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Abstract: State-of-the-art clinical detection methods typically involve standard immunoassay meth-
ods, requiring specialized equipment and trained personnel. This impedes their use in the Point-
of-Care (PoC) environment, where ease of operation, portability, and cost efficiency are prioritized.
Small, robust electrochemical biosensors provide a means with which to analyze biomarkers in
biological fluids in PoC environments. Optimized sensing surfaces, immobilization strategies, and
efficient reporter systems are key to improving biosensor detection systems. The signal transduction
and general performance of electrochemical sensors are determined by surface properties that link
the sensing element to the biological sample. We analyzed the surface characteristics of screen-
printed and thin-film electrodes using scanning electron microscopy and atomic force microscopy. An
enzyme-linked immunosorbent assay (ELISA) was adapted for use in an electrochemical sensor. The
robustness and reproducibility of the developed electrochemical immunosensor were investigated
by detecting Neutrophil Gelatinase-Associated Lipocalin (NGAL) in urine. The sensor showed a
detection limit of 1 ng/mL, a linear range of 3.5–80 ng/mL, and a CV% of 8%. The results demon-
strate that the developed platform technology is suitable for immunoassay-based sensors on either
screen-printed or thin-film gold electrodes.

Keywords: biosensor; immunoassay; surface characteristics; electrochemical sensing; screen
printed electrode

1. Introduction

Over the past decades, the detection of biomarkers has gained increasing attention.
The timely detection and quantification of proteins, nucleic acids, or small molecules char-
acteristic of a particular medical condition or related to a specific infection or contamination
agent are of great importance in a variety of fields, including medicine, food safety, drug
discovery, and quality and environmental control [1–3]. A common way to selectively de-
tect a specific biomarker involves immunoassays, where target recognition molecules such
as antibodies or aptamers are employed due to their high specificity, affinity, and stability.
Typically, sandwich immunoassays are used, where a target analyte is sandwiched between
surface-immobilized capture (primary) antibodies and labeled secondary antibodies. The
formation of these complexes enables the quantification of the analyte concentration utiliz-
ing the label on the secondary antibody. Most commonly, the label is involved in a reaction
that generates an optical signal which is proportional to the analyte concentration. The gold
standard is ELISA, where the label is an enzyme, e.g., horseradish peroxidase (HRP). In the
presence of hydrogen peroxide, HRP oxidizes a cofactor, producing a colored or fluorescent
product for optical quantification [4]. However, these methods are time-consuming and
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require specialized equipment and trained personnel, which makes them unsuitable for
use outside of laboratory settings.

Combining sandwich immunoassay with electrochemical detection is especially at-
tractive due to its inherent advantages such as its low cost, miniaturization, simplicity,
high sensitivity, customization, and ease of operation, leading to sensors that can be used
outside of laboratories [5–9]. The most common electrochemical detection schemes employ
one of the four following approaches: (1) labelling with a redox enzyme, (2) electrochem-
ical impedance spectroscopy (EIS), (3) labelling with nanoparticles, and (4) magnetoim-
munosensing, among which the first two methods account for the majority of studies [7,10].
In the first case, an enzymatic label, typically HRP, generates electroactive species that
can be detected electrochemically using cyclic or pulse voltammetry or amperometry. An
important advantage of this approach is that existing ELISA assays can be transferred to an
electrochemical platform, assuming that a suitable electroactive substrate and detection
technique are in place. Furthermore, HRP, as a label, offers multiple advantages due its
robustness, relatively small size, inexpensiveness, high turnover rate, and compatibility
with a large variety of electroactive substrates [11–15]. On the other hand, EIS sensors
can operate label-free and involve an external redox probe, usually ferro/ferricyanide or
ferrocene, present in the solution. The signal stems from the change in the charge transfer
resistance and double-layer capacitance due to the formation of immunocomplexes on
the electrode surface [16]. There is a growing demand for tools that enable diagnosis and
monitoring in PoC environments, with applications in the fields of personalized medicine
for the monitoring of treatment and disease protein biomarkers, as well as early diagnosis,
e.g., of COVID-19 [17,18]. To facilitate the translation of PoC into clinical practice and
home-care in the future, rapid, robust, and cost-efficient systems are required.

The NGAL assay was used as a model system for the biosensor. The early detection of
NGAL is of importance for identifying acute kidney injury (AKI). The NGAL concentration
increases within 2 h and can be indicative of AKI up to 48 h prior to a clinical diagno-
sis [19,20]. In healthy individuals, the concentration of NGAL is generally below 50 ng/mL,
depending on the assay, while upon acute kidney injury, it rises significantly [20,21]. The
main objective of the present study was to develop an immunoassay-based electrochemical
biosensor platform suitable for a range of biomarkers for applications in PoC environments.

2. Materials and Methods
2.1. Materials

N-hydroxysuccinimide (NHS, 98%), monopotassium phosphate, potassium chloride,
TWEEN®20, bovine serum albumin (BSA,≥96%), 11-mercaptpundocanoic acid (MUA, 95%),
N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochlorid (EDC,≥99%), polyvinyl alco-
hol (PVA), cysteamine (Cyst, 95%), 2-hydroxy-4′-(2-hydroxyethoxy)-2-methylpropiophenone
(Irgacure, 98%), polyethylene glycol diacrylate with a Mw = 575 (PEGDA), trizma® base,
potassium hexacyanoferrate(II) trihydrate, potassium hexacyanoferrate(III), and 2-(N-
Morpholino)ethanesulfonic acid (MES, ≥99%) were obtained from Sigma Aldrich. Sulfuric
acid, sodium chloride, disodium phosphate, and absolute ethanol were obtained from VWR,
and 1-Step Turbo TMB-ELISA Substrate Solution was obtained from Thermo Scientific.

Milli-Q water was used for all aqueous solutions. Phosphate buffer saline (PBS) with a
pH of 7.3 was prepared using 137 mM sodium chloride, 2.7 mM potassium chloride, 10 mM
disodium phosphate, and 1.76 mM monopotassium phosphate. Screen-printed electrodes
(SPEs) were acquired from Metrohm DropSens, Germany (models 220BT and 220AT) and
PalmSens, Netherlands (model ItalSens Gold), while the thin-film interdigitated electrodes
(IDE) were from Metrohm DropSens, Germany (model G-IDEAU10) and MicruX, Spain
(model ED-IDE1-Au).

Immunoassays: Human low-density lipoprotein (LDL) was obtained from Sigma
Aldrich. Anti-human apolipoprotein B monoclonal antibodies (LDL20|17) and biotin-
conjugated anti-human apolipoprotein B monoclonal antibody (LDL11) were supplied by
MABTECH. Anti-human Lipocalin-2 monoclonal antibody (MAB17571), biotin-conjugated
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anti-human Lipocalin-2 polyclonal antibody (BAF1757), recombinant human Lipocalin-2,
anti-human VEGF165 polyclonal antibody (AF293), biotin-conjugated anti-human VEGF165
(BAF293), recombinant human VEGF165, and streptavidin-conjugated horseradish peroxi-
dase (Strep-HRP) were from R&D systems. The NGAL assay was previously validated [22].

2.2. Chemiluminescence

To verify the functionalization of antibodies to the working electrode, sandwich assays
were conducted or surface-bound antibodies were detected using chemiluminescence.
A standard Western blotting procedure was applied. In brief, functionalized electrodes
were blocked with 2% BSA followed by incubation with species-specific HRP-conjugated
antibodies for the direct detection of the functionalized antibody or incubation with antigen
and HRP-conjugated detection antibodies (for assay detection). The reaction volumes were
5–20 µL depending on the working electrode areas. An incubation time of 1 h was used for
every step, and the electrodes were washed four times in PBS with 0.1% TWEEN20 (PBS-T)
followed by washing four times in PBS between each step. The electrodes were dried before
applying the substrate, Clarity Western ECL Substrate from BioRad. The signal was read
using a ChemiDoc Imaging System from BioRad.

2.3. Preparation of Anitbody–Gold Nanoparticle Conjugates

Gold nanoparticles (AuNPs) were synthesized by preparing 100 mL of 1 mM HAuCl4
in a two-neck, round-bottom flask and titrated to pH 4 with 200 µL of 1 M sodium hydroxide.
The flask was then placed on a heating plate equipped with a condenser and heated while
stirring. After reaching the boiling point, 10 mL of 38.8 mM sodium citrate was added, and
a dark blue color was obtained after 1 min. The solution was then boiled for 15 min. The
AuNP solution was allowed to cool down to room temperature (RT) and then transferred
to a glass bottle for storage and left overnight.

The AuNP solution was then used to create BAF1757-AuNP conjugates via passive
adsorption. In short, 17 µg of BAF1757 was diluted in 50 mM TRIS buffer of pH 7.5
before the addition of 1 mL AuNPs and then vortexed for 5–10 s. The solution was left for
30 min at RT before adding PBS-T and 0.1% BSA. The unbound antibody was removed via
two consecutive centrifugations, in which the supernatant was removed. The pellet was
dissolved and stored at 4 ◦C.

2.4. Custom Thin-Film Electrode Fabrication

The electrodes were fabricated using standard optical lithography techniques. Working
and counter electrodes were prepared via E-beam evaporation of 150 nm of gold with 5 nm
of chromium underneath. The reference electrode was prepared using E-beam evaporation
of 200 nm of silver with a 5 nm chromium underlayer. Before usage, the silver reference
was electrochemically chloridized by applying a current density of 1 mA/cm2 for 60 s in a
1 M potassium chloride solution using the on-chip working electrode as a counter and an
external Ag/AgCl electrode as a reference [23].

2.5. Immunosensor Functionalization
2.5.1. Self-Assembled Monolayer (SAM) Formation

Before forming the SAM of MUA, all the electrodes were cleaned to remove impurities.
The electrode surface was cleaned using cyclic voltammetry (CV) in a 50 mM solution of
H2SO4. The solution was added to the electrode and subjected to 10 cycles of CV from
−0.1 V to 1.4 V with a scan rate of 100 mV/s and a step size of 2 mV.

The formation was carried out following standard protocols, as outlined in [24–27]. In
short, MUA was dissolved in EtOH and then diluted with Milli-Q water. The electrodes
were immersed in the solution overnight at 4 ◦C and thoroughly rinsed afterwards using
absolute ethanol and Milli-Q water to remove the physisorbed MUA.
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2.5.2. Antibody Immobilization

The immobilization of the antibody on the SAM layer was performed using EDC/NHS
coupling, forming a covalent bond between the carboxylic acid and a primary amine, as
previously described [24,28,29]. The electrodes were exposed to a fresh 1:2 solution of NHS
and EDC in a 50 mM MES buffer at pH 5.0 for 40 min and subsequently rinsed. Immediately
after, a 5 µg/mL antibody solution was pipetted onto the electrode and left for 1 h at RT.
Then, the electrodes were rinsed to remove excess antibody and dried with a nitrogen flow
in preparation for the blocking procedure.

2.5.3. Blocking of Electrode Surface

A blocking step is crucial for preventing nonspecific interactions of antigen, antibodies,
or other molecules present in complex samples with the electrode surface. A solution of
1.5% PVA was pipetted onto the electrodes and left overnight at 4 ◦C. After the overnight
step, the electrodes were rinsed with PBS.

A different blocking method was employed for the urine samples. A solution of
1 mM cysteamine in PBS was pipetted onto the electrodes and incubated overnight at 4 ◦C,
quenching the EDC/NHS groups that did not react with the antibody and filling in the
MUA-free gaps on the electrode surface. After the overnight step, the electrodes were
rinsed with PBS and gently dried using a nitrogen flow. To complete the blocking, the
electrodes were exposed to a fresh solution of 1% PEGDA and 0.05% Irgacure in PBS. First,
Irgacure was completely dissolved in PBS by heating the solution to 40 ◦C for 40 min before
adding PEGDA. The solution was pipetted onto the electrodes and exposed to UV light for
2 min. After exposure, the electrodes were thoroughly washed with PBS-T and PBS.

2.6. Assay Procedures

The assays below were performed by (i) preparing the samples; (ii) transferring 15 uL
to the immunosensor and incubating for 30 min at RT while covered to form the bond
between the biotin and streptavidin; (iii) thoroughly washing the sensors using PBS-T
and/or PBS; and (iv) measuring the immunosensors.

2.6.1. Strep-HRP Assay

The samples were prepared as a dilution of Strep-HRP in PBS-T with 0.1% BSA and
were measured via chronoamperometry.

2.6.2. NGAL Assay for CV and EIS

The samples were prepared as a dilution series using PBS-T with 0.1% BSA, and each
immunosensor was incubated with every concentration, starting from the lowest.

2.6.3. Assay for Chronoamperometry

The AuNP conjugate solution was diluted 1:60 using a solution of Strep-HRP diluted
1:50 in PBS-T. The samples were diluted using PBS with 0.2% TWEEN20 and 0.2% BSA
and then mixed in a 1:1 ratio with the prepared conjugated solution and pre-incubated for
30 min at RT before application to the sensor.

The assay for VEGF165 and LDL followed the same procedure but with the detection
antibody at 0.4 µg/mL that was diluted using a solution of Strep-HRP instead of the
conjugate solution.

The urine samples for the NGAL assay were prepared by pooling control urine samples
from healthy volunteers to form a comprehensive sample matrix for assay optimization.
The urine pool was aliquoted, snap-frozen, and stored at −80 ◦C until usage. Testing
solutions were prepared in a 1:4 diluted urine pool with PBS containing 0.2% TWEEN20
and 0.2% BSA.



Biosensors 2023, 13, 519 5 of 20

2.7. Electrochemical Measurements

All electrochemical measurements were performed with an on-chip, three-electrode
setup consisting of a gold working and counter electrode and an internal Ag/AgCl reference
electrode using an Anapot EIS potentiostat (Zimmer & Peacock, Horten, Norway) or Sensit
Smart potentiostat (PlamSens, Houten, The Netherlands). Unless otherwise specified, the
electrode used for the immunosensors was 220BT. All potentials are specified with respect
to the internal Ag/AgCl reference electrode.

Electrochemical characterization was performed with CV and EIS measurements using
3 mM ferro/ferricyanide in PBS. CV was performed with 5 cycles using a potential window
ranging from −0.3 V to 0.6 V, with a scan rate of 100 mV/s and a step size of 2 mV. EIS was
performed from 100 kHz to 0.1 Hz with a DC potential of 120 mV and an AC excitation of
10 mV.

For the immunoassay testing, CV, EIS, and chronoamperometry were used. CV and
EIS were performed using 3 mM ferrocenedimethanol in PBS with the same settings as those
used in characterization, except for the DC potential and AC excitation, being 170 mV and
5 mV, respectively. Chronoamperometry was performed with the 1-Step Turbo TMB-ELISA
Substrate Solution for 120 s with a fixed potential at 0.0 V.

3. Results and Discussion
3.1. Electrode Surface Characterization

The morphology of several SPEs and thin-film electrodes, which have been used
previously by other groups for biosensor applications, were characterized in this work
using scanning electron microscopy (SEM) and atomic force microscopy (AFM) [30–42].
Figure 1 shows SEM images of the electrodes at 13k magnification, and Figure 2 shows
10 × 10 µm AFM images. The 220BT and ItalSens electrodes exhibit a granular morphology,
as seen in Figures 1a,b and 2a,b, with nonuniform grains protruding outward and significant
variation in height. The 220AT electrodes show a partially smoothed morphology composed
of fused flakes, as seen in Figures 1c and 2c. All the thin-film electrodes, further referred to
as MicruX, Metrohm and custom-made, have smooth surfaces with a roughness on the nm
scale, as seen in Figures 1d–f and 2d–f.
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The AFM images were used to further investigate the morphologies by estimating
the RMS surface roughness, calculating the roughness coefficient, defined as the ratio of
the ironed surface area to the scan area, and constructing a histogram of heights. Table 1
presents the values obtained from the surface roughness analysis, and Figure 3 shows the
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histogram. The RMS roughness is 50–100 times higher for the SPEs compared to the thin-
film electrodes, indicating a significantly rougher surface with a broad height distribution,
as shown in Figure 3. This is also supported by the roughness coefficient values, since they
have an increase of 11–69% for the SPEs and are within 3% for the thin-film electrodes. This
means that the actual surface area of the SPEs is substantially larger than the scan area due
to the rough topography, whereas the thin-film electrodes, with their flat topography, have
a negligible increase.

Table 1. Surface roughness analysis of AFM images from Figure 2.

Surface Roughness
Analysis of AFM Images 220BT ItalSens 220AT MicruX IDE Metrohm IDE Custom-Made

Electrode

RMS roughness 0.391 0.354 0.215 0.0032 0.0052 0.0081
Roughness coefficient 1.69 1.26 1.11 1.02 1.00 1.03
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3.2. Electrochemical Characterization of Immunosensor

The electrochemical properties of the immunosensor were characterized in subse-
quent stages of the functionalization procedure via CV and EIS measurements using
ferro/ferricyanide as a mediator. Figure 4 shows the cyclic voltammograms and Nyquist
plots of a blank electrode, the electrode with MUA, the electrode with the immobilized
antibody, and the electrode after blocking with PVA. The EIS data were fitted using a
Randles circuit (the circuit is shown in Figure S1).
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stages during the functionalization process: blank, MUA, MUA/MAB17571, MUA/MAB17571/PVA.
The insert in (b) shows a zoom-in of the Nyquist plot.

Figure 4a shows an oxidation and reduction peak for the blank, which completely
disappears after the formation of the MUA layer. This indicates successful SAM forma-
tion, since the negative charge of the carboxylic acid group of MUA shields the electrode
surface from ferro/ferricyanide ions. The formation is also confirmed by the data shown
in Figure 4b, where the semicircle is dramatically increased in comparison to the blank,
indicating an increase in charge transfer resistance (Rct) (see Table 2). After the activation
of carboxylic acids and covalent immobilization of the antibody, the CV response decreased
slightly around the 0.8 V potential. This likely stemmed from the immobilization of antibod-
ies that hindered the electron transport of ferro/ferricyanide ions to the electrode surface.
This is also evident from the Nyquist plot in Figure 4b and the Rct value in Table 2, showing
an increase in the semicircle size and a doubling of the resistance, respectively. Blocking the
electrode surface with PVA resulted in a decrease in current around the 0.8 V potential for
CV, an increase in the size of the semicircle in the Nyquist plot, and an increase in the Rct.
These changes point toward the effective blocking of the surface, where PVA fills in the
gaps in the MUA layer, which further obstructs the electron transport of ferro/ferricyanide
ions.

Table 2. Fitted values for charge transfer resistance using a Randles circuit for the EIS data shown in
Figure 4b.

Functionalization Process Rct [kΩ]

Blank 0.034
MUA 676

MUA/MAB17571 1390
MUA/MAB17571/PVA 2038

3.3. Detection and Amplification Strategies
3.3.1. Detection Strategies

The electrochemical detection methods typically used for biosensors are CV, EIS, and
chronoamperometry [6,9,43]. Initially, all three methods were evaluated to investigate the
feasibility, suitability, and reproducibility of the immunosensors.
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CV and EIS were performed on the immunosensors as described in Section 2.6.2. using
ferrocenedimethanol as an electron mediator with antigen concentrations ranging from
0.1 to 1000 ng/mL. A total of five immunosensors were tested. The schematic diagram in
Figure 5a illustrates the detection method for CV and EIS with ferrocenedimethanol. Build-
up on the surface due to antigen binding to antibodies causes a change in the environment
affecting the diffusion and reduction/oxidation process of the mediator, which is observed
as changes in the peak current for CV and impedance for EIS. From the voltammograms
in Figure 5c, it can be seen that the peak current increases with higher concentrations of
antigen, and as shown in the Nyquist plots in Figure 5d, the impedance decreases with
higher concentrations. The percent change in the peak current and percent change in
the impedance at 10 Hz against the antigen concentration are represented in log-linear
plots, Figure 5f,g. Although the current increase and impedance decrease observed upon
antigen–antibody binding might seem counterintuitive, these changes have been reported
previously and may be attributed to the interaction between the probe and particular
surface modifications [44–47].

The plots in Figure 5f,g show a general trend with the increasing antigen concentration;
however, the average coefficients of variation (CV%) are 32.6% for CV and 29.5% for EIS.
The signal-to-background ratio (SBR) is within +−0.25 of the baseline, as seen in Table 3.
These values indicate that the reproducibility is subpar at best, with little distinction
between concentrations and a limited separation between the background and signal. Due
to these findings, additional control experiments were performed following the protocol in
Section 2.6.2., but instead of using NGAL, we used BSA and BAF1757, which cannot bind
to the immobilized antibody. The red and blue datasets in Figure 5f,g are the results of the
control experiments, which show the same tendency as that observed when NGAL was
used.
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Figure 5. Simplified immunoassay with electrochemical detection via: (a) CV and EIS; (b) chronoam-
perometry. Raw data examples of (c) CV, (d) EIS, and (e) chronoamperometry. Log-linear plot of (f)
∆Ip% and (g) ∆Z% at 10 Hz vs. NGAL concentration and the steady-state current vs. Strep-HRP
dilution ratio. The black, red, and blue lines in (f–h) are logarithmic fits.

Table 3. Signal-to-background ratio for each tested concentration in Figure 5f–h when using CV, EIS,
or chronoamperometry as the detection method.

Detection Method Testing Solution Concentration SBR

CV NGAL

0.1 1.07
1 1.13
10 1.17

100 1.20
1000 1.25

EIS NGAL

0.1 0.94
1 0.88
10 0.86

100 0.82
1000 0.76

Chronoamperometry Strep-HRP
1:500 61
1:100 268
1:20 784

Chemiluminescence was subsequently applied to the immunosensors to rule out the
possibility that the electrochemical results were influenced by a flawed functionalization
procedure, in which no antibodies were immobilized on the SAM. The results confirmed
that antibodies were present and immobilized on the immunosensors.

These results indicated that the electrodes were properly functionalized. However,
the changes observed in the peak current and impedance were not related to the build-
up of antigen on the immunosensor but more likely reflect the nonspecific binding or
accumulation of electron mediators or other charged molecules on the working electrode
surface, which is a finding that has also been observed for other sensors [16].

Chronoamperometry was performed using TMB as an electron mediator at a 0.0 V
potential, as outlined in Section 2.6.1. TMB was validated as an electron mediator and
the applied potential of 0.0 V was selected to avoid the electrochemical oxidation of TMB
(see the cyclic voltammogram in Figure S2). Figure 5b shows the immunoassay setup and
electron transfer pathway for TMB. TMB molecules are oxidized in an enzymatic reaction
with HRP and H2O2 forming TMB+. When in proximity to the electrode surface, TMB+

can accept an electron and be reduced to TMB electrochemically. This means that the
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current associated with the electrochemical reduction of TMB+ is a measure of the HRP
concentration, provided that TMB and H2O2 are in excess.

The raw data in Figure 5e show a distinction between the dilutions and that after
an initial spike, the current stabilizes and reaches a steady state (flattening of the curve)
after approximately 100 s. An absolute value of the average current between 100 and
120 s was used as the measurement value. Figure 5h is a log-linear plot of the steady-
state current vs. dilution ratio of Strep-HRP, which shows a dependence between the
electrochemical signal of TMB and the dilution ratio. It also shows a clear separation
between the control measurement (red line), where streptavidin with no HRP attached
was used, and the lowest dilution of Strep-HRP at 1:500. Additionally, these results
confirm that the electrodes were properly functionalized, as Strep-HRP could not bind
to the immunosensor without the presence of biotinylated antibodies, which resulted
in no electrochemical signal. The tendencies observed when using chronoamperometry
were further substantiated by performing identical experiments on different types of
immunosensors. The results are shown in Figure S3, which shows the same trend as
Figure 5h.

Comparing the CV, EIS, and chronoamperometry plots in Figure 5f–h, it can be seen
that chronoamperometry provided a more robust way to electrochemically quantify an im-
munoassay. It offered the steepest signal change per concentration unit with a significantly
higher SBR, as seen in Table 3. The chronoamperometry detection method was used for
experiments thereafter.

3.3.2. Electrochemical Signal Amplification Strategy

The chronoamperometric detection method can be used in combination with immuno-
sandwich complexes to render the electrochemical signal dependent on an antigen concen-
tration, as demonstrated in [29,48–51]. A standard practice for biosensors is to amplify the
signal as a means of increasing the sensitivity. To achieve this, different strategies have been
suggested, such as nanoparticles, magnetic particles, nanomaterials, enzymes, artificial
enzymes, and fluorescence [11,52–56]. In this work, we made use of AuNP conjugates to
amplify the steady-state current, as depicted in Figure 6a.
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Figure 6. (a) Schematic representation of the electrochemical sandwich immunoassay with amplifica-
tion using AuNP conjugates. (b) Log-linear plot of the steady-state current vs. NGAL concentration
in PBST using MUA/MAB17571/PVA immunosensors.

Following the assay procedure outlined in Section 2.6.3, 0.1–1000 ng/mL concentra-
tions of antigen were tested. The log-linear plot in Figure 6b shows that the current increases
with increasing concentrations of antigen, with a clear distinction between concentrations.
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The control measurement without HRP showed almost no current, as seen in Table 4. Addi-
tionally, a current was registered when no antigen was present, which means that some
nonspecific binding occurred, but this was separable from the measurements at 1 ng/mL
and above, as indicated by the SBRs in Table 4. This indicates that when antigen the is
present, the signal measured stems from the formation of immuno-sandwich complexes.
The amplification mechanism is likely the result of AuNP conjugates carrying multiple
HRPs, hence increasing the number of HRPs per unit immuno-sandwich complex [56].

Table 4. Tested NGAL concentrations and steady-state currents from Figure 6b with signal-to-
background ratios.

NGAL Concentration (ng/mL) Current (nA) SBR

Control 1 4 -
0 53 -

0.1 59 1.11
1 153 2.89

10 217 4.09
100 265 5.00

1000 270 5.09
1 Using BAF1757-Strep instead of BAF1757-AuNP-Strep-HRP.

3.4. Electrochemical Measurements in Urine Samples

To evaluate the feasibility and potential of the immunosensor for biological fluid
applications, it was tested and optimized using complex samples. Urine samples were
prepared as outlined in Section 2.6.3. before spiking with antigen.

The blocking method with PVA proved to be insufficient when testing with complex
samples, since the substances present (e.g., large proteins) could nonspecifically bind to the
immunosensor. To counteract this, the blocking method was changed to the version using
Cyst and PEGDA, as described in Section 2.5.3.

To optimize the senor performance, the AuNP conjugate dilution ratio was optimized
to increase the current signals. Furthermore, the incubation time and effect of pre-incubation
were investigated.

The results in Figure 7a show that when increasing the dilution ratio of AuNP conju-
gates, the steady-state current decreases in a linear fashion. It also shows a saturation point
around the 1:120 dilution ratio mark, indicating that more concentrated dilutions would
not bring any benefit for further amplification. Based on this result, the 1:120 dilution ratio
was used for the experiments.

Figure 7b shows how the measured steady-state current is affected by the incubation
time of a sample using the immunosensor. It shows that there is a continuous increase as
incubation time is increased for both the tested sample (red curve) and the control (black
curve). However, the largest increase in current occurs within 30 min, as highlighted by
the linear fit (blue curve).This indicates that past this point, the increase in the incubation
becomes less efficient in generating a higher current. This is also corroborated by the data
on the rates of change listed in Table 5, which decrease as the incubation time is increased.
The SBRs are also listed in Table 5, being highest at 10 min of incubation time, partially
consistent from 30 to 60 min, and lowest at 180 min. The continuous increase in current
for the control sample can be attributed to nonspecific binding on the immunosensor.
Therefore, to obtain a high current readout, an acceptable SBR, and low nonspecific binding,
a 30 min period of sample incubation was selected for the experiments.
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Figure 7. (a) Dilution series of BAF1757-AuNP with 1:100 Strep-HRP and 81 ng/mL NGAL in urine
samples on MUA/MAB17571/Cyst/PEGDA immunosensors with a linear fit. (b) Effect of sample
incubation time on MUA/MAB17571/Cyst/PEGDA immunosensors with 0 and 81 ng/mL NGAL in
urine samples, colored black and red, respectively. The black and red line are logarithmic fits, while
the blue line is linear. (c) Log-linear plot of the steady-state current vs. NGAL concentration in urine
samples on MUA/MAB17571/Cyst/PEGDA immunosensors with (black) and without (red) the
preincubation of NGAL and BAF1757-AuNP-Strep-HRP. The black and red lines are logarithmic fits.

Table 5. The rate of change for immunosensors with 81 ng/mL NGAL and the signal-to-background
ratio between 81 and 0 ng/mL NGAL at various incubation times from Figure 6b.

Incubation Time (min) Rate of Change (nA/min) SBR

10 22.8 6.91
20 17.5 5.40
30 13.6 4.07
45 10.9 4.13
60 9.8 4.44

180 4.6 3.65

The effect of pre-incubation before application to the sensor is shown in Figure 7c.
Without pre-incubation, the steady-state current decreased slightly, indicating suboptimal
assay formation when the incubation time was decreased. Although it would be possible
to skip the pre-incubation, reducing the assay time by 50%, pre-incubation was used to
ensure optimal current signals.

3.5. Sensing Platform Evaluation

The SPEs used in the study had different morphologies, as shown in Figures 1–3,
likely attributed to differences in ink composition and fabrication protocols. Therefore,
the functionalization protocols generally require optimization for a specific SPE. On the
other hand, the exposed surface of thin-film electrodes consists of pure gold, making the
functionalization procedure more universally applicable, without dependence on a specific
manufacture or electrode type.

To investigate the suitability of the developed protocol for different kinds of sensors,
three different SPEs and the custom-made thin-film electrodes of similar geometry were
used to fabricate immunosensors, employing the method described in Section 2.5. Figure 8a
shows the responses of two different SPE types from the same manufacturer, 220AT (red)
and 220BT (black), tested with the sandwich immunoassay. The measurements with 220AT
did not show a concentration dependence, while the measurements with 220BT did. This
indicates that the ink or ink processing in 220AT electrodes is not compatible with the
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developed protocol, requiring a different functionalization procedure, e.g., layering the
MUA on the surface by letting a droplet of MUA evaporate, as suggested by Doldán
et al. [57]. On the other hand, the ItalSens SPEs, as well as the custom-made thin-film
electrodes, tested with the Strep-HRP assay, as described in Section 2.6.1., exhibited a clear
response to the HRP concentration, as shown in Figure 8b. It should be noted that the
ItalSens SPEs showed a lower sensitivity to Strep-HRP compared to the custom-made
and 220BT electrodes. The 220BT and custom-made electrodes showed almost identical
currents, which was somewhat surprising, since the custom-made electrodes should have
had a more pristine surface for SAM formation and electrochemical measurements due to
the fact that these electrodes were fabricated using high-purity gold (<99%). A possible
explanation for this may be the surface area. Since the custom-made electrode is close to
planar and the 220BT is coarser with significant variation in height, as shown in Figures 1–3,
this causes the 220BT to have a larger surface area, which may help to counteract its lower
gold purity. A different explanation may be that the functionalization method was not
optimal for the custom-made electrode, thereby limiting the performance.
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Figure 8. (a) Log-linear plot of steady-state current vs. NGAL concentration in PBST with 0.1% BSA
using MUA/MAB17571 immunosensors blocked with goat serum on 220BT and 220AT SPEs. The
black and red lines are logarithmic fits. (b) Log-linear plot of steady-state current vs. Strep-HRP
dilution ratio with a logarithmic fit using MUA/BAF1757/Cyst/PEGDA immunosensors on 220BT
and ItalSens SPEs and custom-made electrodes.

To validate the reproducibility and robustness of the electrochemical immunoassay, it
was tested using multiple urine samples spiked with different concentrations of antigen,
according to the protocol described in Section 2.6.3. The calibration curve of the urine
samples can be seen in Figure 9 with the respective data shown in Table 6. It shows a linear
relationship between the steady-state current and the logarithmic values of the antigen
concentration in the range from 3.5 ng/mL to 80 ng/mL with a theoretical detection limit
(LOD) of 1.0 ng/mL, estimated as the mean blank level + 3 × standard deviation of the
blank. Although others have reported a similar performance using gold electrodes in a stan-
dard three-electrode cell or improved sensitivity using a combination of carbon electrodes
and nanomaterials, as presented in Table 7, this work was the first in which such a detec-
tion was demonstrated using a commercially available gold SPE for the electrochemical
immunosensor in bodily fluids [47,58–66].
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Table 6. Tested NGAL concentrations in spiked urine samples and steady-state currents, includ-
ing the standard deviations and number of repetitions of the NGAL electrochemical immunoassay.
LOD = 1.0 ng/mL, average inter-assay CV% = 10.5% (8.0% excluding blank). A total of 72 im-
munosensors were tested.

NGAL Concentration
(ng/mL) Current (nA) Standard

Deviation (nA) CV% # of Repetitions

0 124 35 27.9 9
3.5 441 42 9.4 9
7.5 655 53 8.1 9
20 879 67 7.6 9
35 972 68 7.0 9
45 991 96 9.7 9
70 1053 96 9.1 9
80 1100 58 5.2 9

The logistic regression equation is given as I = A + B× ln(x), where A is 228 and B is
202, with an r2 = 0.9822. The results listed in Table 6 show that the inter-assay CV% was
10.5% and 8.0% excluding the blank (n = 72). These results suggest that the electrochemical
immunoassay is reproducible and robust.

To demonstrate that the presented electrochemical immunosensor can function as
a general platform for immunoassays, tests were performed with VEGF165 and LDL
immunoassays using the procedure presented in Section 2.6.3.

Figure 10 shows the steady-state current vs. antigen concentration for the two im-
munoassays. In both cases, a concentration dependence was observed. For VEGF165, the
current continued to increase at the tested concentrations, indicating that the saturation
limit was not reached, whereas for LDL, both the lower and upper limits were observed.
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Table 7. Comparison of LOD, linear range, and total number of tests for the calibration curve between
NGAL biosensors using different materials.

Material LOD Linear Range # of Tests References

Gold electrode/AuNPs/PAMMAM
immunosensor 1 ng/mL 50–250 ng/mL - [58]

Graphite SPE modified with a graphene oxide
composite and AuNP aptasensor 0.3 ng/mL 1–1000 ng/mL 33 [59]

Graphene/polyaniline-modified carbon SPE
immunosensor 21.1 ng/mL 50–500 ng/mL 32 [60]

Casein-modified carbon SPE immunosensor 97 pg/mL 0.15–2 ng/mL 42 [61]
Carbon fiber immunosensor with boron carbon

nitride nanosheets 0.37 pg/mL 0.001–10 ng/mL 25 [62]

Graphene nickel
foam/AuNPs/SAM/immunosensor 42 pg/mL 0.05–210 ng/ml - [47]

Gold nanourchins and carbon nanohorns
modified carbon SPE aptasensor 10 fg/mL 0.1–100 pg/mL - [63]

Gold electrode aptasensor 4.45 ng/mL 25–150 ng/mL 21 [64]
Nickel oxide nanoparticles modified cerium

copper oxide thin film on silicon 4.23 ng/mL 25–450 ng/mL - [65]

Gold-coated quartz electrode modified with
peptide imprinted film 70 ng/mL 1–300 µg/mL - [66]

Gold SPE/MUA/immunosensor 1 ng/mL 1–80 ng/mL 72 This work
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Figure 10. Electrochemical immunoassays for VEGF165 and LDL. (a) Log-linear plot of the steady-
state current vs. VEGF165 concentration using MUA/AF293/Cyst/PEGDA immunosensors. The
line shows a linear fit. (b) Log-linear plot of the steady-state current vs. LDL concentration using
MUA/LDL20|17/Cyst/PEGDA immunosensors. Note the sigmoidal shape of the response indicat-
ing that both the lower and upper sensitivity limits were reached. The solid line shows a 4-parameter
logistic fit.

4. Conclusions

The morphology and electrochemical behavior of several screen-printed and thin-film
electrodes were investigated. It was found that the proposed functionalization strategy
was suitable for both the thin-films and most of the SPEs. While the thin-film electrodes
offered a well-defined surface chemistry ideal for thiol-based SAM formations, SAMs of
sufficient quality could also be formed to successfully immobilize antibodies on most of the
SPEs, which was confirmed via CV and EIS measurements. On the other hand, the inherent
property of enhanced roughness of the SPEs provided the advantage of a larger surface
area. In our experiments, we found that these two factors compensated for each other,
leading to similar electrochemical performances for the 220BT and thin-film electrodes.
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We evaluated CV, EIS, and chronoamperometry as potential sensing mechanisms for
quantitative immunoassays. Chronoamperometry was the most robust technique, offering
superior SBRs. We further investigated this detection method using NGAL, VEGF165, and
LDL sandwich immunoassays implemented with 220BT electrodes. A different blocking ap-
proach using a combination of cysteamine and PEGDA was implemented for measurements
with complex samples (urine). Pooled urine samples spiked with 8 different concentrations
of NGAL were each measured using 9 different sensors (72 individual immunosensors in
total) across 9 days. Based on these data, the linear range was 3.5 ng/mL to 80 ng/mL,
with a LOD of 1.0 ng/mL and an inter-assay CV% of 8%, excluding the blank.

In conclusion, we developed an electrochemical immunosensor applicable to im-
munoassays in bodily fluids, which was found to be robust and reproducible, yielding
quantitative readouts within an hour (potentially 30 min). Furthermore, the developed
technology can serve as a platform for immunoassays and is suitable for implementation
with different electrodes, both SPEs and thin-films. The coupling of this platform with
miniature single-chip potentiostats would create a simple and compact device that is fit for
a PoC environment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios13050519/s1. Figure S1: Randles circuit. Figure S2: Cyclic
voltammogram of 1-Step Turbo TMB-ELISA Substrate Solution on a blank 220BT electrode to iden-
tify the potential region where no electrochemical oxidation of TMB occurs. Figure S3: Additional
experiments with streptavidin-HRP dilution series to validate the trend seen for the chronoamperom-
etry sensing mechanism. Table S1: The steady-state currents from the additional experiments with
streptavidin-HRP dilution series.
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