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A B S T R A C T   

Battery health prognostic is a key part of battery management used to ensure safe and optimal usage. A novel 
method for end-to-end sensor-free differential temperature voltammetry reconstruction and state of health 
estimation based on the multi-domain adaptation is proposed in this paper. Firstly, the partial charging or dis
charging curve is used to reconstruct the differential temperature curve, removing the requirement for the 
temperature sensor measurement. The partial differential capacity curve and the reconstructed differential 
temperature curve are input and then used in an end-to-end state of health estimation. Finally, to reduce the 
domain discrepancy between the source and target domains, the maximum mean discrepancy is included as an 
additional loss to improve the accuracy of both differential temperature curve reconstruction and state of health 
estimation with unlabeled data from the testing battery. Four data sets containing both experimental data and 
public data with different battery chemistry and formats, current modes and rates, and external conditions are 
used for the verification and evaluation. Experimental results indicate the proposed method can satisfy health 
prognostics under different scenarios with mean errors of less than 0.067 ◦C/V for differential temperature 
curves and 1.78% for the state of health. The results show that the error for the differential temperature curve 
reconstruction is reduced by more than 20% and the error for the state of health estimation is reduced by more 
than 47% of the proposed method compared to the conventional data-driven method without transfer learning.   

1. Introduction 

1.1. Background 

The electrification of transportation such as electric vehicles, electric 
ships, and electric aircraft has developed rapidly in recent years, where 
lithium-ion batteries serve as the main energy storage devices that 
benefit from their high energy and power density, low self-discharge 
rate, and long lifespan [1]. However, due to the side reactions that 
occurred along with the charging and discharging cycles, the batteries 
degrade with usage [2], which influences serviceability, reliability, and 
safety. The health prognostics of the battery are essential for the battery 
management system (BMS) to guide predictive maintenance that avoids 
abusive usage, ensures reliable and safe operation, and extends the 

lifetime [3]. Besides health estimation and prediction, thermal estima
tion is important to reflect the safety status of the batteries, especially in 
sensor-free conditions, as a tool for developing thermal runaway 
warning strategies [4]. Therefore, the temperature variation and current 
capacity are key information for the prognostics of battery health. Un
fortunately, the capacity cannot be measured directly and temperature 
sensors are not implemented on every battery in real applications. 
Therefore, advanced methods for indirect assessment of battery health 
are required, which becomes a hot topic in battery management recently 
for researchers [5]. Besides, artificial intelligence develops rapidly in 
recent years, which provides more opportunities for smarter battery 
management [6]. Inspired by the main interest of both academia and 
industry, this paper focuses on battery health prognostics with differ
ential temperature (DT or dT) elementary reconstruction and state of 
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health (SoH) estimation for energy storage systems using unlabeled 
aging data and without temperature measurement based on novel 
transfer learning strategies. 

1.2. Literature review 

Model-based and data-driven are the two main categories in battery 
state estimation and health prognostics. Model-based method generally 
first builds electrochemical models to capture the electrical/thermal 
characteristics of batteries [7,8]. Then, the parameter estimation 
method based on various optimization algorithms is conducted for state 
estimations and health prognostics [9,10]. Nevertheless, the high 
complexity and computation burden make it challenging for the prac
tical implementation of model-based methods. On the other hand, 
data-driven methods are more flexible, easier to implement, can avoid 
those complex modeling processes, etc. [11], which attracts more and 
more concerns in recent years. 

SoH, which is defined as the ratio of the current capacity to the 
nominal capacity (or the capacity of the fresh cell), is one key index to 
evaluate the health status and aging condition of the battery [12]. 
Data-driven battery SoH estimation can be divided into feature 
based-methods and feature-free methods. In the feature-based method, 
manual health indicator (HI) extraction and selection are required [13]. 
Methods for HI extraction can be divided into measured data-based 
extraction and calculated data-based extraction. In the measured 
data-based method, as the voltage, current, and time are recorded online 
by the BMS, the HIs could be extracted from these data [14]. For 
example, the widely used time interval during certain voltage ranges, 
voltage slope, voltage skewness, etc. [15], based HIs have shown satis
factory correlations with battery SoH and helped estimate SoH accu
rately with machine learning algorithms, such as linear/multi-linear 
regression, support vector regression, and gaussian process regression, 
etc. [16–18]. In addition to the direct HIs extraction from the measured 
data, another way to extract the HIs from parameters such as the in
cremental capacity (IC) and differential voltage (DV) [19]. The peak 
values, valley values, and peak areas of IC and DV curves are widely used 
HIs. Besides, the DT curve has also been proven to reflect battery aging 
and could help improve the accuracy of SoH estimation along with the 
IC curve [20]. After the HIs have been extracted, the feature selection 
process is required to select the most relevant HIs as the final input of the 
data-driven model. The most popular way is to calculate the correlation 
coefficients between the HIs and the capacity to help find HIs which are 
highly correlated with battery capacity [21]. Published works have 
proven that the wrapper and fusion-based feature selection methods 
could also help reduce the feature redundancy to help improve the SoH 
estimation [22]. In the feature-based method, the HI extraction and 
selection processes are the key steps affecting the final prognostic per
formance. On the other hand, in feature-free based methods, the raw 
measurement data is used as input for machine learning or deep learning 
models directly [23]. A popular feature-free method is to use an 
auto-encoder and -decoder for automatic feature extraction, with two of 
the more widely used types of encoder and decoder being recurrent 
neural networks and convolutional neural networks due to their ability 
to account for time and spatial dimensions [24–26]. Based on the deep 
learning method, the battery SoH can be estimated without manual 
feature engineering [27]. For example, the hybrid network combining 
convolutional module, ultra-lightweight subspace attention mechanism 
module, and recurrent unit module was used for decoding with partial 
charging curve as input while the simple back propagation neural 
network was used to decode the hidden states for battery SoH estima
tions [28]. 

The trained data-driven model mapping the relationship between the 
input HIs or measured data and battery SoH is then used for estimating 
the SoH of test batteries. However, the specific mapping might not be 
suitable for different operation scenarios, where the domains have clear 
discrepancies. Therefore, researchers have proposed transfer learning to 

improve the model performance on the SoH estimation for test batteries. 
Two kinds of transfer learning strategies are widely used (1) to retrain 
the model using only a few labeled data collected from the test batteries 
[29,30], and (2) to integrate the reduction strategy of domain discrep
ancy between the training battery and testing battery into the model 
[31]. In practical applications, it is very difficult to obtain labeled data 
from the test battery for model improvement. Therefore, methods that 
only take advantage of the unlabeled data of the test battery to improve 
the estimation accuracy are significantly more important, which is the 
main focus of this paper. In addition, batteries undergo variable tem
perature conditions in practical applications due to environmental var
iations. SoH estimation verifications of data-driven methods under 
variable temperatures have not been seen in the existing literature. 

In addition to the direct estimation of battery SoH, more aging- 
related prognostics have been conducted. Tian et al. [27], proposed a 
novel deep-learning method for the charging curve prediction with only 
30 points collected in 10 min under different aging conditions. The ef
fects have been validated with different batteries aging with different 
current rates and temperatures. They further implemented the deep 
neural network for the open circuit voltage reconstruction using partial 
charging data, where the electrode aging parameters can also be ob
tained directly [32]. Tang et al. [33], proposed an IC curve recon
struction method that ensures effective feature extraction under noisy 
conditions for battery SoH estimation. Moreover, temperature variation 
estimation is also important in battery health prognostics. The temper
ature variation changes with the battery aging [34], seen as e.g., the 
incremental value of temperature increases with aging. It is vital to es
timate the temperature variation accurately, as it helps provide infor
mation for thermal management to avoid thermal runaway. 
Furthermore, the DT curve also provides additional information which 
can be used to improve the accuracy of SoH estimation as illustrated in 
Ref. [20]. For the data-driven temperature estimation, the 
long-short-term memory (LSTM) neural network is used to predict the 
future surface temperature using historical information including tem
perature, voltage, current, and state of charge [35]. The temperature 
variation with battery aging was decomposed as reversible heat and 
irreversible heat, and the LSTM was used to predict the temperature 
variations [36]. However, most data-driven temperature estimation or 
prediction method needs the measured temperature for the input, while 
not all the cells have a related temperature sensor in the real world. 
Therefore, the temperature variation needs to be estimated in the 
context of a temperature sensor-free environment to provide the thermal 
behavior of a battery. The investigation of the effectiveness of the SoH 
estimation with additional estimated temperature characteristics is also 
valuable while lacking in the existing literature. 

1.3. Contribution of this work 

This paper proposes a proper method for battery health prognostics 
with dT curve reconstruction and SoH estimation to handle the gaps 
mentioned above. The following main contributions distinguish this 
paper from existing works.  

1) The dT curve is reconstructed by using the Q-V curve without the 
requirement of measured temperature to add information in battery 
health prognostic. The sequence-to-sequence (STS) method is pro
posed for the dT curve reconstruction by using dQ curve.  

2) An end-to-end framework is proposed for the SoH estimation with 
measured dQ-V and reconstructed dT-V information without the 
requirement of manual feature extraction and selection.  

3) Multiple domain adaptation with maximum mean discrepancy 
(MMD) is proposed to reduce the domain discrepancy between the 
training battery and test battery to improve the accuracy of the 
health prognostics. Both the dT curve reconstruction and SoH esti
mation will benefit from this transfer learning framework without 
labeled data from the test battery. 
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4) Both experimental data and publicly available data are used for the 
evaluation of the proposed method, where different battery chem
istry and formats, temperature variations, dT curve shapes, and ca
pacity degradation patterns are used for the evaluations of the 
proposed framework. 

The health prognostic framework for the STS dT curve reconstruction 
and sequence-to-point (STP) SoH estimation based on the domain 
adaptative end-to-end framework is shown in Fig. 1. The Q-V curve is 
transformed into dQ-V curve (i.e., building the dQ sequence) for input 
into the neural network. The dT curve reconstruction network takes the 
dQ sequence as the input, using the LSTM layer for hidden information 
extraction since the high coupling relationship on the time series data, 
and finally, a fully connected layer is added to output the predicted dT 
sequence. The MMD loss is added to the output of the second LSTM to 
reduce the domain discrepancy of the feature distributions between the 
source battery and the target battery. The estimated dT sequence and the 
dQ sequence are then used for the SoH estimation of batteries, where the 
MMD loss is also integrated after the second LSTM layer to reduce the 
domain discrepancy before the final output. The proposed health 
prognostic strategy is finally verified using different batteries working 
under different scenarios. 

1.4. Article organization 

The remainder of this paper is arranged as follows: Both the exper
imental and public datasets for the verification are introduced in section 
2. Then, the main framework of the proposed method will be described 
in section 3. The prognostic results will be presented and evaluated in 
section 4, and lastly, the main conclusions of the paper are summarized 
in section 5. 

2. Data description 

To better demonstrate the effectiveness of the proposed framework, 
two private experimental datasets and two public datasets are used. 
Detailed information for all the datasets used in this paper is listed in 
Table 1. 

The private lab data (denoted as Lab dataset #1 and Lab dataset #2 
in Table 1) consists of two pouch cells (with a nominal capacity of 8 Ah). 
In Lab dataset #1, the batteries are aged using a multi-stage fast constant 
current (MCC) and constant voltage (CV) charging, and dynamic dis
charging profile. Specifically, batteries were charged with a series MCC 
(i.e., 10 C-5 C-3 C–1 C in order). The batteries were charged using 10C 
first until the voltage reaches the upper limit, i.e., 4.2 V. Then the cur
rent was reduced to 5C, 3C, and 1C in sequence to charge until 4.2 V. 
Then CV charging is followed until the current drops below 0.1C. During 
discharging, 100 A pulses lasting 10 s are used first to discharge the 

battery, thereby preventing its voltage from varying beyond the upper 
voltage limit. The battery was then discharged with two dynamic dis
charging profiles, one is the urban dynamometer driving schedule 
(UDDS) and another is HWFET tests for the purpose to simulate battery 
aging under urban driving conditions and highway driving conditions, 
respectively. Finally, a 50 A current is loaded to discharge the battery 
until its voltage drops below the lower voltage limit, i.e., 2.75 V. 
Furthermore, a short rest lasting 120 s was added between the charging 
and discharging profiles. The load current as well as the corresponding 
voltage and temperature responses for the cycling profile with UDDS 
and HWFET are shown in Fig. 2 (a) and Fig. 2 (b), respectively. A fast 
temperature increase was found in MCC charging, especially in the first 
stage of the charging process (at 10C). Thus, accurately estimating the 
dT curve during fast MCC is important to avoid thermal runaways, 
which could have catastrophic consequences in the real world. 

As for the second-life batteries (Lab dataset #2), a typical loading 
profile of CC-CV/CC is used to continue aging the batteries at 2.5C. The 
load current, corresponding voltage, and measured temperature are 
plotted in Fig. 1 (c). It can be seen that the temperature mainly increases 
during the discharging process, which is different from the primary 
battery aging process. It shows that the temperature variation of the new 
batteries (i.e., in Lab dataset#1) is larger than 15 ◦C while that of the 
second-life batteries (i.e., in Lab dataset#2) is larger than 10 ◦C. The 
temperature variation of the new batteries is larger than the second-life 
batteries because of the larger current rates. This further solidifies the 
importance of dT curve estimation to provide key information for pre
dictive maintenance of the battery cell. In addition, the environmental 
temperature of the Lab dataset#2 is changeable between 25 and 35-25- 
15 ◦C, which will cause discontinuous degradation curves. It is more 
related to real scenarios where batteries are aged under variable tem
perature conditions due to climate change, which makes the verification 
more conformed to practical applications. 

For the public dataset, the data sets from Oxford university [37] (Ox 
dataset) and MIT-Stanford group [38] (M − S dataset) were used. 
Detailed information is listed in Table 1. The Ox dataset also uses the 
pouch cell but with a much smaller current rate and different nominal 
capacity from the Lab datasets. The M − S dataset uses a large current 
rate but has different battery chemistry and format from the Lab data
sets. It is worth mentioning that the used four datasets cover different 
scenarios including battery chemistries (i.e., LFP and NCA), battery 
formats (i.e., pouch and cylindric), and working currents (i.e., high and 
low current). The large range of operation scenarios, conditions, and 
chemistries causes large differences in temperature variation and 
degradation patterns. Therefore, these datasets create a good basis for 
verifying the robustness and generalization of the proposed framework. 

Fig. 1. Framework for domain adaptative battery health prognostics with dT curve reconstruction and SoH estimation.  
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3. Methodology 

The detailed methods for the dT curve reconstruction and SoH esti
mation are described in this section. Firstly, the STS framework for dT 
curve reconstruction is introduced in section 3.1. Then, by integrating 
the dQ sequence and the reconstructed dT sequence, the STP-based 
battery SoH estimation is described in section 3.2. Finally, the domain 
adaptation for performance improvement via unlabeled data is proposed 
in section 3.3. 

3.1. DT curve reconstruction 

The dT curve reconstruction is achieved by an STS prediction 
framework. The input and output of the deep learning model are the dQ 
sequence and dT sequence, respectively. The following steps are used to 
form the dQ sequence and dT sequence. When the dQ sequence is con
structed, the voltage is required to pass through a certain voltage range 
to ensure homogeneity. Thus, Q-V curve is chosen to be in the voltage 
range [3.2 V, 3.6 V] for LFP battery and [3.6 V, 4.2 V] for NCA battery 

Table 1 
Specifications of the data sets used in this paper.  

Dataset Battery Chemistry Battery Format Charging/Discharging Profile Temperature Variation Environmental Temperature 

Lab dataset #1 NCA/Graphite Pouch MCC CV/Dynamic >15 ◦C 25 ◦C 
Lab dataset #2 NCA/Graphite Pouch CC-CV/CC >10 ◦C 25-35-25-15 ◦C cyclic 
Ox dataset NCA/Graphite Pouch CC-CV >1.5 ◦C 40 ◦C 
M − S dataset LFP/Graphite Cylindric MCC-CV/CC >5 ◦C 35 ◦C  

Fig. 2. The loading current and the corresponding voltage and temperature responses under (a) MCC-CV/UDDS work profile, (b) MCC-CV/HWFET work profile, and 
(c) CC-CV/CC work profile for the second-life battery. 

Fig. 3. The structure of the network for the STS dT curve reconstruction and STP SoH estimation with domain adaptation.  

Y. Che et al.                                                                                                                                                                                                                                      



eTransportation 17 (2023) 100245

5

during primary life and [3.0V, 4.0 V] for the second life battery (i.e. Lab 
dataset#2). For the Oxford dataset, the whole voltage range is used to 
demonstrate the whole dT curve variation under a small current rate. 
The different voltage ranges can also be used to demonstrate that the 
proposed method could work with both different partial and full Q-V 
data with these different settings. Then, a predefined voltage interval 
(0.025V in this paper) is used to split the V sequence and a new Q 
sequence is obtained by interpolating the Q-V curve based on the split V 
sequence. Finally, the dQ sequence could be calculated by the difference 
between each element and the first value in the Q sequence. The same 
process is used for pre-processing the T-V curve to obtain the dT 
sequence. 

The neural network used for the end-to-end STS dT curve recon
struction is shown in Fig. 3, where the LSTM layer is used for hidden 
information extraction. LSTM has been widely used in battery SOH 
estimation and prediction and has proven to be superior in health 
prognostic [39]. The basic equations governing an LSTM cell are 
denoted as follows [40]. 

f (t)= σ
(
wf 1x(t)+wf 2h(t − 1)+ bf

)
(1)  

i(t)= σ(wi1x(t)+wi2h(t − 1)+ bi) (2)  

S̃(t)= tanh(wc1x(t)+wc2h(t − 1)+ bc) (3)  

S(t)= f (t) ⊙ S(t − 1)+ i(t) ⊙ S̃(t) (4)  

o(t)= σ(wo1x(t)+wo2h(t − 1)+ bo) (5)  

h(t)= o(t) ⊙ tanh (S(t)) (6)  

where x(t) and h(t) are the input and output, S(t) is the state informa
tion, f(t), i(t), and o(t) are the information updated by the forget gate, 
input gate, and output gate respectively, w and b are the weights and 
biases, σ and tanh are the activation functions. 

After the second LSTM, a fully connected layer is added to output the 
estimated dT sequence. The numbers of neurons used in the two LSTM 
layers are set to 50 and 30, respectively. Since the dT curve is estimated 
by inputting the dQ sequence, and the sequences are obtained by split
ting the corresponding curves with the same voltage sequence, the 
output length is the same as the input. 

3.2. End-to-end SoH estimation 

After reconstructing the dT curve, the temperature variation infor
mation is added together with the dQ curve for the end-to-end STP SoH 
estimation. Specifically, the dQ sequence is selected as one input 
dimension. In addition, the information from the temperature variation 
also contains important aging information and helps improve the SoH 
estimation accuracy, which is proved in the previous study [20]. 
Therefore, the reconstructed dT curve is added as a second input 
dimension to the deep learning model. The definition of SoH in this 
paper is the ratio of the current test capacity (Ci) and the capacity of the 
first cycle (C0) [41,42], which is given below. 

SOH =Ci/C0 (7) 

The structure of the neural network for the STP SoH estimation is 
shown in Fig. 3. It follows the same general structure as the deep neural 
network used for the dT curve reconstruction, two LSTM layers are first 
used to extract the hidden aging information. Then, a fully connected 
layer with one neuron is added to the output for the final SoH estima
tion. The hyperparameters are set as the same as the model in dT curve 
reconstruction instead of the output neuron, which is set as 1 for the SoH 
estimation. 

3.3. Transfer learning with domain adaptation 

Deep learning-based battery health prognostics for dT curve recon
struction and SoH estimation have been introduced above. However, 
conventional data-driven methods suffer from poor generalization, as 
the model trained on the source battery may have poor performance on a 
target battery, especially when the application scenarios show obvious 
dissimilarities. These dissimilarities will cause large domain discrep
ancies between the source battery and the target battery. In most 
existing transfer learning-based battery health prognostic methods, a 
few labeled data from the target domain are used to fine-tune the model. 
However, the labeled data are generally unavailable in real-world ap
plications. Therefore, it is more valuable to use unlabeled to improve the 
prognostic accuracy. To this end, this paper adopts the MMD to reduce 
the domain discrepancy of the hidden features outputted by the second 
LSTM. The implementation of the MMD in the prognostic model is 
shown in Fig. 3, where the domain discrepancy of the outputs at the last 
time step of the second LSTM in the source and target domains is 
reduced, which helps improve the estimation accuracy of dT curve and 
SoH. 

The MMD is a measure of the difference between two probability 
distributions in the mean embedding of the features [43]. Given two 
samples in two datasets X = {xi}

n1
i=1 and Y = {yi}

n2
i=1, the MMD between 

the X and Y could be expressed as [44], 

MMDH (X,Y)= supΦ∈H

(
Ep[Φ(x)] − Eq[Φ(y)]

)
, (8)  

where H represents a reproducing kernel Hilbert space (RKHS), Φ(•) is 
a nonlinear mapping function from raw data space to the RKHS space, 
and p and q are the probability distributions of generating the two data 
sets. The empirical approximation to the MMD can be denoted as follows 
[31,45], 

MMD2
H (X,Y)=

⃦
⃦
⃦
⃦
⃦

1
n1

∑n1

i=1
Φ(xi) −

1
n2

∑n2

j=1
Φ
(
yj
)
⃦
⃦
⃦
⃦
⃦

2

H

. (9)  

The kernel trick is then used to get the expression [31], 

MMD2
H (X,Y)=

1
n2

1

∑n1

i=1

∑n2

j=1
k
(
xi, xj

)
−

2
n1n2

∑n1

i=1

∑n2

j=1
k
(
xi, yj

)
+

1
n2

2

∑n1

i=1

×
∑n2

j=1
k
(
yi, yj

)
, (10)  

where k(•, •) is the kernel function of the RKHS, where the Gaussian 
radial basis function (RBF) is used [31], 

k
(
xi, yj

)
=
(
−
⃦
⃦xi − yj

⃦
⃦2) / 2γ2. (11) 

In the training process for both the dT curve reconstruction and SoH 
estimation, the mean square error is used to evaluate the fitting per
formance of the output, while the MMD is used as an additional loss to 
evaluate the domain discrepancy of the hidden features outputted by the 
second LSTM. Therefore, the final loss function is the combination of the 
regression loss and the transfer loss, which is denoted as, 

L =L MSE + λL MMD, (12)  

where λ is the transfer loss weight, which represents the penalty co
efficients to denote how much the domain adaptation needs to be 
considered. The transfer loss weight is set as 0.01 in this paper. In this 
way, the trained model could estimate the SoH or dT curve while 
considering the domain discrepancy between the source battery and the 
testing battery. The model is built by PyTorch, where the Adam opti
mizer is used to train the parameters of the neural networks. 
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4. Health prognostic results and discussion 

The health prognostic results including the dT curve reconstruction 
and SoH estimation are presented and evaluated in this section ac
cording to the framework described above, where different testing sce
narios are considered. To evaluate the accuracy of the prognostic results, 
the root mean square error (RMSE) and mean absolute error (MAE) are 
used, which are denoted as follows, 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(ẑi − zi)

2

√
√
√
√ , (13)  

MAE =
1
N

∑N

i=1
|ẑi − zi|, (14)  

where ẑi and zi are the estimated value and real value for the i-th 
observation. The maximum absolute error (MaxAE) is also included in 
the performance evaluation. In the following subsections, the results for 
the dT curve reconstruction and SoH estimation are first presented and 
evaluated using the Lab datasets. Second, the generalization and 
robustness are evaluated by verifying the results on the two public 
datasets. Finally, further comparative evaluation and limitations are 
discussed. 

4.1. DT curve reconstruction 

The results for the dT curve reconstruction of the primary life battery 
aging under MCC fast charging and dynamic discharging and the second 
life battery aging under CC-CV charging and CC discharging are pre
sented and evaluated. The results for the primarily used batteries under 
MCC fast charging and dynamic discharging are shown in Fig. 4. Fig. 4 
(a)–(c) show the results of using cell 1 (UDDS) as the source battery and 
cell 2 (HWFET) as a target battery (denoted as “L#1_C1_to_C2”), while 
Fig. 4 (d)–(f) are the results considering the opposite scenario (denoted 
as “L#1_C1_to_C2”). Fig. 4(a) and (d) are the results obtained by the 
basic LSTM model while Fig. 4(b) and (e) are the results obtained by the 
DA-based LSTM, where the transfer loss is added in the total loss func
tion for the parameter training, i.e. the proposed method. Fig. 4(c) and 
(f) show the peak values of the reconstructed dT curves and the real dT 
curve. Note that “Real”, “Base”, and “DA” in the figures represent the 
real curve, results obtained by the basic LSTM model, and the results 
obtained by the proposed domain adaptative method, respectively. It 
illustrates that the STS model by the LSTM can reconstruct the dT curve 
with the measured dQ curve in a scenario without the requirement of the 
temperature sensor. However, the trend of the reconstructed curve by 
the basic LSTM model still shows some obvious outliers, which is caused 
by the domain discrepancy between the training battery and the test 
battery. While the DA model shows better performances, the numerical 

comparison is given later below. The peak value of the dT curve is one 
significant feature for battery health prognostic and has a high corre
lation with the battery capacity [20,46]. It also shows that the proposed 
method could improve the accuracy of the estimations from the peak 
values of the dT curve. 

The performance of the proposed method for the dT curve recon
struction under variable temperatures for the second-life batteries is also 
evaluated. The estimation results are shown in Fig. 5, where the inter
pretation of each subfigure is identical to that of Fig. 4. Under variable 
temperatures, the dT curves do not have monotonous trends for cycling 
from start to end because the correlation between the capacity and the 
environmental temperature also influences the shape of the degradation 
curves. Under this scenario, the reconstructed curves based on the 
proposed method have significant improvement compared to the basic 
LSTM method. Although the trends of the dT curve could be estimated 
by the basic LSTM, the curves show obvious differences from the real 
curves and the estimated peak values have large differences from the 
real values, which will negatively affect the SoH estimation. However, 
the reconstructed dT curves and the corresponding peak values found 
using the DA-based LSTM are much closer to the real values, which 
means that the information from the temperature variation could be 
extracted to help the health prognostic. 

The numerical comparisons between the basic LSTM and the pro
posed DA-based LSTM are listed in Table 2 and Table 3, showing the 
errors of the reconstructed dT curve and the estimated peak values 
respectively. Note that the nomenclature for the test scenarios is defined 
as “Dataset_source battery_to_target battery”. Significant improvements 
can be seen in the proposed method compared to the basic LSTM. The 
mean RMSE and MAE for the four testing scenarios of the basic LSTM for 
the dT curve reconstruction were 0.0854 ◦C/V and 0.0634 ◦C/V, 
respectively. While those for the proposed method are reduced to 
0.0661 ◦C/V and 0.0491 ◦C/V, i.e. a reduction of 22.6%. Furthermore, 
the reduction in errors of the estimated peak values, when using the 
proposed method compared to the basic LSTM was 51.5% and 54.4% 
respectively. In addition, three generally used machine learning algo
rithms are also included for comparison of the STS dT estimation: arti
ficial neural network (ANN), random forest (RF), and Gaussian process 
regression (GPR). It shows that the basic LSTM, RF, and GPR have 
similar accuracy and are better than ANN. Although one of them may 
perform better than the others on some batteries, it also performs worse 
than others on other batteries, which means the robustness of the con
ventional data-driven methods is not satisfactory. The mean error of the 
LSTM, RF, and GPR shows that LSTM is better for most cases but not 
significantly. All three methods could be used for the STS dT curve 
reconstruction conventionally, but the proposed DA-based LSTM 
method can improve the accuracy of the LSTM by accounting for the 
domain discrepancies and maintaining high accuracy in the different 
testing scenarios. The MaxAE for the reconstructed dT curves are listed 

Fig. 4. The estimated dT curve and the peak values for Lab dataset#1.  
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in Table 4, where the LSTM and proposed domain adaptative LSTM are 
compared. It shows that the mean MaxAE of the reconstructed dT curves 
for the four testing scenarios is 0.156 ◦C/V with basic LSTM while is 
0.100 ◦C/V with the proposed method. The MaxAE for the peak value 
between the reconstructed dT curve and the real curve is 0.218 ◦C/V and 
0.117 ◦C/V based on the basic LSTM and the domain adaptative LSTM, 
respectively. Both of the results indicate that the proposed method im
proves the accuracy of the dT curve reconstruction. Therefore, it is 
illustrated from the comparative results that the proposed method has 
better accuracy and robustness than the conventional data-driven 
methods. 

4.2. SoH estimation 

The SoH estimation results of the two Lab datasets are presented and 
evaluated in this section. Due to the different working conditions, the 
degradation of the two batteries in the two datasets shows significant 
differences with different degradation rates and lifespans. 

The estimations for the primary batteries aging under HWFET and 
UDDS discharging with MCC fast charging are shown in Fig. 6(a)-(b) and 
Fig. 6(c)–(d), respectively. The SoH estimation results obtained with the 
basic LSTM reconstructed dT curve, and DA-based LSTM reconstructed 
dT curve but without DA for the SoH model are also presented for the 
comparisons, referred to as “Benchmark 1” and “Benchmark 2”, 
respectively. The proposed method in the figures is a two-stage DA 
process, which is denoted as the “Multi DA”. The SoH is normalized by 
dividing the first value because of the manufactural inconsistency. It 
shows above that when the DA-based model is used for dT curve 
reconstruction, more accurate temperature variation information could 
be obtained. Therefore, an obvious improvement from the results ob
tained from “Benchmark 1” to “Benchmark 2” can be seen in Fig. 6, 
where a more linear correlation is shown for the figure of estimated SoH 
to the real SoH. The numerical results of the estimation errors for the 
SoH are shown in Table 4. It illustrates that the RMSE and MAE are 
reduced from 3.317% to 3.123%–1.687% and 1.524% for cell 2, and 
2.241% and 1.828%–1.756% and 1.573% for cell 1 respectively from 
the ”Benchmark 1” to “Benchmark 2”. When the DA is also used in the 
SoH estimation model, the estimated results are improved, as the RMSE 

Fig. 5. The estimated dT curve and the peak values for Lab dataset#2.  

Table 2 
Comparative results of errors (◦C/V) for the dT curve reconstruction based on different methods.  

Test LSTM LSTM_DA ANN RF GPR 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

L#1_C1_to_C2 0.109 0.0834 0.0839 0.0625 0.113 0.0844 0.113 0.0944 0.0982 0.0747 
L#1_C2_to_C1 0.106 0.0808 0.0879 0.0662 0.172 0.141 0.107 0.0804 0.123 0.0936 
L#2_C1_to_C2 0.0827 0.0560 0.0504 0.0360 0.0855 0.0610 0.0782 0.0503 0.0786 0.0584 
L#2_C2_to_C1 0.0437 0.0332 0.0420 0.0317 0.0635 0.0523 0.0627 0.0478 0.0576 0.0425 
Mean 0.0854 0.0634 0.0661 0.0491 0.109 0.0847 0.0902 0.0682 0.0894 0.0673  

Table 3 
Errors (◦C/V) of the estimated peak values.  

Test LSTM LSTM_DA ANN RF GPR 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

L#1_C1_to_C2 0.139 0.127 0.0630 0.0512 0.159 0.157 0.126 0.113 0.0801 0.0681 
L#1_C2_to_C1 0.107 0.0919 0.0662 0.0550 0.208 0.198 0.116 0.109 0.167 0.162 
L#2_C1_to_C2 0.0897 0.0768 0.0306 0.0244 0.0724 0.0592 0.0619 0.0407 0.0622 0.0415 
L#2_C2_to_C1 0.0391 0.0301 0.0218 0.0183 0.0507 0.0334 0.0687 0.0589 0.0674 0.0573 
Mean 0.0937 0.0815 0.0454 0.0372 0.123 0.112 0.0932 0.0804 0.0942 0.0822  

Table 4 
Comparisons of the maximum absolute errors (◦C/V) for the dT curve 
reconstruction.  

Test LSTM LSTM_DA 

Curve Peack value Curve Peack value 

L#1_C1_to_C2 0.125 0.279 0.111 0.157 
L#1_C2_to_C1 0.155 0.230 0.136 0.169 
L#2_C1_to_C2 0.233 0.261 0.0904 0.0899 
L#2_C2_to_C1 0.111 0.101 0.0642 0.0535 
Mean 0.156 0.218 0.100 0.117  
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and MAE are reduced to 1.364% and 1.257% for cell 2, and 1.671% and 
1.519% for cell 1, respectively. Therefore, it indicates from the evalu
ation of the results above that the multi-DA processes using only unla
beled data help improve the health prognostic for batteries compared to 
the basic LSTM without domain adaptation. 

The SoH estimations for the second-life batteries aging under cyclic 
environmental temperatures are also presented and evaluated. The 
estimation results for cell 2 and cell 1 are shown in Fig. 7(a)-(b) and 
Fig. 7(c)–(d), respectively. Note that the jumps shown in the SoH curves 
are caused by the temperature changes since the charged/discharged 
capacity under different temperatures is different. Also, two benchmarks 
are used for the comparisons, which should be interpreted the same way 
above. The results in Fig. 7(b) and (d) clearly demonstrate the conver
gence of the real values from “Benchmark 1” to “Benchmark 2” to the 
“Multi-DA”, improving the accuracy with each step. The results in Fig. 7 
(a) and (c) show that although linear correlation exists between the 
estimated SoH and the real SoH for “Benchmark 1” and “Benchmark 2”, 

they diverge from the one-to-one line, implying a divergence between 
the estimated and real values. While the estimated SoH of the proposed 
method shows very little divergence indicating a satisfactory linear 
correlation. The colors of the dots in Fig. 7(a) and (c) do not show the 
monotonic variations and the dots have discontinuous blanks because 
the capacity also changes with environmental temperatures. The nu
merical results shown in Table 4 clearly show the accuracy improvement 
of the proposed method. It illustrates that “Benchmark 1” has the largest 
estimation errors compared to “Benchmark 2” and the multi-DA method. 
The RMSE and MAE of “Benchmark 1” in the two are even larger than 
4%, which are significantly reduced to less than 2.1% by the proposed 
multi-DA method. The errors of “Benchmark 2” are also less than those 
of “Benchmark 1”, but still larger than that of the proposed multi-DA 
method. This indicates that the DA-based dT curve reconstruction 
could provide more accurate temperature variation information to 
improve the SoH estimation accuracy, and the second DA in the SoH 
estimation model reduces domain discrepancy of the hidden features for 

Fig. 6. SoH estimation results for Lab dataset #1. (a)/(b) The estimation results for cell 2 with cell 1 as the source battery, (c)/(d) The estimation results for cell 1 
with cell 2 as the source battery. 

Fig. 7. SoH estimation results for Lab dataset #2. (a)/(b) The estimation results for cell 2 with cell 1 as the source battery, (c)/(d) The estimation results for cell 1 
with cell 2 as the source battery. 
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the SoH estimation between the source and target domain, which 
therefore further improves the SoH estimation. 

The mean RMSE, MAE, and MaxAE for the four testing scenarios are 
also shown in Table 5. It shows that “Benchmark 1” has the largest er
rors, whose RMSE and MAE are 3.344% and 3.038% respectively. The 
errors are reduced to 2.750% and 2.482% i.e., an error reduction of 
17.763% and 18.302%, with the improved dT curve reconstruction to 
provide better temperature information. When the DA is also used for 
the SoH estimation, the RMSE and MAE are reduced to 1.772% and 
1.532%, respectively. Therefore, the RMSE and MAE have been reduced 
by 47.010% and 49.572% respectively from “Benchmark 1” to the 
proposed method for battery SoH estimation under variable tempera
tures. The reduction trend also shows in the results of MaxAE, indicating 
the accuracy improvement of the proposed method compared to 
benchmarks, which reduced from 7.340% to 4.689%. The results indi
cate the effectiveness of the proposed end-to-end multi-DA method for 
battery health prognostic with dT curve reconstruction and SoH 
estimation. 

Although it has been verified in published works that the information 
of dT curve could help improve the accuracy of battery SoH estimation, 
this paper also proves that under variable temperature conditions. To 
demonstrate the effectiveness of the dT information on the SoH esti
mation, the comparisons between the proposed method and the ones 
without dT information are presented in Table 6. “Benchmark without 
dT” refers to the model trained by only using dQ information and is 
directly used for the SoH estimation of the test batteries. “DA without 
dT” means the above model with DA for the SoH estimation. It shows 
that although the DA could improve the accuracy of the model compared 
to “Benchmark without dT”, the additional dT information provides 
more accurate estimations, especially with two stages of DA. The results 
illustrate that the temperature variation information provided by the dT 
curve helps improve the SoH estimation, which is because the capacity 
also varies with temperatures. In real applications, the environmental 
temperatures also change with the seasons. Therefore, the additional 
temperature information provided by the reconstructed dT curve based 
on the proposed prognostic method could not only provide thermal 
behavior monitoring but also help improve the estimation of SoH. 

4.3. Robustness evaluation with different manufactory 

The results above have verified the prognostics under more practical 
scenarios, which are fast charging with dynamic discharging and vari
able temperature conditions. In this section, the public datasets are also 
used for verification to evaluate the robustness of the proposed method. 
The first two batteries from the Ox data set, whose current rate is much 
smaller than the Lab datasets with smaller temperature variations, will 
be used for demonstration. The estimation results are shown in Fig. 8, 
where Fig. 8(a)–8(c) are the results for cell 2 while Fig. 8(d)–8(f) are the 
results for cell 1 with the other battery serving as the source battery. The 
estimation results for the dT curve based on the proposed method, the 
error for the peak value, and the SoH estimation results based on the 
proposed method and two benchmarks are given. The peak value here 
refers to the valley, which is still presented as the peak value to make the 
presentation consistent across the entire paper. The numerical results of 
the dT curve reconstruction are listed in Table 7. It shows that the 

variation of the dT curve could be estimated satisfactorily with RMSE 
and MAE less than 0.018 ◦C/V and 0.013 ◦C/V, respectively. The MaxAE 
is less than 0.026 ◦C/V for all the testing scenarios while the mean 
MaxAE for those results based on the basic LSTM is 0.045 ◦C/V. The 
proposed multi-DA SoH estimation method is also more accurate than 
the two benchmarks. The results obtained by the DA estimated dT curve 
are more accurate than the most conventional method, i.e., “Benchmark 
1”. The RMSE, MAE, and MaxAE of the SoH estimations for the proposed 
method are less than 1.46%, 1.04%, and 4.07% respectively as listed in 
Table 8. It shows that the MaxAE is not reduced significantly, because 
the largest errors come from the estimations of some deviation points as 
shown in Fig. 8. But the overall estimations based on the proposed 
method are better converged to the real values. 

Finally, two batteries from MIT-Stanford data sets are used for the 
verification. The “channel id” of the two batteries are 25 and 29 
respectively, whose lifetimes are 1638 and 1115 cycles, respectively. 
The estimation results are also shown in Table 7 for the dT curve 
reconstruction and in Table 8 for the SoH estimation, respectively. The 
results show the accuracy improvement from “Benchmark 1” to 
“Benchmark 2” and to the proposed method. The RMSE and MAE for the 
dT curve reconstructions are less than 0.013 ◦C/V and 0.0085 ◦C/V 
respectively while those for SoH estimation are less than 0.92% and 
0.72% of the proposed multi-DA method. The mean values of the four 
testing scenarios using the public data sets are also listed in Tables 7 and 
8. The results show that the RMSE and MAE for the dT curve recon
struction have been reduced from 0.0187 ◦C/V and 0.0127 ◦C/V to 
0.0132 ◦C/V and 0.00954 ◦C/V, with the reduction percentages of 
29.412% and 24.882% respectively. The results show that the RMSE and 
MAE for the SoH estimation have been reduced from 1.502% and 
1.084% to 1.045% and 0.815% respectively, with reduction percentages 
of 30.519% and 24.815% respectively. Therefore, the verification by the 
two public datasets also demonstrates the effectiveness of the proposed 
method for battery health prognostics and the performance improve
ment compared to the basic LSTM-based method. 

4.4. Discussion 

This paper proposes a novel and more comprehensive battery health 
prognostic method to provide the estimation of both dT curve variation 
and battery SoH. The experimental data sets are collected from the aging 
test that is closer to the real world and the full life span test is conducted. 
From the results presented and discussed above, it can be summarized 
that DA is a good way to make better use of the unlabeled data from the 
target domain to improve the prognostic accuracy. Two public data sets 
are used to verify the effectiveness of the proposed method under 

Table 5 
SoH estimate errors (%) for the experimental batteries.  

Test Benchmark 1 Benchmark 2 Multi DA 

RMSE MAE MaxAE RMSE MAE MaxAE RMSE MAE MaxAE 

L#1_C1_to_C2 3.317 3.123 4.807 1.687 1.524 3.218 1.364 1.257 2.816 
L#1_C2_to_C1 2.241 1.828 5.687 1.756 1.573 3.649 1.671 1.519 3.525 
L#2_C1_to_C2 3.717 3.180 11.330 3.649 3.011 7.344 2.091 1.842 5.896 
L#2_C2_to_C1 4.102 4.021 7.534 3.907 3.819 7.621 1.961 1.511 6.519 
Mean 3.344 3.038 7.340 2.750 2.482 5.458 1.772 1.532 4.689  

Table 6 
SoH estimate errors (%) for the experimental batteries.  

Method L#2_C1_to_C2 L#2_C2_to_C1 

RMSE MAE RMSE MAE 

Benchmark without dT 3.738 3.478 3.984 3.919 
DA without dT 2.647 1.999 3.262 2.901 
Benchmark with dT 3.649 3.011 3.907 3.819 
Multi DA 2.091 1.842 1.961 1.511  
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different application scenarios. In order to further demonstrate the 
improvement of the dT curve reconstruction and SoH estimation with 
the multi-DA processes, the comparative results of the RMSE and MAE 
for the dT curve and dT curve peak estimations based on the base model 
and the DA model are shown in Fig. 9(a). The comparisons between the 
Multi DA-based SoH estimation and two benchmarks are shown in Fig. 9 

(b). The box plots clearly illustrate the error reduction for the dT curve 
reconstruction by the proposed DA method compared to the basic LSTM 
model. In addition, the error distributions of the proposed method are 
also much narrower for the multi-DA method, which means the gener
alization and robustness of the proposed method are also better than the 
conventional data-driven method. 

Fig. 8. SoH estimation results for the Oxford dataset 2. (a)/(b) The estimation results for cell 2 with cell 1 as the source battery, (c)/(d) The estimation results for cell 
1 with cell 2 as the source battery. 

Table 7 
Errors (◦C/V) of the estimated dT curves and the peak values for the public datasets.  

Test Errors of the estimated dT curve Errors of the estimated dT peak value 

LSTM LSTM_DA LSTM LSTM_DA 

RMSE MAE MaxAE RMSE MAE MaxAE RMSE MAE MaxAE RMSE MAE MaxAE 

Ox_C1_to_C2 0.0268 0.0172 0.0926 0.0180 0.0129 0.0345 0.0376 0.0292 0.0873 0.0219 0.0165 0.0496 
Ox _C2_to_C1 0.0244 0.0172 0.0338 0.0150 0.0111 0.0258 0.0452 0.0371 0.0883 0.0154 0.0108 0.0409 
MS_C1_to_C2 0.0123 0.00845 0.0321 0.0103 0.00738 0.0226 0.0196 0.0165 0.0611 0.0167 0.0143 0.0488 
MS_C2_to_C1 0.0113 0.00783 0.0215 0.00976 0.00676 0.0196 0.0190 0.0164 0.0456 0.0147 0.0115 0.0391 
Mean 0.0187 0.0127 0.0450 0.0132 0.00954 0.0256 0.0304 0.0248 0.0706 0.0172 0.0133 0.0446  

Table 8 
SoH estimate errors (%) for the public datasets.  

Test Benchmark 1 Benchmark 2 Multi DA 

RMSE MAE MaxAE RMSE MAE MaxAE RMSE MAE MaxAE 

Ox_C1_to_C2 2.365 1.466 11.737 1.786 1.361 8.787 1.654 1.239 9.073 
Ox _C2_to_C1 1.631 1.333 3.465 1.421 1.241 3.423 1.172 0.969 3.493 
MS_C1_to_C2 0.941 0.772 2.187 0.686 0.585 1.683 0.641 0.537 1.549 
MS_C2_to_C1 1.072 0.765 2.622 0.942 0.823 2.364 0.911 0.714 2.131 
Mean 1.502 1.084 5.003 1.209 1.003 4.064 1.045 0.815 4.062  

Fig. 9. Comparative evaluations of the dT curve and SoH estimations.  
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However, there are still some limitations. For example, the dT curve 
and dQ curve vary with the current rate, which makes it difficult to 
reconstruct the dT curve when the batteries work under different 
charging loads. While the method proposed in this paper could cover the 
prognostic under the same charging or discharging profile but with 
different aging degradation patterns, further research is needed to get 
accurate prognostics under different dT shapes. Although different 
voltage ranges have been selected for the demonstration of the effec
tiveness of the proposed strategy and satisfactory results have been 
obtained under the ultra-fast charging stage with 10C (Lab dataset #1), 
the continuously sampled data are used. In practical applications, the 
sampling frequency is much smaller with some missing data. Therefore, 
the dT curve reconstruction and SoH estimation with discontinuously 
sampled data are valuable for studying in the future. In addition, a 
battery pack will have an inconsistent temperature distribution, i.e. 
connected battery cells will have different temperature variations. 
Therefore, the prognostic for the battery pack and its connected battery 
cells also needs further research. The experimental result in this paper 
has been a good example of more comprehensive health prognostics 
considering both temperature and capacity variation estimations. For 
example, in EVs or smart grids, the charging schedule keeps the same 
despite the different dynamic discharging profiles or variable tempera
tures, the results using the Lab datasets have proved the effectiveness of 
the proposed method in those application scenarios. 

5. Conclusion 

Battery health prognostics are a key component of battery manage
ment systems for predictive maintenance of electrified transportation. 
Both temperature variation and capacity fade are significant for moni
toring safe operation. This paper proposed one novel end-to-end method 
with multi-DA for sensor-free dT curve reconstruction and SoH estima
tion using Q-V data. To improve the accuracy and generalization, DA is 
integrated into the hidden layers to reduce the domain discrepancy. In 
SoH estimation, the reconstructed dT curve is added to provide infor
mation on temperature variation as an input, and another DA is adopted 
to further reduce the domain discrepancy of the hidden features for the 
SoH estimation. 

Battery aging test for the whole life span is conducted, which in
cludes both primary life and second life testing. The estimation results 
for the dT curve have proved that the proposed method brings more than 
20% error reduction compared to the conventional methods without 
domain adaptation. The estimation accuracy for SoH estimation could 
be improved by the reconstrued dT curve with error reductions of 
17.763% and 18.302% for the RMSE and MAE, respectively compared to 
the basic model only using IC curve. When the DA is also adapted to the 
SoH estimation, the RMSE and MAE can be reduced by 47.010% and 
49.572%, respectively. Furthermore, two public datasets were also used 
in this paper for generalization verification. 

Only unlabeled data of the testing batteries are used, which broadens 
the transfer learning strategies for prognostic performance improve
ment. The proposed strategy is promising to be implemented consid
ering various applications according to the satisfactory testing results 
under different scenarios. Moreover, different prognostic tasks can also 
be integrated into this framework by considering multi-task learning for 
more practical requirements, which will be studied in future work. 
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