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Abstract: Renewable energy sources (RESs) are a great source of power generation for microgrids
with expeditious urbanization and increase in demand in the energy sector. One of the significant
challenges in deploying RESs with microgrids is efficient energy management. Optimizing the
power allocation among various available generation units to serve the load is the best way to
achieve efficient energy management. This paper proposes a cost-effective multi-verse optimizer
algorithm (CMVO) to solve this optimization problem. CMVO focuses on the optimal sharing of
generated power in a microgrid between different available sources to reduce the generation cost.
The proposed algorithm is analyzed for two different scale microgrids (IEEE 37-node test system
and IEEE 141-node test system) using IEEE test feeder standards to assess its performance. The
results show that CMVO outperforms multi-verse optimizer (MVO), particle swarm optimization
(PSO), artificial hummingbird algorithm (AHA), and genetic algorithm (GA). The simulation results
emphasize the cost reduction and execution time improvement in both IEEE test systems compared
with other meta-heuristic algorithms.

Keywords: cost optimization; energy management; microgrid; multi-verse optimizer; renewable
energy sources (RESs)

1. Introduction

Microgrids are reliable low-voltage networks that supply energy to consumers effi-
ciently [1,2]. With the rapid growth in power demand in the energy sector, it is essential to
use renewable energy resources (RERs) to meet demand. RERs help to fulfill the energy
demand and carry out efficient execution of microgrids. Microgrids consist of various
distributed energy resources (DERs) such as wind power plants and solar power plants,
among others, as well as storage devices and loads [3,4]. Figure 1 describes a microgrid
consisting of an energy management system, DERs, storage system, and load. Loads are
generally categorized as residential, industrial, and commercial loads. Microgrids are
usually operated in islanded mode or grid-connected mode.

A microgrid in islanded mode is a standalone, independent system that operates
for different communities. It works totally on distributed energy resources, whereas
the microgrid in grid-connected mode means saving fossil fuels and works as a regular
microgrid connected to the utility grid for power generation [5]. Energy management in a
microgrid is essential for its smooth operation in a real-time environment. It is observed
that to solve the optimization problem and perform energy management in a microgrid is
a challenging task [6]. In previous studies, many known meta-heuristic algorithms have
been applied to optimize various performance attributes of a microgrid.
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Many optimization methods have been reported in the literature for optimizing dif-
ferent parameters in microgrid energy management. The authors in [7] proposed a robust
stochastic for hybrid energy systems to perform optimization. The suggested method in-
tends to decrease system losses and the total operating cost of renewable energy resources
and was tested on the IEEE 37 node distribution system. Another study [8] presented an
integrated method using multi-objective particle swarm optimization to minimize power
supply probability loss, levelized energy cost, and greenhouse emissions. The authors
in [9] proposed a reduction in cost by optimally placing a capacitor to alleviate the power
loss in a radial distribution network. The proposed work is then tested over two different
IEEE standard networks. In [10], a real-time energy management system was proposed
for the performance optimization of a microgrid. The proposed binary particle swarm
optimization was analyzed on the IEEE 14-bus system and focused on minimizing energy
costs and CO2 emissions.

Furthermore, in various studies, many optimizing algorithms have been used for
scheduling of renewable energy sources. In [11], the authors proposed quantum-teaching-
based learning optimization for optimal energy management using day-ahead optimum
power scheduling in microgrids. The authors in [12] used the artificial fish swarm algorithm
for cost minimization, whereas in [13], optimal scheduling of dispatchable distributed
generations has been studied to minimize the fuel cost in microgrids. Moreover, in [14],
the authors presented a multi-objective economic dispatch problem using pareto concavity
elimination to minimize the cost in microgrids. Hence, the prime aim of a microgrid energy
management system is to effectively schedule the power flow and coordinate between
various available generation units and load demand to optimize operational cost [15,16]. It
tries to maintain stability between generated and demanded power based on the idea that
DERs can supply the requested capacity every hour. The multi-verse optimizer algorithm
(MVO) is a nature-derived meta-heuristic algorithm that has improved the ability to exploit
and explore search space without getting trapped in local minima. In contrast, it has lower
accuracy and slow convergence while solving a problem. Hence, many researchers have
proposed different versions of MVO to handle these disadvantages. The authors in [17]
have published an improved MVO for feature selection for phishing, spam, and denial
of service attacks. Moreover, in [18], the improved multi-verse optimizer is used for text
document clustering. Similarly, in [19], a multi-verse optimization algorithm for stochastic
bi-objective disassembly sequence planning is proposed. It achieved minimum energy
consumption and maximized disassembly profit. It is noted that MVO has proved to be
effective in addressing different optimization problems, whereas it is less explored for
optimization in microgrids.
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Scheduling power among various units to have minimum generation cost, the energy
management system must have the capability to allocate power sharing in generous pro-
portions. When RERs are not able to serve the load with generated power, then power is
obtained from other storage sources, virtual power plants (VPPs), or utility grids [20,21].
In addition to the above, it is observed in the literature that various other work [22–28]
has been performed for optimization using meta-heuristic algorithms, as there has been a
sharp increase in demand for optimization in various research areas as well as in the energy
sector. Thus, the importance of energy optimization is rapidly increasing.

The contributions of this paper are summarized below.
This paper proposes an enhanced multi-verse optimizer algorithm called ‘cost-effective

multi-verse optimization algorithm (CMVO)’ for optimal power scheduling among avail-
able generation units in a microgrid to minimize generation cost. It is observed that
modification performed in the original version ensures more balanced exploitation and
exploration. It has improved the ability to discover rugged search spaces and avoid local
optima stagnation. The CMVO algorithm solves the power scheduling problem for micro-
grids to minimize the generation cost. It focuses on optimal power sharing among available
generation units such that demand is satisfied with minimum cost. The convergence speed
of the proposed algorithm is also improved in a way that it explores the search space
without getting trapped into local minima and converges quickly. The calculated mean and
standard deviation of all of the algorithms illustrate that the proposed algorithm is most
stable among all investigated algorithms.

The remaining structure of the paper is organized in a manner where the literature
on cost optimization by meta-heuristic algorithms is discussed through related work in
Section 2. Section 3 presents the problem formulation for the research conducted and
explains various functions and equality constraints. Further, the methodology for the pro-
posed algorithm is described in Section 4, followed by the results and analysis in Section 5.

2. Related Work

This section investigates several aspects of the previous work carried out to optimize
microgrids. The best way to optimize microgrids is efficient energy management, so
that a perfect balance is maintained between demand and supply. In smart microgrids,
the load is first served with energy from renewable energy resources when it works in
islanded mode. If renewable energy cannot meet the load demand, the grid works in a
grid-connected way, in which they buy the deficient amount of energy from the utility
grid [29,30]. In the literature, researchers have operated microgrids in islanded mode
and grid-connected mode. Energy management is carried out in microgrids in many
ways by solving different kinds of optimization problems such as the optimal allocation
of generation sources, optimal dispatch problem, and power scheduling problem. In
the optimal generation allocation of conventional sources or optimal dispatch problem,
the sizing and siting of the sources is improved, which optimizes various parameters of
microgrids, whereas in the power scheduling problem, researchers focused on scheduling
the demanded power in microgrid generators in such a way that it optimizes different
parameters such as power losses, generation cost, total operation cost, and so on. The
authors in [31–33] have discussed the optimal allocation problem considering the sizing and
siting of various sources to minimize cost, power losses, emissions, and more in microgrids.
The authors in [34] proposed a stochastic multi-objective optimization model to reduce the
voltage deviation and operational cost in grid-connected mode for energy management.
The proposed idea is applied to an amended IEEE 34-bus test system that consists of diesel
generators, solar units, wind turbine units, EVs, and a battery system. It ensures that the
malfunctioning of a microgrid is not possible because operators can trade between the
high power quality and operational cost. Modified PSO is implemented in grid-connected
mode in [35] for real-time energy management. The authors work for efficient demand side
management by optimally controlling battery operations. The proposed idea successfully
reduced operational costs by 12% over a time horizon of 96 h.
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In [36], ANN-based binary particle swarm optimization and ANN-based tracking
search algorithm were implemented to schedule a few microgrids in virtual power plants,
aiming for optimal scheduling with less fuel consumption, reducing CO2, and increasing
system efficiency. They assessed the system under different system scenarios to evaluate
the performance of the system under variable conditions. They used actual load data for
trained and untrained models to assess the algorithm’s performance, and the results were
then compared to previous works based on several parameters. The results demonstrate
that the hybrid algorithm was better than the available algorithms. In [11], the authors
applied a quantum-based algorithm for better microgrid energy management. A quantum-
teaching-learning-based optimization algorithm was employed to optimize the microgrid’s
energy flow. They studied four scenarios considering seasonal variations to deal with
uncertainties related to power generation. It focuses on day-ahead scheduling according to
the availability of DERs and shows a significant reduction in operational costs, especially
during times of high market prices. It also improved the convergence graph and optimized
power scheduling compared with other algorithms. This paper focuses on implementing
an optimization algorithm for microgrids working in islanded mode. In previous works,
various algorithms have been used to optimize microgrids by concentrating on different
performance attributes.

The authors in [37] focused on optimizing renewable energy microgrids for the rural
areas of the south Philippines using multi-objective particle swarm optimization and
proposed a multi-case power management strategy. An optimized microgrid design was
presented, considering various variables like load size, renewable energy sources, and
different objective functions. It minimized the loss of supply, the level of energy, and
greenhouse emission cost, and maximized reliability. A standalone microgrid was proposed
in [38] with renewable energy resources for rural communities. The proposed microgrid
performance was evaluated using differential evolution, PSO, and GA to find affordable
energy for the community. The studies showed that differential evolution was suitable for
the least energy cost compared with PSO. An improved mayfly optimization algorithm was
applied for microgrid optimization in [39] for economic emission dispatch. The microgrid
worked in islanded mode, utilizing solar power, wind power, and thermal power. The
simulation was carried out for 24 h with varying load and supply demands. The algorithm
was implemented for various scenarios, and it was observed that it performed better than
other algorithms and could reduce total operational cost and emission level. It achieved a
better system cost and emission reduction than mayfly and other metaheuristic algorithms.

The authors in [40] implemented a lightning search algorithm for energy management
in microgrids on IEEE 14-bus system for a 24 h data. It aims to optimize the microgrid with
renewable energy by minimizing operation costs, reducing emissions, and maximizing
the usage of renewable energy. In [41], particle swarm optimization and the rainflow
algorithm were implemented on a community microgrid for power scheduling with a
battery for different scenarios. They focused on day-ahead battery scheduling, considering
degradation costs owing to charging and discharging cycles. Moreover, after considering
several uncertainties, the proposed technique could minimize operational costs by 40%.
The variations in power generation and demand do not impact the battery energy schedule,
whereas a fluctuation in electricity price affects the schedule. In another study [42], the PV
microgrid was optimized using a mixed integer linear programming model considering
social, technical, and economic aspects. It focuses on designing systems using location
sizing and microgrid configurations. The results show that it successfully minimized the
design cost of a microgrid with several uncertainties in geographic contents and improved
its versatility. Several methods have been used in [43–46] for the optimization of various
problems of energy management in microgrids.

In [47], the Markov decision process was employed for power scheduling in a renewable-
energy-based microgrid. A rollout algorithm was used for decision space and the large state
of MDP. A memory-based genetic algorithm [45] was carried out on a microgrid consisting
of solar, wind, and a combined heat and power plant (CHP). It focuses on minimizing the
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cost through optimal energy distribution among available generation sources, whereas
the authors of [48] optimize energy, heat, and demand using a mathematical model based
on MILP to minimize the operational cost. In [49], the author proposed an artificial hum-
mingbird algorithm for optimal operation of a microgrid. It tends to solve the deterministic
incentive DR program that reduces overall cost, taking into account the load demand. It
worked in grid-connected mode and the proposed algorithm was tested for two different
case studies. The authors in [50] focused on solving numerical optimization problems with
the proposed cost-effective multi-verse optimizer algorithm. They modified the updated
position mechanism in standard MVO and combined it with a sine cosine algorithm for
balanced exploration and exploitation. It is observed that the proposed algorithm achieves
much better results for optimization, and the proposed method was evaluated on 27 bench-
mark functions. Similarly, in [51], multi-verse optimization is used for power scheduling
for loss minimization, and validation was conducted on the IEEE 30-bus test system.

Previous studies have analyzed power scheduling from various aspects for better
energy management. Among existing algorithms that have been implemented for opti-
mization, it is observed that they do not explore and exploit the search space effectively and
escape the local minima, whereas the multi-verse optimization algorithm has been applied
to various research areas and shows promising results; it explores and exploits the search
space efficiently. It is observed that it has also been used by various research scholars to
optimize various parameters of microgrids while addressing different problems like unit
commitment, economical dispatch, demand response problem, optimal allocation, power
scheduling, and so on. This gives us the motivation to solve the power scheduling problem
using MVO. The previously implemented work lacks an efficient optimization algorithm
to solve power scheduling among different generation units to minimize the generation
cost in microgrids. This gives us the motivation to solve the power scheduling problem
using MVO. The proposed cost-effective optimization algorithm is a modified multi-verse
optimization algorithm. As compared with the original algorithm, in this modified version,
the best outcome of each iteration is stored in a temporary variable. After n number of
iterations, they replace the current universes as an input to the (n + 1)th iteration. Here,
n represents the total number of initialized populations. It enhances the operation and
improves the solution searching capability of the original version in a search space concern-
ing the challenges and drawbacks of available traditional algorithms. It aims to solve the
power scheduling problem considering the intermittent nature of the renewable sources
and minimize the generation cost for power generation. The proposed idea effectively fills
this research gap by optimally scheduling the power between various generation sources.

3. Problem Formulation
3.1. Cost Function

The microgrid consists of variable load and intermittent generation power, including
wind plants, PV, CHP, and so on. The demand at each hour and generated power are
different, and the main aim is to supply power to satisfy the demand load. There are many
techniques for energy allocation among DERs. The best energy management method in
a microgrid is to reduce the generation cost. The commonly used quadratic cost function
used to achieve this goal from the literature on microgrid [52] optimization is as follows:

Ci = αi × P2
i + βi × Pi + γi (1)

where αi, βi, and γi are the cost coefficients; Ci represents the total cost in dollars; and Pi
denotes the power of ith generation units in MW per hour. This quadratic cost function is
used for each generation unit to minimize generation cost. The total cost of each hour is a
summation of all the DERs used at that hour. The main aim is to satisfy the load through
power generation with minimum cost. It is considered that generation will always be equal
to load.



Sustainability 2023, 15, 6358 6 of 25

3.2. Equality Constraint

For smooth implementation, it is observed that, at any instant, generated power should
always be greater than or equal to the demand power. If DERs cannot meet demand, the
needed capacity is taken from the utility grid. In this research, it is considered that load
will always satisfy the load and it is not necessary to get energy from the utility grid.

This can be formulated as follows:

DER

∑
g=1

Pg=Pl (2)

where Pg is the total generated power of the available DERs, Pl is the demanded power at a
particular hour of the day, and DER represents the total number of DERs in a microgrid.
Generated power for every hour is the sum of the power of all of the generation units.
In this paper, we have considered two different microgrids, and both microgrids have a
different number of generation units. Each generation unit should be operated between its
limits. This can be represented as follows:

Pg min ≤ Pg(t) ≤ Pg max where g = 1, 2, . . . NDERt = 1, 2, 3 . . . 24. (3)

This equation states that, at time t, power from any generation unit should always be
in this power range. Here, Pg min is the minimum power generated by any generation unit,
and it is supposed to be zero, whereas Pg max is the maximum power produced depending
on the rated power capacity. These also define the lower and upper bound and form the
generation vector’s boundary.

3.3. Objective Function

Each generation unit is considered a decision variable to solve the cost minimization
problem. Thus, there are two different scale microgrids, and the decision variables differ.
In microgrid 1, there are six decision variables; they are three wind power plants, two PV
plants, and a CHP. Similarly, for microgrid 2, there are 15 decision variables, which are
eight wind power plants, six PV plants, and a CHP. The vector solution for microgrid 1 [45]
is represented as x = [ Pwp1, Pwp2, Pwp3, Ppv1, Ppv2, PCHP] and that for microgrid 2 [46]
is x = [ Pwp1, Pwp2, Pwp3, Pwp4, Pwp5, Pwp6, Pwp7, Pwp8, Ppv1, Ppv2, Ppv3, Ppv4, Ppv5, Ppv6, PCHP].
The total generation cost is the sum of all of the costs of generation units used at that
time. Using the equality constraint, the energy management system should balance the
generation power with the demanded load. Thus, the main aim of the optimization
algorithm is to use the generated power from all of the available generation units so that
the cost of generation is minimized. To solve this power scheduling problem, the following
optimization function [45] should be solved:

MIN OF =
DER

∑
i=1

C(i) (4)

where

C(i) =
DER

∑
i=1

[
αi × P2

i + βi × Pi + γi

]
(5)

Subject to
DER

∑
g=1

Pg=Pl (6)

As discussed, the generated power should be in the power range, and handling this
issue in an optimization problem is challenging. Thus, the best way to address this problem
is to introduce a penalty function. The penalty function helps to implement the optimized



Sustainability 2023, 15, 6358 7 of 25

process in a balanced manner. The equation for the objective function with the penalty
function [45] is given below:

C(i) =

[
DER

∑
i=1

[
αi × P2

i + βi × Pi + γi

] ]
+ Pf

∣∣∣∣∣DER

∑
i=1

Pi − Pl

∣∣∣∣∣ (7)

Here, Pf is the penalty factor that maintains the balance equation.

4. Methodology

This section explains the multi-verse optimizer algorithm and how it helps to find an
optimized result for the problem. Further, a cost-effective version of the multi-verse opti-
mizer algorithm is discussed and implemented in different scenarios for cost optimization.

4.1. Multi-Verse Optimizer Algorithm

The multi-verse algorithm is a nature-inspired population-based stochastic optimiza-
tion algorithm. The optimization process for any problem starts by initializing some
random set of solutions. These initial solutions are explored over a definite time for some
defined step known as iterations or generations. The basic concept for all population-based
algorithms is the same, but what makes them different is the process of moving or evolving
toward an optimized solution. A population-based algorithm uses two processes during
searching: exploration and exploitation [53]. The better the exploration and exploitation,
the more optimized the solution is expected to be. The multi-verse optimization algorithm
is based on the concept of the multi-verse theory, which came into existence after the big
bang theory. This theory implies that a massive eruption led to the universe’s presence,
whereas the multi-verse theory states that many explosions led to the emergence of several
parallel universes that collide and interact with each other, and every existing universe has
distinct properties.

MVO works on the principle of the multi-verse theory of white holes, black holes, and
wormholes. It is believed that white holes have never been found in the universe, but many
physicists consider them a collision between several existing parallel universes. However,
black holes attract everything towards them, including light, because of their great gravita-
tional force. Wormholes are considered time/space travel tunnels from which objects travel
within the universe from one corner to another (from one universe to another). Universe
expansion through space depends on its inflation rate. The creation of stars, different plan-
ets, asteroids, wormholes, white holes, black holes, physical laws, and the sustainability of
life depends on the inflation speed of the universe. It is argued that universes interact with
each other through white holes, black holes, and wormholes to achieve a stable point. This
is the motivation for a multi-verse optimization algorithm where universes interact with
each other to achieve an optimized solution. In a multi-verse optimization algorithm, a few
rules are employed in the universes, which are described below:

1. The inflation rate is directly proportional to the probability of having white holes.
2. The inflation rate is inversely proportional to the probability of having black holes.
3. The universe with more white holes and a high inflation rate tends to send more

objects to another universe.
4. The universe with more black holes and a lower inflation rate tends to receive more

objects from another.
5. The objects in different universes tend to randomly transfer toward the best universe

through wormholes, regardless of the inflation rate.

In a multi-verse optimization algorithm, solutions are called universes and every
variable in a solution is a variable in a universe. Moreover, each universe is associated with
an inflation rate that is known as the fitness value of that universe. For the exploration
process, white/black hole tunnels are used, whereas for the exploitation process, the objects
are sent through wormholes. The universes with high inflation rates have more white
holes, whereas the universes with lower inflation rates have more black holes. As explained
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above, the object travels from the source universe of white holes to the destination universe
of black holes through white/black tunnels. With this process, the overall average inflation
rate of all of the universes increases by the movement of objects from universes with higher
inflation rates to universes with lower inflation rates. This process is also explained in
Figure 2. To mathematically model this process, the following steps are followed:
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Step 1: All of the universes are sorted by their inflation rate so that the universes with
more white holes, i.e., with a high inflation rate, are kept in front, and the universes with
more black holes, i.e., with a lower inflation rate, are kept at the rear.

Step 2: The roulette wheel mechanism chooses one of the universes with a white
hole. With this implementation, exploration occurs as the universes interchange objects to
explore the search space.

Step 3: After exploration, exploitation is performed using wormholes in universes.
Each universe’s objects exploit the search space by transforming the objects through the
search space regardless of the inflation rate.

Step 4: Wormhole tunnels are formed between a universe and the best universe created.
Step 5: This mechanism assures the diversity of solutions and is expected to expand

the local search and enhance the universe’s overall inflation rate.
Initially, all of the parameters are defined, such as the objective function, problem

dimension, population size, maximum iterations, and upper and lower limits. After explain-
ing all of the parameters, the positions of universes are initialized using random solutions.

Each universe has d number of variables in a solution (here, it is several generation
units). Universe i is shown by the vector, xi = [x1

i x2
i x3

i . . . ... xd
i]. The matrix of the

universe is shown as follows:

Ui =


x1

1 x2
1 . . . · · · xd

1
x1

2 x2
2 . . . . . . xd

2
...

...
...

...
...

x1
n x2

n . . . · · · xd
n

 (8)

Here, d is the number of decision variables and n is the number of universes (solutions). Then,
the inflation rates are calculated and tend to find the best solution using the following equation:

xj
i =

{
xj

k r1 < NI(Ui )

xj
i r1 < NI(Ui )

(9)
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where xj
i indicates the jth parameter of the ith universe, Ui indicates the ith universe, NI(Ui)

is a normalized inflation rate of the ith universe, r1 is a random number in [0, 1], and xj
k

indicates the jth parameter of the kth universe selected by the roulette wheel selection
mechanism. These universes are then sorted in a series where the ones with a high inflation
rate, i.e., with a more significant number of white holes, are in front, and those with low
inflation rates are kept at the rear. After sorting the universes, the wormhole existence
probability (WEP) and traveling distance rate (TDR) are calculated using the formula for
both coefficients mentioned below:

WEP = min + l ×
(

max − min
L

)
(10)

where min stands for minimum and equals 0.2, max stands for maximum and the value is
set to 1, l shows the current iteration, and L indicates the total number of iterations.

TDR = 1 − l
1
p

L
1
p

(11)

Here, p shows the exploitation accuracy over iterations and is set to 6. The speed and
accuracy of the local search or exploitation rate are directly proportional to p. Now, the posi-
tions of the universes are updated using the following equation and the current best solution.

xj
i =


Xj + TDR ×

((
ubj − lbj

)
× r4 + lbj

)
r3 < 0.5 and r2 < WEP

Xj + TDR ×
((

ubj − lbj
)
× r4 + lbj

)
r3 < 0.5 and r2 < WEP

xj
i r2 ≥ WEP

, otherwise (12)

where Xj indicates the jth parameter of the best universe formed so far; TDR is a coefficient;
WEP is another coefficient; lbj shows the lower bound of the jth variable; ubj is the upper

bound of the jth variable; xj
i indicates the jth parameter of the ith universe; and r2, r3, and

r4 are random numbers in [0, 1]. This is repeated until the maximum number of iterations
is reached and the best-optimized result is outputted.

4.2. Cost-Effective Multi-Verse Optimizer Algorithm

The existing algorithm has yielded promising results, but converges prematurely
without proper exploitation in search space. The improved version of the multi-verse
optimizer algorithm enhances the optimization results with an improved exploitation
process for cost optimization problems. As shown in Figure 3, some modifications in the
optimization process using a multi-verse optimizer algorithm ensure better results for
cost optimization problems and are labelled as 1 and 2. Initially, all of the parameters are
defined as the objective function, dimension of the problem, population size, maximum
iterations, and upper and lower limits. Then, the positions of universes are initialized
using random solutions. The following steps are achieved by initializing the population
of N universes. Inflation rates are calculated and the best solution is decided among all
of the universes. Further, sorting of universes is performed, in which a high inflation rate
universe is supposed to consist of more white holes stored in front and others in the rear.
After the sorting is complete, the best results so far are stored at every consecutive iteration.
Then, the WEP and TDR are calculated using the given equations. The positions of the
universe are held using the current locations, and the best solution at every iteration is
stored followed by the evaluation of inflation rates for new universes. After this, it is
checked whether the stored solutions reach the population size. Once the stored solutions
are equal to population size, the previous population is replaced, and the new solution
serves as the new population for the rest of the implementation. For every n population
size, there will be a new population after every 2n iterations. This process is followed for N
number of iterations and outputs promising results for this problem (Algorithm 1).
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Algorithm 1: Algorithm for proposed cost-effective multi-verse optimizer algorithm

Input: Number of decision variables, boundaries, loads, cost coefficients
Output: Generation cost at each hour
Step 1: Start, Initial parameters No. of universes = 50, maximum no. of iteration = 1000, WEP = 0.2
and TDR = 1.
Step 2: Initialize Universe positions with random solutions using a matrix.

Step 3: Calculate the inflation rate using xj
i =

{
xj

k r1 < NI(Ui )

xj
i r1 < NI(Ui )

And find the best solution

using Roulette wheel selection.

Step 4: Calculate WEP using WEP = min + l ×
(

max−min
L

)
and TDR by TDR = 1 − l1/p

L1/p

Step 5: Update the inflation rates using.

xj
i =


Xj + TDR ×

((
ubj − lbj

)
× r4 + lbj

)
r3 < 0.5

Xj − TDR ×
((

ubj − lbj

)
× r4 + lbj

)
r3 ≥ 0.5

r2 < WEP

xj
i r2 ≥ WEP

Step 6: After every iteration, store the best solution.
Step 7: If stored solutions are equal to the number of universes, Replace the population with new
stored solutions.
Step 8: Repeat the process until the maximum number of iterations.
Step 9: Calculate the Best cost.
Step 10: End
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5. Implementation and Results

In this section, the experimental setup and dataset description are provided. Moreover,
the performance of a proposed algorithm is evaluated by implementing it on different scale
microgrid models.
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5.1. Experimental Setup and Data Set Description

The algorithms were implemented using MATLAB and the experiments were executed
on a computer with a Windows 10 64-bit operating system specification, Intel (R) core (TM)
i5, and 8 GB RAM. The proposed algorithm is implemented on two test systems and the
results are compared to those of other algorithms. According to the classification based
on generation power, demands, and electrical lengths, the microgrids are categorized as
small-scale, medium-scale, and large-scale microgrids.

In this paper, the performance of the proposed algorithm is evaluated on two micro-
grid models, i.e., the IEEE 37-node test feeder and the IEEE 141-node test feeder. These
two different models are categorized as medium-scale and large-scale microgrids. In this
research, we will consider the microgrids in islanded mode, assuming the generated power
from all of the available generation sources will satisfy the load at each hour. Islanded mode
depicts that the microgrid will serve the demand with the available renewable sources and
CHP. A cost-effective multi-verse optimization algorithm optimizes demand power among
the various available DERs. It focuses on optimal power sharing among the available
sources in such a way that generation cost is optimized and the load is served.

The proposed CMVO and other algorithms were implemented by the authors for both
medium-scale and large-scale microgrids. The generation data were obtained from [52]
and all of the algorithms were implemented by the authors for the same dataset and then
compared in terms of cost. It is shown that the proposed algorithm performs better than
the other investigated meta-heuristic algorithms. These algorithms are run 30 times for a
24 h load dataset, and the best results are reported for a fair evaluation. All of the algorithms
are executed for the same population size and the maximum number of iterations for the
comparison. Other parameters for each algorithm are varied accordingly. The parameter
settings of all algorithms are presented in Table 1.

Table 1. Parameter settings of the algorithms.

Algorithm Parameter Value

CMVO

Universe size 50
Number of iterations 1000
WEP 0.2
TDR 1

MVO

Universe size 50
Number of iterations 1000
Min 0.2
Max 1
p 6

GA

Population size 50
Number of iterations 1000
Crossover probability 0.9
Mutation probability 0.5

PSO

Swarm size 50
Number of iterations 1000
Learning factor 2
Inertia weight 0.9 to 0.4

AHA
Population size (n) 50
Number of iterations 1000
Migration coefficient 2n

Two different small-scale and large-scale microgrid test systems are used for the
implementation. Table 2 represents the configuration of these microgrids and they are
discussed in detail below.
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Table 2. Configurations of microgrids.

Microgrid 1 2

IEEE Test System IEEE 37-NODE Test Feeder IEEE 141-NODE Test Feeder
Scale Medium Large

No. of solar plant (PV) 2 6
No. of wind plant 3 8

No. Of CHP 1 1

5.1.1. Microgrid 1 (Medium-Scale Microgrid)

This microgrid consists of three wind plants, two PV plants, and one CHP, whereas the
load area is represented by the IEEE 37-bus test system, as seen in Figure 4. The generation
and load data for this microgrid are adopted from [45] and the rated capacity of the wind
turbine, solar plant, and CHP is 750 KW, 200 KW, and 1000 KW, respectively [45]. Wind
and PV plants are intermittent and provide different power at each hour, whereas CHP
will offer the same power for a whole day. It is assumed that the generation sources do not
run out, and the microgrid works in islanded mode without relying on the grid.
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Figure 4. Representation of microgrid 1.

The energy management system will be informed about the demand and generated
power for every hour. It evaluates the data and communicates back to generation units that
aim to allocate the energy to achieve the minimum generation cost. The power generation
of each renewable energy source per hour is shown in Figure 5. Table 3 shows the load for
each microgrid [45,54], whereas Table 4 shows the cost coefficient for each generation unit
in microgrid 1 [45,46].
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Table 3. Load data for microgrid 1 and microgrid 2 [45,54].

Hour Load (KW) IEEE 37 Load (KW) IEEE 141

1 1471 3482
2 1325 2946
3 1263 2761
4 1229 2558
5 1229 2541
6 1321 2616
7 1509 3635
8 1663 4339
9 1657 4748
10 1643 5100
11 1643 5231
12 1652 5306
13 1666 5454
14 1639 5215
15 1642 5363
16 1640 5383
17 1676 5198
18 1920 5051
19 2214 4496
20 2382 5275
21 2382 5479
22 2327 5536
23 2174 5370
24 1903 4611

Table 4. Cost coefficients of DERs in microgrid 1.

Plant α β
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5.1.2. Microgrid 2 (Large-Scale Microgrid)

This microgrid consists of eight wind plants, six PV plants, and one CHP, whereas
the load area is represented by the IEEE 141-bus test system, as seen in Figure 6. The load
data for this microgrid are adopted from [45], and the rated capacity of the wind turbine,
solar plant, and CHP is 750 KW, 200 KW, and 1000 KW, respectively. Figure 6 represents
microgrid 2, and cost coefficients for microgrid 2 are listed in Table 5 [46].
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Table 5. Cost coefficient of DERs in microgrid 2.

Plant α β
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Wind and PV plants are intermittent and provide different amounts of power at
each hour, whereas CHP will offer the same amount of power for a whole day. For this
implementation, it is assumed that the generation sources do not run out and the microgrid
works in islanded mode without relying on the grid. The load dataset for microgrid 2 is
presented in Table 3.

5.2. Experiment Results

In the experiment results, the results for both microgrids are explained by various
algorithms. The results are obtained for different microgrids with their respective datasets
using initialized parameters. All of the algorithms were run 30 times, and the best results
were reported for fair evaluation.
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5.2.1. Microgrid 1 (IEEE 37 NODE TEST FEEDER)

The optimization results for microgrid 1 are explained in this section. Five of the
algorithms are applied to the given dataset. It is assumed that the generated power will
always satisfy the demanded power, so the equality constraint is satisfied. Table 6 shows
the generation power of all of the DERs every hour by applying a genetic algorithm (GA).
For this microgrid, we have six DERs as WP1, WP2, WP3, PV1, PV2, and CHP. The load
data for this microgrid are presented in Table 1. After applying the genetic algorithm, the
total generation is $1600.35. Table 7 shows the result for the generation power of all of
the DERs using the particle swarm optimization algorithm. The entire generation cost
for PSO is $1183.45. Table 8 shows the results performed by the artificial hummingbird
algorithm AHA [55], respectively. The total generation cost for AHA is $1353.74. Similarly,
Tables 9 and 10 represent the generation power for the multi-verse optimizer algorithm
(MVO) and cost-effective multi-verse optimizer (CMVO) algorithm, respectively. The
total generation cost for MVO is $1177.20, whereas it is $1167.35 for CMVO. These tables
represent various algorithms for optimal power scheduling of all available generation units
at the hour.

Table 6. Generation power (KW) by GA for microgrid 1.

No. WP1 WP2 WP3 PV1 PV2 CHP Cost ($)

1 383.73 574.293 395.83 0 0 117.134 51.17
2 534.689 399.98 354.819 0 0 35.502 43.91
3 506.64 541.73 168.308 0 0 46.316 43.51
4 604.402 521.86 20.91 0 0 81.82 45.05
5 644.34 460.329 11.67 0 0 112.64 46.86
6 509.143 587.81 161.23 0 0 62.8 45.48
7 643.22 544.58 90.8 0 12.55 217.82 62.48
8 643.23 457.34 453.9 8.2 57.38 42.85 59.97
9 697.466 460.85 359.08 45.26 48.89 45.42 60.39
10 681.39 273.42 434.45 45.86 61.61 146.245 66.14
11 433.81 503.18 493.97 115.71 95.25 1.06 58.83
12 683.71 639.69 154.38 108.2 60.22 5.6 58.93
13 583.55 552.691 287.59 77.51 99.25 65.377 62.69
14 504.43 454.82 203.9 95.97 101.11 278.75 74.87
15 565.73 622.26 25.91 86.12 221.53 320.43 76.35
16 603.22 559.95 10.227 120.11 57.968 288.51 75.31
17 664.6 610.49 123.11 104.07 60.73 112.96 65.55
18 466.86 559.42 361.755 62.14 33.61 436.19 87.69
19 696.422 617.59 501.47 2.64 22.6 373.25 88.38
20 610.1 635.03 474.8 0 0 662.05 98.90
21 505.89 576.14 663.899 0 0 636.06 97.30
22 623.55 648.58 591.11 0 0 463.74 86.36
23 597.81 454.71 647.62 0 0 472.83 84.17
24 573.63 609.4 579.94 0 0 140.01 60.08

Table 11 represents the total generation cost by all of the algorithms after optimal
power scheduling among various available DERs. Based on Table 8, it is found that the
cost-effective multi-verse optimizer algorithm has improved results. It performs optimal
scheduling at a lower cost than all other algorithms. In comparison, the total costs produced
by CMVO, MVO, PSO, AHA, and GA are $1167.35, $1177.20, $1183.45, $1353.74, and
$1600.35, respectively. It is seen that the daily cost reduction varies from $10.05 for MVO
to $433 for GA, whereas the average time taken by CMVO, MVO, PSO, AHA, and GA for
each hour is 0.18 s, 0.19 s, 1.90 s, 0.26 s, and 1.05 s, respectively. The mean and standard
deviation for each algorithm are presented in Table 11. Here, AHA has a better standard
deviation than CMVO, but has a difference of $186, which is more significant. So, the
proposed algorithm is more stable than the other investigated algorithms.
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Table 7. Generation power (KW) by PSO for microgrid 1.

No. WP1 WP2 WP3 PV1 PV2 CHP Cost ($)

1 340.11 693.8836 437 0 0 0 39.12
2 610 715 0 0 0 0 32.33
3 558 705 0 0 0 0 31.23
4 571.28 657.71 0 0 0 0 30.63
5 649 580 0 0 0 0 30.66
6 459 682 180 0 0 0 36.60
7 665 484 360 0 0 0 39.90
8 660 536.89 466.10 0 0 0 42.57
9 478.81 639.15 514.99 0 24.03 0 47.14
10 703.40 453.24 486.34 0 0 0 42.22
11 717 454.65 433.65 0 37.68 0 47.16
12 640.19 667.97 335.13 8.68 0 0 47.01
13 648.60 647.39 370 0 0 0 42.65
14 685 570 210 138.28 35.71 0 53.20
15 710 665 0 112 155 0 50.01
16 725 668.06 0 111.74 135.18 0 49.74
17 705 673.53 159.66 90.68 47.11 0 53.45
18 725 674 395 77.82 48.17 0 57.52
19 740 677.72 634.99 0 65.78 95.49 68.22
20 660 682 667 0 0 373 82.03
21 685 680 730 0 0 287 77.02
22 687 670 758 0 0 212 71.68
23 695 645 695 0 0 138 64.69
24 495 688 720 0 0 0 46.65

Table 8. Generation power (KW) by AHA for microgrid 1.

No. WP1 WP2 WP3 PV1 PV2 CHP Cost ($)

1 339.07 694.95 436.96 0 0 0 44.33
2 162.01 714.98 447.99 0 0 0 41.71
3 328.00 704.99 229.99 0 0 0 40.74
4 480.00 704.99 43.99 0 0 0 40.24
5 629.00 579.99 19.99 0 0 0 40.29
6 459.01 681.98 179.99 0 0 0 41.81
7 467.68 682.36 358.92 0 0.029607 0 49.51
8 643.28 505.41 513.19 0.68 0.201648 0.22 56.61
9 729.23 358.55 514.65 54.08 0.466118 0 56.52
10 372.73 754.57 515.38 0.01 0.209078 0 56.25
11 663.77 476.72 501.45 0.32 0.282455 0.43 56.26
12 717.29 617.67 313.45 2.63 0.511972 0.42 56.53
13 699.73 647.00 170.74 148.13 0.382843 0 56.79
14 677.34 568.27 207.93 107.10 78.05455 0.28 58.43
15 709.50 664.99 73.86 39.23 150.4662 3.92 58.75
16 721.78 668.68 0.35 105.60 143.4948 0 59.15
17 704.22 673.99 159.78 89.42 48.06352 0.50 58.66
18 722.77 673.50 393.77 64.56 65.37054 0 62.74
19 738.62 676.32 626.67 29.18 65.55676 77.62 71.15
20 659.99 681.99 666.99 0 0 373. 82.03
21 684.99 679.98 729.99 0 0 287.02 77.02
22 687 670 758 0 0 212 71.68
23 695 645 695 0 0 138 64.69
24 495.00 687.99 719.99 0 0 0 51.86
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Table 9. Generation power (KW) by MVO for microgrid 1.

No. WP1 WP2 WP3 PV1 PV2 CHP Cost ($)

1 361.18 672.81 437 0 0 0 39.13
2 609.99 715 0 0 0 0 32.34
3 582.44 680.55 0 0 0 0 31.23
4 587.82 641.17 0 0 0 0 30.64
5 648.99 580 0 0 0 0 30.66
6 459.85 682 179.14 0 0 0 36.60
7 464.05 685 359.94 0 0 0 39.85
8 519.48 596.52 547 0 0 0 42.52
9 429.49 745 482.50 0 0 0 42.43
10 445.41 685.22 512.37 0 0 0 42.15
11 717 503.75 398.39 23.85 0 0 46.99
12 720 587.56 324.60 19.83 0 0 47.13
13 694.32 643.01 328.65 0 0 0 42.68
14 685 570 210 155 18.99 0 53.20
15 710 665 0 131.28 135.71 0 50.01
16 725 669 0 104.95 141.03 0 49.74
17 705 674 160 104.21 32.78 0 53.44
18 725 674 395 71.91 54.08 0 57.52
19 740 677.87 634.98 0 0 161.14 66.84
20 660 682 667 0 0 373 82.03
21 685 680 730 0 0 287 77.02
22 687 670 758 0 0 211.99 71.68
23 695 645 695 0 0 137.99 64.70
24 500.83 682.16 720 0 0 0 46.66

Table 10. Generation power (KW) by CMVO for microgrid 1.

No. WP1 WP2 WP3 PV1 PV2 CHP Cost ($)

1 353.16 693.51 424.32 0 0 0 39.14
2 609.99 715 0 0 0 0 32.33
3 563.36 699.64 0 0 0 0 31.25
4 558.78 670.21 0 0 0 0 30.64
5 648.99 580 0 0 0 0 30.66
6 470.87 670.12 180 0 0 0 36.61
7 630.78 518.40 359.80 0 0 0 39.90
8 437.34 699.34 526.31 0 0 0 42.49
9 409.15 744.67 503.17 0 0 0 42.39
10 599.26 760 283.73 0 0 0 42.28
11 600.05 526.10 516.83 0 0 0 42.19
12 689.93 669.82 292.24 0 0 0 42.45
13 676.69 622.62 366.68 0 0 0 42.71
14 685 570 209.9 155 19.01 0 53.20
15 710 664.97 0 131.06 135.95 0 50.02
16 725 669 0 113.94 132.05 0 49.74
17 705 674 160 109.61 27.38 0 53.44
18 725 673.99 395 78.130 47.87 0 57.52
19 739.40 677.96 635 0 0 161.62 66.83
20 660 682 667 0 0 373 82.03
21 685 680 729.981 0 0 287.01 77.02
22 687 670 758 0 0 211.99 71.68
23 695 645 695 0 0 138.00 64.70
24 498.23 687.93 716.82 0 0 0 46.66
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Table 11. Total generation cost and time of the invested algorithm for microgrid 1.

Algorithm Total Cost ($) Total Time (s) Mean ($) Standard
Deviation

Proposed
CMVO 1167.35 0.18 1261.11 17.22

MVO 1177.20 0.19 1265.85 19.87
PSO 1183.45 1.90 1346.91 41.56
AHA 1353.74 0.26 1361.16 16.67
GA 1600.35 1.05 1958.76 32.34

Figure 7 represents the convergence graph for hour 10 and Figure 8 represents the
graph for hour 13. These convergences graphs are selected to show the best outcome from
all of the running hours. It is observed from the figure that the proposed algorithm that
explores the search space is converged efficiently. The convergence graph represents the best
solution versus the generation (iteration number). In these graphs at hour number 10, it is
observed that, compared with other algorithms, the proposed algorithm finds a promising
region in search space for initial generations and rapidly converges to the optimal solution.
It performed better than other algorithms in terms of efficiency and accuracy. Similarly,
in another hour, hour 13, it is observed that the proposed algorithm converges better as it
finds a promising region in fewer generations and achieves better results compared with
other existing algorithms.
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always satisfy the demanded power, so the equality constraint is satisfied. The generation
power of all DERs at every hour is different and, for this microgrid, we have 14 DERs as
WP1, WP2, WP3, WP4, WP5, WP6, WP7, WP8, PV1, PV2, PV3, PV4, PV5, PV6, and CHP. As
shown in Figure 5, the data for WP1, WP2, and WP3 are the same, and WP4 has the same
data as WP1, WP5 and WP6 have the same data as WP2, and the data of WP7 and WP8 are
the same as those of WP3. Similarly, for solar datasets, PV1, PV3 and PV5 have the same
data as PV1 in Figure 4, and PV2, PV4, and PV6 have the same data as PV2 in Figure 4.
The load data for this microgrid are presented in Table 3. Assume CHP has a constant
production value of 1000 KW for the entire 24 h. Table 12 shows that the total generation
obtained by genetic algorithm is $4711.06. It describes the optimal power scheduling
carried out by GA for this microgrid. Each row in the table shows the total power generated
by each renewable resource, and it is observed that, at every hour, the demand is satisfied
by generated power. Similarly, Tables 13 and 14 describe the optimal power scheduling
carried out by PSO and AHA, respectively. The total cost generated by PSO for microgrid 2
with 15 DERs is $3252.05, which shows an improvement in generation cost compared with
GA, which is $4711.06, whereas that of AHA is $3598.03. Tables 15 and 16 represent the
results of MVO and CMVO, where the total generation cost produced by MVO is $3211.43.
Compared with all of these algorithms, CMVO achieves many promising results, and the
entire generation cost is $3178.30. It is observed that the daily cost reduction varies from
$33.3 for MVO to $1532.96 for GA.

Table 12. Generation power (KW) by GA for microgrid 2.

No. WP1 WP2 WP3 WP4 WP5 WP6 WP7 WP8 PV1 PV2 PV3 PV4 PV5 PV6 CHP Cost
($)

1 266.55 562.88 304.41 482.98 642.50 589.01 301.68 331.94 0 0 0 0 0 0 0 96.60
2 362.10 475.85 333.35 296.96 404.02 394.55 322.03 357.10 0 0 0 0 0 0 0 87.14
3 193.03 563.42 191.78 583.54 383.54 651.13 151.11 43.417 0 0 0 0 0 0 0 84.13
4 414.91 611.88 26.44 321.47 566.87 570.09 18.43 22.46 0 0 0 0 0 0 0 80.68
5 458.20 480.10 0 439.96 547.06 431.25 0 16.08 0 0 0 0 0 0 7.89 77.92
6 462.17 483.09 67.89 240.32 634.785 506.96 132.02 88.73 0 0 0 0 0 0 0 81.59
7 572.38 501.92 285.42 594.31 537.65 464.53 299.55 319.80 0 12.35 0 17.038 0 19.89 10.05 119.18
8 522.87 595.10 435.21 484.16 607.71 630.73 389.28 427.95 6.39 36.05 7.32 47.40 4.9578 38.28 105.48 151.37
9 573.92 671.20 344.79 553.14 607.52 635.48 372.39 480.34 45.02 48.05 38.70 58.24 30.99 27.01 5.14 156.70
10 407.38 693.91 399.74 636.00 649.37 500.92 415.77 478.07 80.75 53.73 48.87 60.83 50.55 63.78 560.23 193.76
11 566.47 617.54 427.35 659.78 581.30 466.78 304.23 429.12 89.26 120.08 47.64 85.58 88.28 96.67 650.84 203.45
12 596.61 560.44 217.73 636.78 634.30 574.24 270.83 316.55 104.28 94.62 82.66 106.05 110.42 112.52 887.91 219.65
13 646.29 561.12 289.20 654.15 519.63 562.11 285.74 265.26 115.35 109.49 99.59 85.51 94.11 100.46 937.53 258.77
14 653.23 473.21 133.19 628.34 461.28 488.50 156.81 134.84 112.96 121.97 97.45 122.7 107.30 111.7 849.69 624.76
15 622.73 592.20 61.39 687.11 541.72 585.69 48.81 34.19 114.65 130.77 96.43 131.25 116.53 117.98 939.28 417.22
16 701.51 633.34 19.95 693.21 577.54 628.39 6.94 11.32 118.43 40.96 111.38 57.18 117.81 66.06 899.45 446.78
17 614.11 632.59 146.81 624.06 547.03 638.26 134.89 138.28 52.78 59.93 75.86 89.75 85.87 108.29 812.61 253.12
18 680.39 630.80 271.10 685.45 653.45 611.39 264.69 297.53 62.45 73.12 62.99 37.89 70.00 68.9 540.15 194.58
19 618.00 562.14 497.95 605.59 511.91 521.03 478.84 528.09 12.25 25.82 11.05 46.09 17.00 25.16 34.95 149.96
20 555.56 591.59 610.00 554.79 616.86 588.71 576.92 512.74 0 0 0 0 0 0 468.09 172.64
21 580.69 582.53 610.78 604.42 574.14 625.57 595.95 551.74 0 0 0 0 0 0 753.13 180.54
22 543.86 582.12 621.52 607.25 616.43 564.16 684.28 664.83 0 0 0 0 0 0 651.5 175.55
23 655.44 432.84 543.51 638.87 693.77 607.04 560.54 618.42 0 0 0 0 0 0 149.49 161.62
24 484.30 588.78 641.39 560.66 535.92 600.20 638.19 528.33 0 0 0 0 0 0 33.14 123.36

Figure 9 represents the convergence graph for hour 7 and Figure 10 represents the
graph for hour 23. These convergence graphs are selected to show the best outcome
from all of the running hours. The convergence graph represents the best solution versus
iteration. In these graphs, at hour 7, it is observed that, compared with other algorithms,
the proposed algorithm finds a promising region in search space for initial generations and
quickly converges to the optimal solution. It performed better than different algorithms in
terms of efficiency and accuracy. Similarly, in another hour, hour 23, it is observed that the
proposed algorithm converges better as it finds a suitable region in fewer generations and
achieves the optimal result compared with other existing algorithms.
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Table 13. Generation power (KW) by PSO for microgrid 2.

No. WP1 WP2 WP3 WP4 WP5 WP6 WP7 WP8 PV1 PV2 PV3 PV4 PV5 PV6 CHP Cost
($)

1 650 695 352.1 526.13 694.39 564.36 0 0 0 0 0 0 0 0 0 88.02
2 667.00 711.30 448 0 498.38 451.97 0 169.33 0 0 0 0 0 0 0 78.37
3 741.81 0 227.39 0 705 705 166.57 215.21 0 0 0 0 0 0 0 75.14
4 638.69 689.28 0 0 588.0 589.73 43.99 8.27 0 0 0 0 0 0 0 71.73
5 665 580 5.1356 412.81 422.17 455.87 0 0 0 0 0 0 0 0 0 71.59
6 0 520.19 180 528.64 670.65 682 0 34.51 0 0 0 0 0 0 0 72.67
7 307.19 633.48 357.00 278.06 658.41 676.23 359.05 357.46 0 8.09 0 0 0 0 0 103.75
8 660 642.63 547 556.12 347.62 700 547 306.22 6.31 13.36 0 0 12.70 0 0 125.37
9 730 255.29 497.5 730 745 745 398.66 515 0 0 54.16 0 11.331 66.04 0 133.79
10 565.94 678.14 448.38 694.5 741.08 748.66 437.58 519.95 63.98 0 42.93 59.26 0 99.49 0 145.97
11 701.94 692 470.78 717 633.73 691.01 514.98 517 119.50 119.18 0 53.84 0 0 0 144.15
12 720 670 360 720 669.81 670 360 352.7 139.45 155 0 81.57 137.70 155 114.64 170.89
13 700 650 370 699.97 650 650 368.45 369.84 0 160 149.63 145.60 111.39 141.96 287.11 184.00
14 685 570 205 684.78 570 570 205 190.60 155 158 155 84.83 0 155.75 826.02 211.28
15 710 665 0 710 665 665 74 0 140 155 140 144.07 140 154.92 1000 221.72
16 725 669 20 725 669 669 20 18 130 145 130 145 130 145 1000 229.63
17 705 674 149.6 705 674 674 160 106.31 110 130 110 0 0 0 1000 207.97
18 692.87 674 390.51 725 674 672.70 395 395 80 0 0 110 0 0 241.91 154.70
19 586.83 612.30 588.76 548.27 546.84 583.95 444.79 510.93 19.324 46.60 0 7.357 0 0 0 128.55
20 590.17 662.58 667 660 682 681.97 666.97 664.29 0 0 0 0 0 0 0 127.87
21 685 680 730 685 680 679 670 670 0 0 0 0 0 0 0 131.46
22 657.47 670 758 687 577.52 670 758 758 0 0 0 0 0 0 0 132.39
23 561.57 645 695 689.14 744.279 645 695 695 0 0 0 0 0 0 0 129.51
24 0 647.23 720 674.74 628.80 530.02 720 690.1 0 0 0 0 0 0 0 111.55

Table 14. Generation power (KW) by AHA for microgrid 2.

No. WP1 WP2 WP3 WP4 WP5 WP6 WP7 WP8 PV1 PV2 PV3 PV4 PV5 PV6 CHP Cost
($)

1 88.88 516.7 310.1 419.8 694.98 695.0 328.0 428.4 0 0 0 0 0 0 0 101.65
2 709.9 554.9 12.73 400.5 234.23 714.9 216.4 102.2 0 0 0 0 0 0 0 92.18
3 638.2 702.7 151.8 0.15 438.05 517.0 190.9 121.9 0 0 0 0 0 0 0 89.06
4 372.4 630.2 35.43 323.0 448.55 705.0 42.89 0.32 0 0 0 0 0 0 0 85.78
5 472.7 309.9 12.92 656.9 482.19 579.7 19.81 6.78 0 0 0 0 0 0 0 85.61
6 344.8 511.2 156.8 251.4 410.46 681.9 79.18 180.0 0 0 0 0 0 0 0 86.64
7 439.1 468.0 352.9 228.5 561.20 679.8 359.5 181.3 0 5.38 0 3.72 0 4.28 350.9 118.10
8 659.7 566.3 411.4 516.3 699.47 542.1 516. 351.6 6.38 1.21 18.20 0.89 7.96 40.30 0.30 144.51
9 712.7 653.9 433.3 690.6 335.18 631.9 432.0 502.9 67.39 3.04 73.95 93.00 49.78 67.99 0.04 152.21
10 646.8 749.5 456.2 596.0 748.50 565.3 4.85 476.8 0.01 101.6 75.08 69.67 44.47 31.90 532.9 160.86
11 716.3 636.6 495.0 469.3 663.85 683.6 516.9 455.4 93.54 0.30 56.64 46.68 25.47 0.13 370.9 164.86
12 619.3 571.4 359.8 638.8 646.03 571.5 333.9 359.8 30.02 91.25 0.29 126.5 140.0 87.56 729.5 189.03
13 698.6 646.2 202.8 684.6 634.66 605.5 354.0 351.6 121.0 75.45 118.8 0.63 0.06 127.5 832.1 201.26
14 646.8 568.3 173.9 594.4 559.59 563.9 152.1 178.1 100.9 155.5 154.2 153.5 149.2 153.0 910.8 218.45
15 673.9 664.7 73.98 686.7 664.97 664.3 69.51 73.68 138.3 145.6 124.5 145.0 124.0 142.6 970.9 225.75
16 724.9 668.9 19.84 724.8 668.79 668.9 19.99 19.67 129.9 145.0 129.7 144.8 129.9 144.9 999.5 229.54
17 688.4 668.7 155.5 662.1 672.05 670.2 130.3 156.2 72.03 74.38 2.28 129.4 90.68 108.0 917.4 212.53
18 715.0 540.8 255.6 692.6 460.89 672.8 247.8 301.6 72.58 3.50 78.98 65.19 53.74 0.05 889.5 176.66
19 721.6 579.9 628.9 463.8 474.76 344.9 312.9 629.7 0.52 16.77 2.35 34.16 10.14 56.17 219.0 147.18
20 438.6 606.8 661.9 540.7 662.02 680.9 309.0 663.9 0 0 0 0 0 0 710.8 151.45
21 566.1 670.7 722.1 684.0 548.94 677.5 592.5 565.9 0 0 0 0 0 0 450.3 154.03
22 686.9 630.4 758.0 686.8 387.71 642.1 555.6 518.9 0 0 0 0 0 0 669.3 154.77
23 491.8 644.6 690.4 694.4 741.58 539.8 428.9 695.0 0 0 0 0 0 0 443.2 134.74
24 699.9 550.0 466.7 699.7 688.00 609.7 83.35 624.4 0 0 0 0 0 0 188.9 121.27

Table 15. Generation power (KW) by MVO for microgrid 2.

No. WP1 WP2 WP3 WP4 WP5 WP6 WP7 WP8 PV1 PV2 PV3 PV4 PV5 PV6 CHP Cost
($)

1 650 695 399.20 0 690.46 612.90 434.41 0 0 0 0 0 0 0 0 87.73
2 641.79 692.46 437.38 580.07 594.27 0 0 0 0 0 0 0 0 0 0 74.23
3 670.85 679.14 0 508.41 688.40 0 214.18 0 0 0 0 0 0 0 0 70.97
4 719.64 463.36 0 0 661.67 705 0 8.30 0 0 0 0 0 0 0 67.38
5 432.42 580 0 367.75 572.77 580 0 8.05 0 0 0 0 0 0 0 71.52
6 0 681.56 0 250.12 679.84 681.85 180 142.60 0 0 0 0 0 0 0 72.60
7 636.42 374.36 355.04 646.64 604.91 683.16 334.46 0 0 0 0 0 0 0 0 95.25
8 647.63 555.82 293.82 426.29 599.70 699.65 545.70 495.92 0 16.72 0 57.71 0 0 0 121.46
9 719.18 697.76 437.77 628.16 519.27 709.55 435.10 502.59 0 0 47.62 0 38.90 12.05 0 133.41
10 684.71 676.63 465.77 709.11 750 689.11 424.89 434.5 95.61 73.72 0 0 0 95.90 0 141.73
11 659.38 691.28 500.48 716.90 691.57 689.12 501.29 516.40 114.51 0 0 149.98 0 0 0 139.67
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Table 15. Cont.

No. WP1 WP2 WP3 WP4 WP5 WP6 WP7 WP8 PV1 PV2 PV3 PV4 PV5 PV6 CHP Cost
($)

12 719.52 669.09 346.24 719.87 669.83 670 357.35 359.67 118.58 154.23 116.45 145.22 131.49 120.12 8.2720 170.56
13 699.79 649.12 369.96 700 649.97 649.94 370 369.91 149.97 156.63 89.151 134.45 117.17 78.706 269.16 187.59
14 684.65 568.44 204.81 685 568.40 568.73 197.33 202.31 140.90 151.20 153.56 119.93 153.80 96.17 719.70 210.81
15 710 665 74 710 665 664.61 0 0 129.39 155 140 155 140 155 1000 221.82
16 725 668.88 19.89 725 669 669 20 20 130 145 130 144.87 129.09 145 999.26 229.59
17 704.71 674 159.74 677.09 674 674 158.80 139.1 0 130 109.43 92.21 109.31 111.63 783.87 206.74
18 708.98 657.65 394.70 725 674 674 395 394.97 0 63.15 80 106.75 78.00 98.763 0 151.62
19 675.79 459.15 577.06 310.79 642.88 626.26 574.08 588.61 22.14 19.24 0 0 0 0 0 123.92
20 568.78 682 667 659.2 682 682 667 667 0 0 0 0 0 0 0 127.86
21 684.89 680 729.63 685 680 679.47 670 670 0 0 0 0 0 0 0 131.46
22 593.42 670 758 676.25 652.52 669.82 757.96 758 0 0 0 0 0 0 0 132.37
23 584.93 644.90 694.65 692.44 745 643.14 688.58 676.33 0 0 0 0 0 0 0 129.53
24 700 684.33 649.19 0 688 687.75 720 481.71 0 0 0 0 0 0 0 111.65

Table 16. Generation power (KW) by CMVO for microgrid 2.

No. WP1 WP2 WP3 WP4 WP5 WP6 WP7 WP8 PV1 PV2 PV3 PV4 PV5 PV6 CHP Cost
($)

1 523.03 695 437.00 0 695 695 0 437.00 0 0 0 0 0 0 0 87.95
2 0 715 359.59 0 715 715 0 441.40 0 0 0 0 0 0 0 73.76
3 750.00 705 0 600.84 705 0 0 0 0 0 0 0 0 0 0 68.21
4 484.92 632.85 0 735 0 705 0 0 0 0 0 0 0 0 0 65.25
5 202.97 513.15 0 665 580 580 0 0 0 0 0 0 0 0 0 68.33
6 0 682 5.02 565 682 682 0 0 0 0 0 0 0 0 0 68.50
7 478.51 685 274.38 665 685 685 162.13 0 0 0 0 0 0 0 0 95.36
8 0 700 547.00 660 700 700 423.50 547 20 41.46 0 0 0 0 0 117.06
9 730 679.27 515.00 730 604.12 381.26 515 515 75 0 0 3.48 0 0 0 130.09
10 715 750 520.00 349.94 750 750 520 520 0 125 100 0 0 0 0 137.07
11 717 692 517.00 717 692 692 517 460.17 0 0 120 0 106.86 0 0 139.16
12 720. 670 360.00 720 670 648.71 357.75 360 140 155 140 155 54.28 155 0 167.55
13 700 650 370.00 700 650 601.12 370 370 150 160 150 160 139.91 96.83 185.92 186.46
14 685 570 205.00 685 570 570 205 205 155 158 155 158 155 63.70 675.50 210.57
15 710 665 0.00 710 665 665 74 0 140 143.99 140 155 140 155 1000 221.86
16 725 669 20.00 725 669 669 20 20 130 145 130 145 128 145 1000 229.61
17 705 674 160 705 674 674 147.18 160 110 0 109.72 0 0 79.11 1000 207.50
18 725 674 395 725 674 674 395 395 0 110 80 94.41 0 110 0 150.87
19 325.37 678 635 733.47 678 678 635 117.33 15.92 0 0 0 0 0 0 119.82
20 660 682 575 660 682 682 667 667 0 0 0 0 0 0 0 127.92
21 684 680 730 685 680 680 670 670 0 0 0 0 0 0 0 131.49
22 687 670 758 687 670 548 758 758 0 0 0 0 0 0 0 132.41
23 695 645 555 695 745 645 695 695 0 0 0 0 0 0 0 129.63
24 0 688 720 470.47 646.99 645.52 720 720 0 0 0 0 0 0 0 111.70
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It is observed that CMVO produces the minimum generation cost for the available
power compared with the other algorithms, and the time taken by the proposed algorithm
is improved. The average time taken by the investigated algorithms, i.e., CMVO, MVO,
PSO, AHA, and GA, is 0.41 s, 0.43 s, 2.66 s, 0.29 s, and 1.6 s, respectively. The mean and
standard deviation for each algorithm are provided in Table 17. It is observed that the
proposed algorithm is more stable than other investigated algorithms and has the minimum
mean and standard deviation.

Table 17. Total generation cost and time of the investigated algorithm for microgrid 2.

Algorithm Total Cost ($) Total Time (s) Mean ($) Standard
Deviation

Proposed
CMVO 3178.30 0.27 3353.21 26.78

MVO 3211.43 0.29 3413.56 31.58
PSO 3253.05 2.66 4253.48 885.34
AHA 3598.03 0.29 3846.11 40.57
GA 4711.06 1.6 5348.16 91.60

6. Conclusions

This paper proposed a cost-effective multi-verse optimizer algorithm for optimal
power sharing among different generation units. The proposed optimization algorithm,
CMVO, enhances the local and global search capacity of MVO and results in cost optimiza-
tion. It is observed that the proposed algorithm minimizes the generation cost and provides
the most cost-effective solution for the power scheduling problem, ensuring its stability
and efficacy. The optimization results provide an optimal energy management strategy
in renewable-energy-based microgrids. This paper compares the different optimization
algorithms for two different scale microgrids, i.e., the IEEE 37 node and 141 node systems,
where the proposed algorithm outperforms other implemented algorithms.

Furthermore, it is seen that, in both cases, CMVO outperforms and provides the most
effective solution and can be highly desirable for power-sharing problems. It optimally
shares the generated power among different DERs, supplies energy at the minimum cost
compared with another algorithms, and satisfies the equality constraints. In the future,
the proposed algorithm can be investigated for different microgrid systems for various
scenarios. Moreover, this algorithm can be tested under uncertain generation and load data
in the islanded or grid-connected mode with energy storage devices. With the availability
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of large datasets for demand and load, this power scheduling problem can also be solved
using machine learning or other available methods.
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