population of mobile
agents A = {ai}, which is introduced into the system at once at
the beginning. Each ai has an original location li in the road
network and is labeled as empty. The population of agents is fixed
throughout the operation and has cardinality |A|.

Definition 3 (Request). We assume an evolving set of requests
Ω = {ωj} that are introduced into the system in a streaming
fashion. Each request ωj = (o, d, to, t∗) has an origin o, a
destination d, an introduction time to, and a maximum life time
(MLT) t∗. A request that is not serviced within t∗ time units after
t0 is automatically removed from the system, an outcome that we
call request expiration.

When a request enters the system, the agent that meets
the following conditions is assigned to the request by the
assignment authority:

1) The agent is empty.
2) The agent is the agent that is nearest to the request.
3) The shortest-travel-time from the agent to the request

enables the agent to reach the request before it expires.

Once an agent is assigned to a request, the agent is
labeled as occupied, and the request is removed from the
system. Then the agent moves to the request (for pick-up)
and then to the request destination (for drop-off), both along
the shortest-travel-time path in the road network. When the
agent arrives at the destination, it is labeled as empty. If
no agent meets the above conditions, the request remains in
the system until an agent meets the conditions or the request
expires.

Once an agent becomes empty, the assignment authority
plans a so-called search route r∗ for it to serve potential
requests. If the agent finishes traversing its search route
without having been assigned a new request, it is assigned
a new search route.

It is worth noting that an agent neither knows when
and where requests will appear nor has any information
about other agents. They are not allowed to communicate
or collaborate with each other.

Definition 4 (Idle Time). The idle time of an agent is the amount
of time from when the agent is labeled as empty to when it is
assigned to a request. An agent may experience multiple idle times
in a day, each corresponding to traveling on a search route. We
denote Ii = {Iik} as the set of idle times of agent ai’s search
routes, where Iik is the idle time of ai’s k-th search route r∗ik.

In order to reduce the idle time when planning a search
route for an idle agent, we build an accurate request data
model that the assignment authority can use to make deci-
sions. The data model is a software module that is shared
with all agents and that is used to represent request patterns
and predict future requests.

2.2 Problem Statement

The SOUP problem consists of two tasks: (1) spatial-
temporal demand forecasting; and (2) competitive supply.
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Fig. 1. The SOUP framework includes offline and online stages. In the
offline stage, we build a request forecasting data model that predicts
future requests. In the online stage, we compute search routes for idle
agents based on predicted requests.

Task 1 (Spatial-Temporal Demand Forecasting). Given a
historical set of requests Ω, we aim to build a request data model
to predict the numbers of requests at different locations and times.

Task 2 (Competitive Supply). Given a request data model, a set
of agents A with original locations, and a stream of requests Ω,
we aim to plan search routes for taxis to serve potential requests
and avoid the competition such that the average idle time of taxis
in Eq. 1 is minimized.

1∑
ai∈A |Ii|

∑
ai∈A

∑
Iik∈Ii

Iik (1)

2.3 Framework Overview

To solve the above problem, we design a search route
recommendation framework, as shown in Fig. 1. The pro-
cessing pipeline includes offline and online components. For
the former, we propose the ST-GCSL algorithm to train a
request data model based on historical request data, i.e., taxi
order data. The data model builds a partitioning of the road
network and predicts future requests for the partitions. For
the latter component, we propose the DROP algorithm that
computes a search route for an agent based on the location
and time when it becomes idle and the supply-demand state
in the near future.

Once an agent is assigned to a request, it travels to the
request for pickup and travels to the request’s destination
for dropoff. Afterwards, the assignment authority provides
the agent with a search route. We limit our discussion to the
forecasting and search processes, and we omit the details on
the assignment of agents to requests.

3 SPATIAL TEMPORAL REQUEST FORECASTING

We proceed to introduce an end-to-end deep learning
model, called spatial-temporal graph convolutional sequen-
tial learning (ST-GCSL), to predict where and when requests
are likely to appear. First, we introduce a spatial-temporal
partitioning, based on which we build a region correlation
graph. Then, we present the details of ST-GCSL. Unlike
studies [5], [12], [36] that ignore either spatial or short-
term spatial-temporal dependencies, ST-GCSL captures all
the spatial, temporal, short-term spatial-temporal depen-
dencies, and context features to improve the prediction
accuracy.

(a) Hexagon Regions
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Fig. 2. (a) The hexagon regions of Manhattan. Dark colors indicate high
demands. (b) The geographical neighbors of r5 are r0, r2, r3, r7, r8,
and r10. (c) Since r9 and r5 have similar request patterns, they are
semantic neighbors.

3.1 Spatial-Temporal Partitioning

As shown in Fig. 2(a), we partition the road network into
N hexagons with Uber H3 library1 and denote the set
of regions by R = {r1, r2, ..., rN}. We partition a day
into M time slots and denote the set of time slots by
T = {t1, t2, . . . , tM}. Let Di

j ∈ R denote the number of
requests in region ri in time slot tj , we have:

Di
j = |{ω| ω.o ∈ ri ∧ ω.to ∈ tj}|. (2)

From the historical request dataset, we obtain a request se-
quence 〈D1,D2, . . . ,DM 〉, where Dj = {D1

j , D
2
j , . . . , D

N
j }

denotes the numbers of requests of all the N regions in time
slot tj , 1 ≤ j ≤M .

3.2 Region Correlation Graph

Since the spatial dependency between regions can be cap-
tured accurately by a topology structure rather than by the
Euclidean space [5], we transform the request prediction
problem into a graph node prediction problem. Therefore,
before we introduce the details of ST-GCSL, we first explain
how to build two region correlation graphs based on a
historical request dataset.

We follow the existing study [4] to derive two region cor-
relation graphs: (1) a geographical region correlation graph
Ggeo = (R,Ageo), and (2) a semantic region correlation
graph Gsem = (R,Asem), where the set of nodes R is the
region set introduced earlier, Ageo is the edge set of Ggeo in
the form of an adjacency matrix, and Asem is the edge set of
Gsem in the form of an adjacency matrix.

Specifically, as shown in Fig. 2(b) and Fig. 2(c), to de-
fine the adjacency matrices, we consider two types of re-
gion neighbors, i.e., Geographical Neighbor and Semantic
Neighbor, based on whether two regions are geographically
close or have similar request patterns.

1. https://github.com/uber/h3-java
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Fig. 3. ST-GCSL consists of two parallel chains that process the histori-
cal request sequence and the context feature sequence, respectively.

• The geographical neighbor is based on the first law
of geography [33], “near things are more related than
distant things,” which is used to extract spatial de-
pendencies between a region and its adjacent regions.
The geographical adjacency matrix Ageo is defined as
follows.

Ageoij =

{
1 if ri, rj are geographical neighbors
0 otherwise

(3)

• The semantic neighbor is used to extract semantic cor-
relations among regions with similar request patterns.
The intuition is that distant regions may have similar
request patterns if they have similar points of interest
(POI). We adopt the Pearson Correlation Coefficient
[4] to quantify the request pattern similarity between
regions. Let Di = {Di

1, D
i
2, . . . , D

i
M} represent the

request sequence of region ri in the training data. The
semantic similarity between ri and rj is defined as
follows.

Sim(ri, rj) = Pearson(Di,Dj) (4)

We consider regions ri and rj as semantic neighbors if
Sim(ri, rj) ≥ ε, where ε is a threshold. The semantic
adjacency matrix Asem is defined as follows.

Asemij =

{
1 if ri, rj are semantic neighbors
0 otherwise

(5)

3.3 ST-GCSL Model

The structure of ST-GCSL is shown in Fig. 3. Two paral-
lel chains process the historical request sequence and the
context feature sequence, respectively. Consider the current
time t.

1) In the upper chain, the input is the historical re-
quest sequence of the h most recent time steps,
〈Dt−h+1,Dt−h+2, . . . ,Dt〉, which is processed by two
Spatial-Temporal Gated Blocks (ST-Gated Blocks).

2) In the lower chain, the input is the corresponding
context feature sequence, 〈Ψt−h+1,Ψt−h+2, . . . ,Ψt〉,
which is processed by Toeplitz Inverse Covariance-
Based Clustering (TICC) [15] and 2D convolution
(Conv2d).

The results of these two chains are concatenated and convo-
luted to return the predicted result at the next time step, i.e.,
D̂t+1 ∈ RN .

3.3.1 Spatial-Temporal Gated Block (ST-Gated Block)
The ST-GCSL model has two ST-Gated Blocks, each of
which consists of two components: The Multiple Spatial-
Temporal Convolutional Module (MSTCM) and The Spatial-
Temporal Convolutional Module (STCM).

1) MSTCM is stacked by several STCMs (that we call
inter-STCMs) and is used to capture short-term spatial-
temporal dependencies.

2) STCM is used to capture long-term spatial-temporal
dependencies. To distinguish it from the STCMs in
MSTCM, we call it the outer-STCM.

For the l-th ST-Gated Block, where l ∈ {1, 2}, the input is
the feature of the request sequence X l ∈ Rhl×N×Cl

, where
hl is the length of time steps, N is the number of nodes
(regions), and Cl is the feature dimensionality. Initially, we
have Cl = 1 when l = 1. The output is a new representation
of the feature X l+1 ∈ R[hl−2(k−1)]×N×Cl+1

, where k is the
kernel size of convolution operation. Note that we use two
ST-Gated Blocks, so the time step length h decreases to h−
4(k − 1).

STCM. STCM is the key module of an ST-Gated Block.
As shown in Fig. 4(a), STCM consists of three operations:
Conv2d, Graph Convolution (GC), and Gated Linear Unit
(GLU) [11]. The input of STCM is Z ∈ Rq×N×C . Specifically,
for outer-STCM, we have q = hl− (k−1). For inter-STCMs,
we have q = m, where m is the short-term time step length.
The output is Z

′ ∈ R[q−(k−1)]×N×C
′

.
The input is first processed by Conv2d as follows.

B = Γ ∗ Z, (6)

where ∗ denotes the convolution operator. Γ represents a
total of 2× Cf convolution filters, each of which has kernel
size k × 1, stride number 1, and no padding. The output
of Conv2d is B ∈ R[q−(k−1)]×N×2Cf

, which is equally split
into B1 and B2 along the feature dimension, i.e., B1, B2 ∈
R[q−(k−1)]×N×Cf

. Then, B1 and B2 are fed into two GC
layers separately.

In order to better extract the spatial dependency, we
consider two region correlation graphs. Let us take the
geographical region correlation graph Ggeo = (R,Ageo) for
example, the graph convolution operation is formulated as
follows [23].

Θgeo ? Bµ = P̃−
1
2 ÃgeoP̃−

1
2BµWµ, (7)

where ? denotes the graph convolution operator and Θgeo

is a graph convolution filter. Ãgeo = I + Ageo ∈ RN×N is
the adjacency matrix with self-looping. P̃ ∈ RN×N is the
degree matrix with P̃ii =

∑
j Ã

geo
ij and P̃ij = 0, ∀i 6= j. Bµ

is the input, Wµ is the weight parameters, where µ ∈ {1, 2}.
The graph convolution operation for the semantic region
correlation graph is similar. Finally, the output of GC is as
follows.

B
′

µ = η1 ·Θgeo ? Bµ + η2 ·Θsem ? Bµ, (8)

where η1 and η2 are trainable parameters.
Furthermore, we use a GLU to model the complex non-

linearity in request forecasting, which is formulated as fol-
lows.

Z
′

=
[
B
′

1 + Z
]
⊗ σ

[
B
′

2

]
, (9)

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on September 17,2021 at 07:01:48 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3110778, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Conv2d GC GLU

𝜎𝜎

𝑩𝑩𝟏𝟏 𝒁𝒁𝒁𝒁𝒁 𝑩𝑩𝟏𝟏′

𝑘𝑘
𝐶𝐶𝒁𝐶𝐶𝑓𝑓

1𝑞𝑞

𝑁𝑁
𝑩𝑩𝟐𝟐′𝐶𝐶 𝑩𝑩𝟐𝟐

𝐶𝐶𝑑𝑑
𝐴𝐴𝑔𝑔𝑔𝑔𝑔𝑔, 𝐴𝐴𝑠𝑠𝑔𝑔𝑠𝑠 𝑁𝑁

𝐶𝐶𝑓𝑓 𝐶𝐶𝑑𝑑

(a) Spatial-Temporal Convolutional Module (STCM)

h𝑙𝑙

𝐶𝐶𝑙𝑙+1
h𝑙𝑙 - (m-1)m

𝐶𝐶𝑙𝑙

N N

N × 𝐶𝐶𝑙𝑙+1

1

𝐶𝐶𝑙𝑙+1

N
1

… …

Concat

𝐶𝐶𝑙𝑙+1

1
N

…

STCM

STCM

STCM

N × 𝐶𝐶𝑙𝑙

𝐶𝐶𝑙𝑙

𝐶𝐶𝑙𝑙

m

m

N

N

𝑆𝑆1

𝑆𝑆2

𝑆𝑆ℎ𝑙𝑙−𝑚𝑚+1

(b) Multiple Spatial-Temporal Convolutional Module (MSTCM)

Fig. 4. Spatial-Temporal Gated Block

where σ is the Sigmoid function, and ⊗ denotes the
Hadamard product. On the left half, a residual connection
is utilized to avoid network degradation. The right half is a
gate that regulates the information flow. Therefore, we have
the output Z

′ ∈ R[q−(k−1)]×N×C
′

.
Generally, an STCM utilizes Conv2d to extract temporal

dependencies and uses GC to capture spatial dependen-
cies. Therefore, an STCM extracts short-term or long-term
spatial-temporal dependencies based on the input time step
size. Specifically, the inter-STCM is to extract short-term
spatial-temporal dependencies with q = m, while the outer-
STCM is to extract long-term spatial-temporal dependencies
with q = hl−(k−1). Note thatm is smaller than hl−(k−1).

MSTCM. As shown in Fig. 4(b), MSTCM is stacked by
multiple inter-STCMs along the time axis to capture the
short-term spatial-temporal dependencies. For an MSTCM
in the l-th ST-Gated Block, the input X l ∈ Rhl×N×Cl

is split
into m-Gram slices. Each slice X l

i ∈ Rm×N×C
l

is the input
to the i-th inter-STCM, where 1 ≤ i ≤ hl−m+1. The output
of MSTCM is S = [S1, S2, · · · , Shl−m+1], where [·, ·] is the
concatenation operator, and Si ∈ R[m−(k−1)]×N×Cl+1

is the
output of the i-th inter-STCM. According to Eqs. 6, 7, 8,
and 9, the operation of each inter-STCM is formulated as
follows.

Si = [Θl
1 ? (Γl1 ∗X l

i) +X l
i ]⊗ σ[Θl

2 ? (Γl2 ∗X l
i)]. (10)

For the ease of representation, we usem = k in all MSTCMs,
so that Si ∈ R1×N×Cl+1

.
To improve the processing efficiency, these inter-STCMs

are executed in parallel such that MSTCM captures the
short-term spatial-temporal dependencies of the entire input
simultaneously.

3.3.2 Clustering Context Feature Sequence
Due to the strong correlation between the request availabil-
ity pattern and the extra features, e.g., weekdays, weekends,
or rainy days, we introduce them as context features to
improve the accuracy of request forecasting. As shown in
Fig. 3, we employ clustering on the context features and
determine which cluster the context features belong to. Then
we add the cluster information as an additional feature.

The context feature Ψt at time step t is a five-tuple (time
of day, day of week, weather, holiday, events), which is

clustered via TICC. Interested readers may refer to reference
[15] for details. Thus, the context features of all h time
steps are encoded into a cluster label vector c ∈ Rh×1.
To concatenate with the output from the upper chain, c is
processed by the following two steps on the spatial and
temporal dimensions. First, c is duplicated into a tensor
cd ∈ Rh×N×1 to expand the spatial dimension. Then, cd is
processed by a convolution operation with a filter, whose
kernel size is [4(k − 1) + 1] × 1, so that the output is
cf ∈ R[h−4(k−1)]×N×1.

4 DEMAND-AWARE ROUTE PLANNING

We proceed to detail the demand-aware route planning
(DROP) algorithm that guides idle agents based on the pre-
dicted request patterns such that the supply and demand are
balanced across regions. Specifically, we first measure the
supply-demand state based on the idle rate of agents. Then,
we compute a weighted score for each candidate region that
measures its degree of popularity. After that, we sample
a destination region based on the weighted scores. Finally,
we select a destination node in the destination region and
provide the shortest-travel-time path to this node.

4.1 Supply-Demand Analysis
To better understand the characteristics of real-time supply-
demand states, we visualize the real-time locations of re-
quests and idle agents with the COMSET2 simulator, as
shown in Fig. 5. The New York TLC Trip Record YELLOW
Data3 on June 1, 2016 is used as the simulation data, and we
visualize two moments that correspond to peak and non-
peak hours.

In Fig. 5(a), we observe that at 12:00 (non-peak hour), the
number of requests is small, while most agents locate in the
downtown area. Therefore, we need to spread agents across
the network as much as possible to eliminate the “herding
effect" such that most requests can be served. Fig. 5(b) shows
that the number of requests exceeds by far the number of
idle agents at 20:00 (peak hour), meaning that the demand
by far exceeds the supply, and the request density in the
midtown area is significantly higher than those in other

2. https://github.com/JeroenSchols/COMSET-GISCUP
3. https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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(a) 12:00, non-peak hours (b) 20:00, peak hours

Fig. 5. The real-time locations of requests and idle agents in peak and
non-peak hours (red dot: idle agent, blue dot: request).

areas. Therefore, to reduce the agent idle time, we need to
guide all agents to the midtown area, rather scatter them
across the road network.

To measure different supply-demand states, we use the
idle rate of agents, which is the number of idle agents over
the agent cardinality |A|. Intuitively, a high idle rate of
agents indicates that the supply exceeds the demand, and
a low idle rate of agents reveals the otherwise.

4.2 Computing Region Weighted Scores

We utilize the results predicted by ST-GCSL to compute a
weighted score for each region. Specifically, we first eval-
uate the popularity of each region based on its numbers
of request origins and destinations, and we then compute
region weighted scores for the candidate regions.

Region Popularity Evaluation. Intuitively, the more re-
quest origins that locate in a region, the more popular the
region is. During peak hours, we only need to send agents
to popular regions to serve requests. However, during non-
peak hours, we have to consider the competition among
agents. If a region is the destination of many requests, newly
available agents will soon appear in that region. As a result,
part of the requests in this region can be served quickly by
these agents [19]. Therefore, the popularity of ri during tj is
computed as follows.

Pi,j = oi,j − ir × di,j (11)

where oi,j and di,j represent the predicted number of re-
quest origins and destinations in ri during time slot tj ,
respectively, and ir is the idle rate of agents at the time slot
tj . Eq. 11 balances the positive effect of request origins and
the negative effect of request destinations by considering the
real-time supply-demand state.

Region Weighted Score. Since an agent may spend sev-
eral time slots moving to the destination, the popularity of
the destination region is not consistent in this process. Thus,
we use the average popularity of the region in this process

as the region weighted score. Furthermore, as agents prefer
to serve nearby requests rather than distant requests [22], we
borrow a concept called discount factor from Markov Deci-
sion Process (MDP) [31] to attenuate the region weighted
score. For a region ri and time slot tj , the region weighted
scoreWi,j is computed as follows.

Wi,j =

∑j+∆−1
k=j γk−j × Pi,j

∆
, (12)

where ∆ is the number of estimated time slots it takes an
agent to move to the center of ri, and γ is the discount
factor.

In addition, agents can be assigned to serve requests
not only in the current region, but also in nearby regions.
We conduct a spatial expansion [35] by taking the scores of
nearby regions into consideration. With R1(ri) representing
the first-order neighbors of ri, a new region weighted score
W∗i,j is computed as follows.

W∗i,j = α×Wi,j + (1− α)×
∑
rk∈R1(ri)

Wk,j

|R1(ri)|
(13)

The first term in Eq. 13 is the previous score of ri, and the
second term is the average score of ri’s first-order neighbors,
and parameter α is used to balance their weights.

4.3 Route Planning

The route planning algorithm DROP computes a search
route for an agent when the agent becomes idle. It is worth
noting that the routing strategy is state-dependent, i.e.,
the supply-demand state is considered when selecting the
destination region.

Candidate Regions Generation. To limit the length of
the search route and to reduce the search space, we only
consider the L-order neighbors [35] of the agent. For the
agent’s current region r, let RL(r) represent a set of regions,
where each region is the L-order neighbors of r. Note that
R0(r) = {r}. We add all regions from R0(r) to RL(r) to
form the candidate regions R∗ = ∪Li=0Ri(r).

Destination Region Determination. In order to dispatch
agents according to the request distribution, we first com-
pute a weighted score for each region in R∗. From Fig. 5,
we observe that the number of candidate regions depends
on the real-time supply-demand state, and the real-time
supply-demand state is indicated by the idle rate of agents.
Therefore, we keep the top β · ir percents of regions with the
highest weighted scores in R∗, and remove the remaining
regions from R∗, where β is a user-specified parameter that
is studied in experiments. Then, we employ a weighted
sampling algorithm [19] to sample a destination region from
R∗. For a candidate region ri, the probability of ri being
sampled is:

Pr(ri) =
W∗i,j∑

rk∈R∗W
∗
k,j

(14)

Planning Search Route. To determine the destination,
we first select the top 15% nodes with most requests in
the destination region as potential destinations. Then, we
perform weighted sampling again to find a node as the
destination. Finally, a search route to this node along the
shortest-travel-time path is assigned to the agent. Note that
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TABLE 2
Dataset Statistics

Dataset # of Orders # Edges # Nodes Size (GB)

New York 69,406,526 9,542 4,360 10.1
Haikou 12,374,094 8,034 3,298 2.28

Chengdu 7,065,938 12,494 3,948 0.83

the destination selection improves the performance to a lim-
ited degree. Instead of training the ST-GCSL on the nodes
of the road network, we simply use the average number of
requests in the historical dataset as the weighted score of
each node. Moreover, the 15% of nodes in each region at
each time slot can be precomputed to reduce the time cost
of route planning.

5 EXPERIMENTAL STUDY

The ST-GCSL model is implemented in Python3 with Py-
torch using a Tesla P100 GPU card, and the DROP algorithm
is implemented in Java. The experiments are run on a
Windows machine with an Intel 2.8GHz CPU and 12GB
memory.

5.1 Experimental Settings

Dataset Description. We use three real datasets, called New
York, Haikou4 and Chengdu5, to evaluate our method. Table
2 summarizes statistics of the datasets. A request corre-
sponds to a trip record.

• New York: The New York TLC Trip Record YELLOW
Data includes the records with both pick-up and drop-
off information of Yellow Cab taxis in New York City.
We extract the data from January through June 2016
for evaluation. The weather data is extracted from New
York Central Park6.

• Haikou: The Haikou dataset contains taxi order data
from Haikou city for the period from May to October
2017, including the coordinates of origins and desti-
nations, as well as the order type, the travel category,
and the number of passengers. The weather data7 is
extracted as the context features.

• Chengdu: The Chengdu dataset contains trips in
Chengdu during November, 2016. The weather data8

is extracted as the context features.

Methods for Comparison. For the request forecasting,
we compare ST-GCSL with the following methods:

• HA: A historical average model that treats the average
number of requests as the predicted value.

• VAR [16]: A Vector Auto-Regression model that is used
to analyze multivariate time series data.

• LSTM [17]: A Long Short-Term Memory Network, a
typical time series forecasting method.

4. https://outreach.didichuxing.com/app-vue/HaiKou?id=999
5. https://outreach.didichuxing.com/competition/kddcup2020
6. http://www.meteomanz.com/index?l=1&cou=4030&ind=72506
7. https://data.cma.cn/
8. https://qq.ip138.com/weather/sichuan/chengdu_lishi.htm

• DCRNN [24]: A Diffusion Convolutional Recurrent
Neural Network that models spatial-temporal depen-
dency by integrating graph convolution into gated re-
current units.

• STGCN [41]: Spatio-Temporal Graph Convolutional
Networks that capture temporal dependency and spa-
tial dependency by using 2D convolutional networks
and graph convolutional network, respectively.

• STG2Seq [5]: A Spatial-Temporal Graph to Sequence
Model that uses multiple gated graph convolution
module with two attention mechanisms to capture
spatial-temporal dependency.

• Graph WaveNet [36]: The Graph WaveNet combines
graph convolution with dilated causal convolution to
capture spatial-temporal dependency.

• ASTGCN [13]: An Attention based Spatial-Temporal
Graph Convolution Network that utilizes a spatial-
temporal attention mechanism to learn the dynamic
spatial-temporal correlations.

• GMAN [49]: A graph multi-attention network adapts
an encoder-decoder architecture with multiple spatial-
temporal attention blocks to model spatial-temporal
correlations.

• AGCRN [6]: An Adaptive Graph Convolutional Re-
current Network designs a node adaptive parameter
learning module and a data adaptive graph generation
module to capture spatial-temporal correlations.

• ASTGNN [14]: An Attention based Spatial-Temporal
Graph Neural Network follows an encoder-decoder
structure whose architecture is similar to that of Trans-
former [34].

To enable a fair comparison, we use the same loss function
in all models, defined as follows:

Loss(θ) = ||Dt+1 − D̂t+1||22,

where Dt+1, D̂t+1 denote the real request number and the
predicted value, respectively. We normalize the context fea-
tures data to the unit interval using Max-Min normalization
and assign them to 10 clusters using the TICC algorithm.
The request number is preprocessed using Mean-Std nor-
malization.

For the route planning problem, we compare DROP with
four baselines:
• RD [37]: Random Destination randomly chooses a node

as the destination and then uses the shortest-travel-path
between the current location and the destination as the
search route.

• SmartAgent [22]: SmartAgent uses non-negative matrix
factorization (NMF) to model and predict the spatio-
temporal distributions of requests, and then chooses
destinations using a greedy heuristic.

• TripBandAgent [8]: TripBandAgent optimizes the taxi
search strategy using reinforcement learning (RL).

• STP [19]: Spatial-Temporal Partitioning divides the
search space into regions and computes weights for
planning routes.

Parameter Settings. For request forecasting, we set the
duration of time slot t to 5 minutes for New York, 10 minutes
for Haikou, and 10 minutes for Chengdu, respectively. The
number of regions N is 99 for New York, 30 for Haikou,
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TABLE 3
Parameters (Default value is highlighted)

Parameters Values

Agent
cardinality

5000, 5500, 6000, 6500, 7000 (New York)
1000, 1100, 1200, 1300, 1400, 1500 (Haikou)
2000, 2500, 3000, 3500, 4000 (Chengdu)

MLT (min) 5, 6, 7, 8, 9, 10
α 0.6, 0.7, 0.8, 0.9, 1.0

β
2, 2.25, 2.5, 2.75, 3 (New York)
3, 3.25 (Haikou), 3.5 (Chengdu), 3.75, 4

γ 0.6, 0.7, 0.8, 0.9, 1.0

and 59 for Chengdu, respectively. The batch size of the
random gradient descent is 32 and the dropout rate is 0.2.
The number of filters in the first and second ST-Gated block
are 32 and 64, respectively. We use the Adam optimizer with
default learning rate 0.001 for training, and we multiply the
learning rate with 0.7 every five epochs. Parameter h is set
to 12, while k and m are set to 3. Threshold ε is selected
from {0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0}.

For route planning, we summarize the parameter set-
tings of DROP in Table 3. When we vary a parameter, other
parameters are set to their default values.

Evaluation Metrics. For the request forecasting problem,
we use three well-adopted metrics: Mean Average Percent-
age Error (MAPE), Mean Absolute Error (MAE), and Rooted
Mean Square Error (RMSE). For the route planning problem,
we use three evaluation metrics:

1) The average agent idle time (highest priority).
2) The average request waiting time, i.e., the period of

time from its introduction to its pick-up or expiration.
3) The percentage of expired requests.

5.2 Request Forecasting Performance Evaluation

We first compare ST-GCSL with the baseline models. Then,
we conduct an ablation study on ST-GCSL. Further, we
analyze the effect of parameter ε. Finally, we compare our
model with the baselines in terms of the multi-step predic-
tion accuracy and the training costs. For the data of each
month, we use the last 10 days for validation and testing
(i.e., 5 days for validation and 5 days for testing) and the
remaining days for training.

Comparison With Baseline Models. Table 4 shows the
forecasting test errors for the different methods. We have the
following observations:

1) The classical methods, including HA and VAR, exhibit
poor performance. The reason is that they are incapable
of modeling non-linear spatial-temporal dependencies.

2) In general, the deep learning methods perform bet-
ter. LSTM only takes temporal dependencies into con-
sideration, while GCN-based methods (i.e., DCRNN,
STGCN, STG2Seq, Graph WaveNet, ASTGCN, GMAN,
AGCRN, and ASTGNN) use two modules to model
temporal and spatial dependencies separately. So they
perform better than LSTM. Although attention-based
methods such as ASTGCN, GMAN, and ASTGNN,
have achieved better performance on traffic forecast-
ing problems, they show limited improvements on the
request forecasting problem.

3) ST-GCSL achieves the best performance on all datasets,
especially in MAE and RMSE. The method takes short-
term and long-term spatial-temporal dependencies into
account and enables to capture temporal, spatial, and
spatial-temporal dependencies, while other methods
disregard either spatial or spatial-temporal dependen-
cies.

Ablation Study. To evaluate the effect of the different
components of our model, we compare different variants of
ST-GCSL, including:

1) Removing the context features.
2) Replacing the GLU with the ReLU activation function.
3) Removing the outer-STCM from ST-Gated blocks.
4) Removing the MSTCM from ST-Gated block.
5) Removing semantic neighbors from the region correla-

tion graph.
6) Removing geographical neighbors from the region cor-

relation graph.

The results are shown in Table 5. We have four observations.

1) Without the context features, the model has poor per-
formance, indicating that the context features contain
information useful for prediction.

2) The model with the GLU performs better than the
model with the ReLU activation function. This is be-
cause the module with GLU has twice as many pa-
rameters as ReLU, enabling it capture more complex
spatial-temporal dependencies. Also, the gate in GLU
is better at controlling the output than is ReLU.

3) Removing the outer-STCM or the MSTCM from ST-
Gated Blocks may disregard temporal information
and spatial-temporal dependencies to some extent.
Specifically, removing the outer-STCM may disregard
long-term temporal dependencies while removing the
MSTCM may miss short-term spatial-temporal depen-
dencies. Although removing the STCM yields better
performance on Chengdu, it is normal to obtain a slight
change of results due to data sparsity.

4) Removing one type of neighbors weakens the perfor-
mance, indicating that it is valuable to consider two
types of neighbors.

Overall, the results indicate that our proposed network
structure is capable of outperforming the competitors.

Effect of Parameter ε. According to the results in Table
5, it is beneficial to consider semantic neighbors. Since
parameter ε controls the number of semantic neighbors
considered, we study the effect of ε. Table 6 shows the
prediction error with respect to ε. We can see that when ε
is 0.5, 0.8, and 0.7, ST-GCSL achieves the best performance
on New York, Haikou, and Chengdu. The reason is that it
considers many regions with weak dependency when ε is
smaller; and when ε is larger, it only considers the regions
with large similarity, which yields results similar to those
obtained when disregarding semantic neighbors. Therefore,
ε is set to a medium-large value.

Multi-step Prediction Comparison. ST-GCSL is able
to conduct multi-step prediction, as can DRCNN, STGCN,
STG2Seq, Graph WaveNet, ASTGCN, GMAN, and AGCRN.
So we compare ST-GCSL with these methods at request
forecasting in 2 and 3 time steps. Table 8 presents the results
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TABLE 4
Comparison with Baseline Models

Method New York Haikou Chengdu
MAPE (%) MAE RMSE MAPE (%) MAE RMSE MAPE (%) MAE RMSE

HA 43.71 3.781 5.993 46.36 4.563 7.047 52.29 8.01 16.048
VAR 30.06 3.525 4.761 36.89 3.464 5.374 41.06 5.344 9.282

LSTM 26.43 3.407 4.723 33.69 3.446 5.328 41.27 5.671 9.396
DCRNN 23.88 3.064 4.718 31.20 3.367 5.314 30.21 4.381 7.052
STGCN 23.66 3.038 4.661 30.01 3.378 5.431 30.07 4.399 7.179

STG2Seq 23.65 3.232 5.176 31.10 3.376 5.308 34.14 5.662 10.333
Graph WaveNet 23.52 2.976 4.605 29.44 3.250 5.145 29.21 4.242 6.878

ASTGCN 24.02 3.045 4.667 31.81 3.587 5.408 34.02 4.943 8.133
GMAN 24.52 3.162 5.014 29.56 3.532 5.768 32.99 6.991 14.170
AGCRN 25.11 2.240 3.973 32.45 3.001 4.946 34.67 3.875 6.895

ASTGNN 24.64 3.024 4.595 30.32 3.305 5.274 35.59 4.649 7.677
ST-GCSL 23.29 1.946 3.591 29.33 2.716 4.593 31.23 3.811 6.757

TABLE 5
Comparison with Variants of ST-GCSL

Removed Component New York Haikou Chengdu
MAPE (%) MAE RMSE MAPE (%) MAE RMSE MAPE (%) MAE RMSE

Context features 23.42 1.950 3.599 29.75 2.745 4.615 31.61 3.827 6.787
GLU 23.53 1.962 3.595 29.80 2.757 4.675 31.79 3.837 6.806

STCM 23.41 1.950 3.609 30.07 2.763 4.662 30.78 3.725 6.501
MSTCM 23.43 1.961 3.608 30.48 2.818 4.676 31.69 3.842 6.832

Semantic-Neighbor 23.79 1.971 3.625 30.20 2.794 4.673 31.93 3.857 6.844
Geographical-Neighbor 23.73 1.963 3.618 29.90 2.768 4.630 32.28 3.869 6.829

ST-GCSL 23.29 1.946 3.591 29.33 2.716 4.593 31.23 3.811 6.757

TABLE 6
MAPE When Varying ε

Dataset RMSE
0.2 0.4 0.5 0.6 0.7 0.8 1.0

New York 3.606 3.592 3.591 3.611 3.603 3.604 3.625
Haikou 4.645 4.611 4.648 4.629 4.618 4.593 4.673

Chengdu 6.761 6.778 6.764 6.802 6.757 6.805 6.844

TABLE 7
Training Time Comparison

Method New York Haikou Chengdu
Training

(s/epoch)
Inference

(s)
Training

(s/epoch)
Inference

(s)
Training

(s/epoch)
Inference

(s)
DCRNN 23.08 4.33 10.65 3.18 9.36 2.89
STGCN 2.56 3.39 0.94 0.80 0.76 1.06

STG2Seq 18.96 1.65 5.81 0.62 8.06 0.94
Graph WaveNet 11.65 0.96 3.81 0.43 4.14 0.41

ASTGCN 9.43 1.05 2.55 0.22 3.21 0.37
GMAN 22.90 1.88 4.50 0.35 7.35 0.61
AGCRN 15.08 1.53 4.80 0.43 4.75 0.46

ASTGNN 54.05 24.44 9.12 3.88 13.31 4.91
ST-GCSL 13.24 1.36 4.25 0.42 5.21 0.45

for all metrics on all datasets. As we can see, ST-GCSL
exhibits the best performance.

Training Time Analysis. We compare ST-GCSL with
the baseline models with respect to the training time of
the multi-step prediction. For fairness, we measure the
epoch time cost of each method on training data with same
batch size. For inference, we record the total time cost of
each method on the validation data. The results in Table 7
indicate the following.

1) STGCN is the fastest by applying the convolution along
time axis and using minimal GC operations. ASTGNN
is the slowest due to a large number of GC operations
in the encoder-decoder structure. DCRNN is also slow

due to its integration of GC into the gated recurrent
unit, which means that the GC operation is executed at
each time step.

2) In general, the training time of all methods grows
linearly with the number of data-points and the CNN-
based prediction methods including STG2Seq, Graph
WaveNet, ASTGCN, GMAN, AGCRN, and ST-GCSL,
achieve a better training and inference performance.

3) ST-GCSL achieves satisfactory training and infer-
ence performance. Although the parallel operation of
MSTCM in ST-GCSL is similar with that of STG2Seq,
the design of outer-STCM decreases the number of GC
operations, which makes ST-GCSL more efficient.

The experimental findings thus indicate that ST-GCSL
not only achieves the best performance, but also can be
trained efficiently.

5.3 Route Planning Performance Evaluation
For New York and Haikou datasets, we randomly select
two days data from each month to form the testing dataset.
For Chengdu dataset, since it only contains one month’s
trip data, we take the data of the first three weeks for
training, and the data of the last week for testing. To better
show the performance improvement, we report the average
improvement compared to RD in Figs. 6 to 11 on previously
mentioned three metrics. The experimental results of differ-
ent parameter settings are shown in Table 9. As the accuracy
improvement of ST-GCSL over other prediction models is
not significant, DROP using other prediction models may
have similar performance with using ST-GCSL, so we do
not replace ST-GCSL with other models for ablation study.

Varying the Agent Cardinality. Figs. 6, 7, and 8 show
the performance of all methods when varying the agent
cardinality. We make three observations.
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TABLE 8
Multi-step Prediction

Method New York (step 2/3) Haikou (step 2/3) Chengdu (step 2/3)
MAPE (%) MAE RMSE MAPE (%) MAE RMSE MAPE (%) MAE RMSE

DCRNN 24.20/24.54 3.121/3.187 4.871/5.023 31.54/32.66 3.465/3.610 5.546/5.762 30.15/30.37 4.446/4.520 7.259/7.450
STGCN 24.21/24.69 3.114/3.185 4.841/4.977 30.88/32.08 3.508/3.688 5.668/5.966 30.55/30.97 4.518/4.638 7.441/7.697

STG2Seq 24.61/25.75 3.581/3.961 6.012/6.873 33.19/35.13 3.578/3.781 5.618/5.937 35.62/36.81 6.516/7.254 12.422/14.293
Graph WaveNet 23.72/24.08 3.043/3.098 4.746/4.866 30.04/30.24 3.317/3.341 5.28/5.324 29.34/29.65 4.275/4.322 6.937/7.704

ASTGCN 24.49/24.83 3.122/3.174 4.796/4.925 32.37/32.81 3.674/3.756 5.587/5.751 34.95/35.29 5.070/5.146 8.348/8.507
GMAN 24.61/24.68 3.176/3.184 5.041/5.061 29.73/29.91 3.542/3.558 5.804/5.820 33.19/33.22 7.033/7.123 14.229/14.269
AGCRN 25.41/25.63 2.288/2.341 4.052/4.134 30.20/30.77 3.019/3.077 4.982/5.081 34.68/34.72 3.913/3.968 6.985/7.093

ASTGNN 24.95/25.14 3.089/3.3135 4.756/4.869 31.20/31.77 3.411/3.531 5.490/5.715 36.45/36.49 4.665/4.647 7.708/7.718
ST-GCSL 23.68/24.03 2.004/2.039 3.691/3.766 29.59/30.08 2.767/2.846 4.723/4.841 31.58/32.36 3.842/3.927 6.863/7.002
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Fig. 6. Comparison with Baselines on New York Varying the Agent Cardinality
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Fig. 8. Comparison with Baselines on Chengdu Varying the Agent Cardinality
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Fig. 10. Comparison with Baselines on Haikou Varying the MLT
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Fig. 11. Comparison with Baselines on Chengdu Varying the MLT

1) The idle time improvement of DROP is the highest. For
instance, when the agent cardinality is 5000 on New
York, the average idle time of RD is 368.8 seconds, and
the improvement of the idle time for SA, TBA, and STP
are 9.2, 8.9, and 8.8 seconds, while the improvement
achieved by DROP is 9.9 seconds. The reason is that the
predicted results of ST-GCSL are close to the real re-
quest distribution, and DROP guides agents to popular
regions.

2) DROP outperforms the baseline methods in terms of
request waiting time. With the increase of agent cardi-
nality, the improvement of DROP increases compared
to those of the other methods. This is because DROP
can guide more agents to locations near requests.

3) DROP has the highest expiration percentage improve-
ment compared to the baseline methods in all cases,
since it distributes agents according to the distribution
of requests.

Varying the MLT. Figs. 9, 10, and 11 show the perfor-
mance of all methods when varying the MLT. We make the
following observations.

1) DROP outperforms the other methods with respect to
idle time, especially when MLT is small. For example,
when MLT is 5 minutes on New York, the average idle
time of RD is 400.1 seconds, and the improvement of
DROP is 30.2 seconds, while those of SA, TBA, and
STP are 26.9, 26, and 27.5 seconds, respectively. This is
because when MLT is small, the requests can only be
assigned to nearby agents, and the routing strategy of
DROP can direct agents to locations closer to requests
than can the other methods.

2) DROP has the best performances in terms of waiting
time and expiration percentage on the three datasets.

Parameter Study. We compare the performance of DROP
under different parameter settings shown in Table 9. We
observe that the performance changes only little across these

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on September 17,2021 at 07:01:48 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3110778, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

settings. Note that as the three datasets are of different sizes,
there are differences in the parameter settings. Specifically,
the parameter β that regulates the supply-demand state and
the number of candidate regions, varies from 2 to 3 in New
York, while it varies from 3 to 4 in Haikou and Chengdu.

6 RELATED WORK

6.1 Taxi Demand Prediction

Traffic demand prediction is a critical aspect when aiming
to achieve an efficient transportation system. Many studies
employ convolutional neural networks (CNNs). For exam-
ple, ConvLSTM [30] combines CNNs and recurrent neural
networks (RNNs) to model spatial and temporal dependen-
cies, respectively, which is an extension of fully-connected
LSTMs [17]. ST-ResNet [45] models the temporal closeness,
period, and trend properties of crowd traffic based on
existing studies [43], [44]. DMVST-Net [40] employs graph
embedding as an external feature to improve forecast accu-
racy based on localized spatial and temporal views.

However, these CNN-based methods only model the
Euclidean relations among grid regions and ignore non-
Euclidean relations. In contrast, graph convolutional net-
works (GCNs) can extract local features from non-Euclidean
structures, resulting in improved performance. For instance,
One study [18] predicts the travel cost, while GCWC [10]
fills in missing stochastic weights of speed via GCN, and
their techniques can be applied to demand prediction.
DCRNN [24] models the spatial-temporal dependency by
integrating graph convolution into the gated recurrent units.
The architecture is like that of ConvLSTM, but replaces the
Conv2d with GC. STGCN [41] captures temporal depen-
dency and spatial dependency by using 2D convolutional
networks and graph convolutional networks, respectively.
STG2Seq [5] uses multiple gated graph convolution mod-
ules with two attention mechanisms to capture spatial-
temporal dependency, while Graph WaveNet [36] learns a
self-adaptive adjacency matrix and combines graph convo-
lution with dilated casual convolution to capture spatial-
temporal dependencies. STMGCN [47] employs a multi-
graph to extract spatial dependency and uses RNNs to
capture temporal dependency. ASTGCN [13], GMAN [49],
and ASTGNN [14] are attention based spatial-temporal
graph convolution networks that utilize a spatial-temporal
attention mechanism to learn the dynamic spatial-temporal
correlations, while AGCRN [6] designs a node adaptive
parameter learning module and a data adaptive graph
generation module to capture the dynamic spatial-temporal
correlations.

The GCN-based methods are more flexible and pro-
gressive than the CNN-based methods, but there are also
differences between them. STGCN, Graph WaveNet, and
STMGCN use separate components to capture temporal and
spatial dependency, while the GC operation in DCRNN and
STG2Seq is executed by short-term time steps, meaning that
they capture spatial and temporal dependency simultane-
ously, which also leads to much more computation. Further,
based on the three temporal and spatial dependencies in the
traffic forecasting problem we study, the above methods all
miss spatial-temporal dependency to some extent. Unlike

those methods, our method captures all three types of
dependencies and can be trained efficiently.

6.2 Taxi Dispatching
Existing studies on taxi dispatching generally concern either
order matching or route recommendation. Order matching
aims to match idle taxis with appropriate passengers, often
to maximize global revenue. One study [38] considers both
instant passenger satisfaction and expected future gain in
a unified decision-making framework, and then optimizes
long-term platform efficiency through reinforcement learn-
ing. Another study [32] models the ride dispatching prob-
lem as a Semi Markov Decision Process and proposes Cere-
bellar Value Networks (CVNet) with a novel distributed
state representation layer to learn the best dispatch policy.
Moreover, some studies [7], [10] introduce the idea of game
theory into the matching problem and model the matching
of taxis and passengers as a process to reach a stable Nash
equilibrium.

Considering route recommendation, existing proposals
can be divided into combination optimization methods and
deep reinforcement learning (DRL) methods. One study
[39] models the driver repositioning task as a classical
Minimum Cost Flow (MCF) problem and then solves it by
combination optimization. MCF-FM [27] develops a contin-
uous order dispatch strategy for effective fleet management.
Next, DRL is used widely to deal with taxi dispatching
and repositioning problems. For instance, MOVI [28] uses
CNNs to extract supply and demand distribution features
and adopts a distributed DQN policy to learn the best
dispatch action for each vehicle. One study [25] considers
geographic context and collaborative context to remove in-
valid actions, proposing a contextual actor-critic multi-agent
reinforcement learning algorithm to adapt to dynamic traf-
fic. Another study [48] uses a deep Q-network with action
sampling policy (AS-DQN) to learn an optimal dispatching
policy. However, these DRL-based methods require that
all taxis to be dispatched at a same time slot to achieve
coordination among taxis, which is impossible in practise.
Moreover, these methods ignore the real-time supply and
demand states. In contrast, DROP guides idle taxis based
on the real-time supply and demand distributions. A demo
of SOUP is described elsewhere [20].

7 CONCLUSION

We study the problem of spatial-temporal demand fore-
casting and competitive supply (SOUP) in transportation.
We propose the ST-GCSL model for request prediction and
develop the DROP algorithm to guide idle agents. We report
on experimental studies that show that ST-GCSL is capable
of outperforming the baseline models considered. Specifi-
cally, DROP outperforms all the competitors and reduces
the idle time, waiting time, and expiration percentage by
9.9s, 25.7s, and 0.8% compared with the RD method on the
New York dataset.
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TABLE 9
Performance of Different Parameter Settings

New York Haikou Chengdu
Parameters IT (s) WT (s) Exp (%) IT (s) WT (s) Exp (%) IT (s) WT (s) Exp (%)

α

0.6 359.021 253.156 7.947 436.396 295.493 8.305 476.682 345.712 27.494
0.7 358.827 252.906 7.932 436.174 295.734 8.288 476.682 345.659 27.498
0.8 358.960 253.391 7.937 436.461 295.874 8.319 476.736 345.866 27.496
0.9 359.064 253.529 7.950 436.547 296.373 8.321 476.581 345.669 27.503
1.0 358.993 253.905 7.945 436.798 296.373 8.344 476.627 345.719 27.484

β

2/3 359.161 253.115 7.954 436.575 296.038 8.320 477.018 345.983 27.518
2.25/3.25 358.957 252.231 7.934 436.547 295.897 8.315 476.912 345.853 27.510
2.5/3.5 358.848 251.800 7.930 436.577 295.650 8.305 476.754 345.900 27.498

2.75/3.75 358.977 251.806 7.945 436.297 295.558 8.297 476.749 345.942 27.506
3/4 359.021 253.572 7.947 436.167 295.451 8.302 476.949 345.894 27.521

γ

0.6 359.059 253.738 7.945 436.429 295.441 8.315 476.781 345.765 27.500
0.7 358.810 251.811 7.928 436.563 295.445 8.309 476.714 345.751 27.503
0.8 358.828 252.907 7.933 436.352 295.866 8.303 476.804 345.854 27.512
0.9 358.759 252.946 7.926 436.724 296.121 8.328 476.719 345.835 27.494
1.0 358.814 252.964 7.934 436.567 295.900 8.319 476.893 346.217 27.522
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