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Electrochemical impedance spectroscopy (EIS) is an effective technique for Lithium-ion battery state of
health diagnosis, and the impedance spectrum prediction by battery charging curve is expected to enable
battery impedance testing during vehicle operation. However, the mechanistic relationship between
charging curves and impedance spectrum remains unclear, which hinders the development as well as
optimization of EIS-based prediction techniques. In this paper, we predicted the impedance spectrum
by the battery charging voltage curve and optimized the input based on electrochemical mechanistic
analysis and machine learning. The internal electrochemical relationships between the charging curve,
incremental capacity curve, and the impedance spectrum are explored, which improves the physical
interpretability for this prediction and helps define the proper partial voltage range for the input for
machine learning models. Different machine learning algorithms have been adopted for the verification
of the proposed framework based on the sequence-to-sequence predictions. In addition, the predictions
with different partial voltage ranges, at different state of charge, and with different training data ratio are
evaluated to prove the proposed method have high generalization and robustness. The experimental
results show that the proper partial voltage range has high accuracy and converges to the findings of
the electrochemical analysis. The predicted errors for impedance spectrum are less than 1.9 mO with
the proper partial voltage range selected by the corelative analysis of the electrochemical reactions inside
the batteries. Even with the voltage range reduced to 3.65–3.75 V, the predictions are still reliable with
most RMSEs less than 4 mO.
� 2023 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published
by ELSEVIER B.V. and Science Press. This is an open access article under the CC BY license (http://creati-

vecommons.org/licenses/by/4.0/).
1. Introduction state of charge (SOC) and state of health (SOH) [9,10]. The param-
Lithium-ion batteries (LIBs) are widely used in electric vehicles
and portable electronic devices, due to their high energy density,
long service life, and environmental friendliness [1–4]. However,
the inevitable degradation of Li-ions batteries poses a big challenge
to the safety during storage and usage, which urges the develop-
ment and application of battery prognostic technologies [5,6].
Among them, electrochemical impedance spectroscopy (EIS) is a
method for determining the impedance spectrum that can be used
to present the battery health state, battery internal impedance, and
the dynamic diffusion of lithium-ions (Li-ions), etc. [7,8].

EIS has been widely used to identify the parameters of the
equivalent circuit model (ECM) to support the online estimation
of battery states such as battery internal impedance, dynamics
behavior of Li-ions diffusion, contact impedance of electrodes,
eters of the ECM model have been proven to have a high correla-
tion with the battery aging status. Therefore, machine learning
has been used to develop algorithms to estimate the SOH and pre-
dict the lifetime of batteries by either inputting the whole EIS
curve or by extracting features from the EIS curve [11,12]. Besides,
the EIS result can give more physical aging meaning inside the bat-
tery, such as the diffusion of Li-ions, formation of the interface
impedance, and ohmic impedance. However, the implementation
of onboard EIS measurement is hindered, due to the high cost of
the measurement equipment, test results subject to SOC and tem-
perature variations, and time-demanding measurements. These
limitations hinder the development of the EIS based method for
online battery health prognostics. Therefore, the prediction of EIS
is of vital importance to provide the impedance information for
battery health prognostics. Accurate prediction via measurable
parameters helps promote the advanced prognostic methods based
on EIS and reduce the cost significantly. Duan et al. [13] achieved
an accurate impedance spectrum prediction based on machine
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learning using complete battery charging data with a root mean
squared error (RMSE) less than 1.862 mO. This promising predic-
tion method can accurately estimate impedance spectrum and
offer the possibility for real-time EIS based battery states estima-
tion and health prognostics. However, there is a very limited
understanding of the relationship between battery charging/dis-
charging curves and impedance spectrum in terms of electrochem-
ical mechanisms, which means the physical interpretability
remains unclear. In addition, the partial voltage curve obtained
during charging is supposed to be used considering the practical
applications; furthermore, the selection of the voltage range during
charging should be based on an analysis of the relationship
between the voltage, incremental capacity (IC), differential voltage
(DV), and EIS curves. Finally, the prediction under different SOC
points is supposed to be provided for different application require-
ments, such as considering the impedance in battery package
making.

Charging curves and EIS curves are widely used for battery
health diagnosis and degradation quantification. Typically, aging
mechanisms involve three degradation modes: conductivity loss
(CL), loss of lithium inventory (LLI), and loss of active material
(LAM) [14,15]. Compared with LLI and LAM, the CL always changes
less in battery aging [16]. In practice, the charging profiles of the
EVs are easily accessible, due to the controllable charging process.
The charging curves can be converted to incremental capacity (IC)
and differential voltage (DV) curves by the differential method. The
peaks in the IC and valleys in DV curves represent specific electro-
chemical reaction processes occurring in both the positive elec-
trode and negative electrode, which are usually used to quantify
the LAM and LLI for the aged battery [17]. Besides, EIS also can
be used for the quantification of LAM and LLI [15]. Since both
charging curves and EIS can be used for quantification of LAM
and LLI, a mechanism connection can be established. Then,
machine learning methods can be used for estimating the impe-
dance spectrum of the battery by charging curves.

The framework reported in this study is based on electrochem-
ical mechanism analysis and summary to determine the existence
of a correlation between charging curves and impedance spectrum,
followed by a machine learning-based approach to predict the
whole impedance spectrum. Specifically: (1) coin cells were
assembled to clarify the electrochemical mechanisms of the IC
and DV curves, which were used for quantification of LAM and
LLI, and the mechanisms responsible for LAM and LLI quantifica-
tion by EIS results were also analyzed; then, a quantifiable rela-
tionship between charging curves and impedance spectrum was
obtained; (2) based on the mechanism analysis, the charging curve
is used to achieve an accurate prediction for the impedance spec-
trum, and the SOC interval of the charging curve, which was used
as input, was optimized; (3) impedance spectrum prediction for
the battery at different SOCs were achieved; (4) the method was
verified using different-testing ratios, and different machine learn-
ing methods were attempted.
Table 1
Charge/discharge curves and EIS results from 7 cells.

Batches Charge/discharge SOC of EIS tested

Batch #1: Cell 1,3,5,7 0.5C/0.5C 10%, 30%, 50%, 70%, and 90%
Batch #2: Cell 2,6,8 0, 20%, 40%, 60%, 80%, and 100%
2. Experimental

2.1. Dataset collection

Seven 18,650 cylindrical cells (HDCNR18650-2200–3.7 V) were
aged at different temperatures and depths of discharge to achieve
different aging states. The specific aging protocols and equipment
were reported in our previous work[18]. After every-one hundred
equivalent full cycles (EFCs), the aging of the battery is stopped
and the battery is transferred to a 25 �C constant temperature oven
for the reference performance test (RPT) including a capacity test
and an EIS test at different SOCs (see in Table 1). In the capacity
212
test, the battery was charged to 4.2 V with a constant current of
0.5C (1.1 A) and then charged with a constant voltage until the cur-
rent is less than 0.11 A. Each battery was aged about 1000 equiva-
lent full cycles (EFCs), and a total of 77 charging voltage curves and
355 EIS data (i.e., impedance spectrum) at different SOCs were
recorded from the seven batteries.

For model validation, a set of RPT results from calendar aging
were used. There are 9 batteries in calendar aging, and the RPT test
was performed at different state of health. Finally, 114 groups of
EIS and the corresponding charging curve data were obtained.
The data also has been divided into two batches, the data with
SOC of 30%, 50%, and 70% are used for training, and the data with
SOC of 0, 20%, 60%, and 100% are used for prediction. The test con-
dition is shown in Table S1 in support information.

2.2. Coin cell preparation

Fresh positive electrodes (i.e., NMC 532), negative electrodes
(i.e., graphite), and lithium-metal (i.e., Li) were used as electrodes
to assemble 2032-type coin cells in the following configurations:
NMC/Li, graphite/Li, and NMC/graphite, respectively. The diameter
of the NMC 532 positive electrode is 14 mm, and the loading is
2.67 mg/cm2. The graphite negative electrode is 14 mm, and the
loading is 1.86 mg/cm2. The diameter of Li metal is 15.3 mm. The
electrolyte was 1 mol LiPF6 dissolved in 1 L solvent with a compo-
sition ratio of 1:1 EC and DEC. All coin cells were charged and dis-
charged with a C-rate of 0.05C. The voltage range for NMC/Li,
graphite/Li, and NMC/graphite were 2.8–4.2 V, 1.0–0.003 V, and
2.8–4.2 V, respectively.

3. Degradation modes identification from voltage charging
curves and EIS

3.1. Degradation identification from charging voltage curves

As battery ages, the increased polarization and materials degra-
dation will result in an upward shift and shortening of the charging
voltage plateaus [19]. Differential methods can separate these pla-
teaus and convert them into different peaks in the IC curve and val-
leys in the DV curve [18]. The IC curve presents the capacity
increment (dQdVÞ changing with battery voltage (V), where the area
between the IC curve and the X-axis corresponds to the capacity
contribution in a certain voltage range, as present in Eq. (1). Simi-
larly, DV (dVdQÞ curve is obtained by differentiating battery voltage
against the capacity, which is used to distinguish the voltage con-
tribution from anode and cathode, and the dV

dQ is shown in Eq. (2)
[20].

dQ
dV

¼ DQ
DV

¼ Qt � Qt�1

Vt � Vt�1
ð1Þ

dV
dQ

¼ d Vcathode � Vanodeð Þ
dQ

¼ dV
dQ

� �
cathode

� dV
dQ

� �
anode

ð2Þ

During battery charging, the graphite anode undergoes a lithia-
tion process. In contrast, a delithiation process occurs on the cath-
ode side. Therefore, the voltage increases in the cathode and
decreases in the anode resulting in an increased voltage of a full
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battery. To understand the full battery charging process, coin-type
half cells and coin-type full cell were assembled; the obtained elec-
trochemical behavior during charging of the three types of coin
cells are shown in Fig. 1. In the graphite lithiation process, the volt-
age decreases step by step corresponding to four consecutive phase
transitions from LiC24 to LiC6, which are represented by the dis-
charge plateaus from A1 to A4 (Fig. 1a). The IC curve converts
the four lithiation plateaus into peaks at 0.19, 0.13, 0.11, and
0.07 V, corresponding to LiC24, intermediate phase between LiC24

and LiC18, LiC12, and LiC6, respectively (Fig. 1b). Furthermore, the
DV curve converts the IC peaks to valleys, which is more conve-
nient for quantifying the capacity contribution of each lithiation
plateau (Fig. 1c). For the cathode delithiation process, there are
two plateaus named C1 and C2, as shown in Fig. 1(d), which are
converted to obvious peaks in the IC curve, corresponding to the
oxidation process of Ni2+/ Ni3+ and Ni3+/ Ni4+, respectively
(Fig. 1e). The capacity increments of cathode are continuously
and uniformly distributed over the voltage range, corresponding
to the large valleys in the DV curve, and thus the DV peaks caused
by the voltage jumps are weak (Fig. 1f).

In the NMC/graphite coin-type full cell charging, there are four
charging plateaus, which are caused by both positive oxidation and
negative reduction processes (Fig. 1g). The IC curve transforms the
charging plateaus into peaks, representing the capacity increment
on the voltage scale (Fig. 1h). Among them, peak I is mainly related
Fig. 1. Q-V (left) and IC (middle), and DV (right) curves of graphite/Li (top), NMC/Li (midd
full cell charging. The test in graphite lithiation process for (a) Q-V curve and converted to
(e) IC, and (f) DV curves. NMC/graphite data for (g) Q-V, (h) IC, and (i) DV curves.

213
to the A1 peak of graphite. Peak II and peak IV are too weak to be
quantified as they can disappear during battery aging [20]. The
highest peak III in the voltage range of 3.65–3.85 V is related to
both the phase change of A3 IC peak of the graphite and the C2
IC peak of the NMC. Therefore, the max value of peak III is widely
used to study battery aging caused by the loss of active material at
the positive and negative electrodes. Dubarry et al.[14,17,21] has
used simulation methods to quantify the battery degradation
mode of LAM based on Eq. (3), where the subscript low-ercase 1
in the equation indicates the battery in begin-of-life state, and i
represents the aged cycle number.

In Fig. 1(i), the DV curves of NMC/graphite are similar to the DV
curves of graphite, which means that the DV peaks on the full cell
are greatly influenced by the phase transition of graphite. Besides,
when charging at a low current, the battery capacity for the con-
stant current stage is always regarded as the remaining inventory
of lithium [14,21]. Therefore, the endpoint (max Qð Þ1) of DV curve
is often used to quantify LLI, as described in Eq. (4).
LAMi ¼
max DQ

DV

� �
1 �max DQ

DV

� �
i

max DQ
DV

� �
1

� 100 ð3Þ

LLIi ¼ max Qð Þ1 �max Qð Þi
max Qð Þ1

� 100 ð4Þ
le), and NMC/graphite (bottom) coin cell to reveal the reaction mechanisms during a
(b) IC and (c) DV curves. The obtained data in NMC delithiation process for (d) Q-V,
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According to Eqs. (2) and (3), LAM can be quantified by the
decrease of the highest peak (III) in the IC curve, which corre-
sponds to the shortening of the main plateau (III) in the charging
curve and the decreased depth of the main valley (III) in the DV
curve. The endpoint of the DV curve can be used to quantify the
LLI, which is the charge capacity contributed by the constant cur-
rent charging stage in the charge curve. The area between IC curve
and X-axis is also can be used to quantify the LLI. The behavior of
the charging IC and DV curves and the corresponding relations to
the electrodes, as well as the corresponding aging mechanisms,
are summarized in Table 2.
Fig. 2. Composition of a normal electrochemical impedance spectrum.

Table 3
Relationship between the impedance spectrum and the most pertinent degradation
modes.

AR-ECM component Most pertinent DMs

Increase in Rsei and Rct LLI Quantified by Eq. (8)
Increase in Y0 LAM Quantified by Eq. (9)
3.2. Degradation identification from EIS

EIS test is a powerful technique to analyze battery degradation
[22,23]. The EIS results are traditionally presented in a Nyquist plot
presenting the battery impedance spectrum, as shown in Fig. 2. As
the test frequency decreases from 6500 Hz to 0.01 Hz, the EIS spec-
trum shows two intersecting semicircles followed by a straight
line, which can be fitted by an Equivalent Circuit Model. Then, an
electrochemical meaning is given, where the first semicircle diam-
eter represents the solid electrolyte interphase resistance (Rsei) and
the second semicircle diameter represents the charge transfer
resistance (Rct), while the slope of the line is related to the diffusion
of lithium ions [18].

The battery degradation modes are widely analyzed by EIS.
After cycling, the SEI film forms on the anode surface, which is a
limit link for Li-ions diffusion between the electrolyte and the
anode [24]. Besides, the SEI film is mainly composed of lithium
compounds generated from side reactions e.g., decomposition of
electrolyte and metal deposition, resulting in an irreversible loss
of lithium inventory. Furthermore, some lithium plating occurs
on the anode surface that can react with electrolyte, resulting in
lithium compounds, hindering the charge transfer [25]. Hence,
LLI is related to the Rsei and Rct.

As reported in [15], the LAM is related to the diffusion coeffi-
cient (DLi+), because the diffusion of lithium ions within the elec-
trolyte and active electrode materials is controlled by the particle
size and the available surface area of the electrode material. The
DLi+ can be calculated by Eq. (5), where R represents the gas con-
stant, T is the absolute temperature, A is the electrode surface, n
is the number of electrons transferred per molecule, F is the Fara-
day’s constant, C is the Li-ions concentration, and the variable Y0 is
a function of Warburg impedance coefficient (r) in Eq. (6). The r is
related to the slope of the tail of the EIS spectrum, and calculated
by Eq. (7), where x is the angular frequency used in the EIS mea-
surements. Therefore, it can be concluded that the LAM is related
to Y0.
Table 2
Relationship between the behaviors of charge, IC, and DV curves and the most pertinent d

Change in charge curve Change in IC curve

Full cell: smaller charging capacity, and
upward trend.
Anode: smaller lithiation capacity, and
upward trend.
Cathode: smaller delithiation capacity,
and upward trend.

Full cell: shift toward lower or higher
the height of the peaks.
Anode: shift toward higher or lower v
Cathode: shift toward lower or higher

Full cell: shorten of main plateau (III)
Anode: shorten of A3 plateau.
Cathode: shorten of C2 plateau.

Full cell: decrease of the highest peak
Anode: decrease of the A3 peak
Cathode: decrease of the C2 peak

214
DLiþ ¼ R2T2Y0
2

A2C2n
4
F4

ð5Þ

Y0 ¼ 1
r

ffiffiffi
2

p ð6Þ

Zre ¼ Rohm þ Rct þ rx�1=2 ð7Þ
Hence, LLI is related to Rsei and Rct, which correspond to the two

semicircles in the high-frequency and mid-frequency regions of
the impedance spectrum. Furthermore, the LAM is related to the
Y0 that corresponds to the tail in the low-frequency region of the
impedance spectrum. Based on these relationships, the EIS was
widely used to quantify the degradation contribution from each
aging mode by Eq. (8) and Eq. (9) [14,15].

LLI ¼ 100
ðRsei;i þ Rct;iÞ � ðRsei;1 þ Rct;1Þ

Rsei;1 þ Rct;1
ð8Þ

LAM ¼ 100
ðY0;1 � Y0;iÞ

Y0;1
ð9Þ
egradation modes for graphite/Li, NMC/Li and NMC/graphite.

Change in DV curve Most
pertinent DMs

voltage, decrease of

oltage.
voltage.

Full cell: shift toward lower capacity.
Anode: shift toward lower capacity.
Cathode: shift toward lower capacity.

LLI
Quantified by
Eq. (4)

(III). Full cell: decrease the depth of the
main valley (III).
Anode: decrease of the depth of the
A3 valley.
Cathode: decrease of the depth of the
A3 valley.

LAM
Quantified by
Eq. (3)
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Similarly, the subscript 1 in the Eq. (8) and (9) indicates the bat-
tery in begin-of-life state, and i represents the aged cycle number.
With these equations, the relationship between the parameters
change of the impedance spectrum and the aging modes can be
summarized in Table 3.
Fig. 3. Periodic reference performance tests (RPTs) for one of the aged batteries before ag
current-constant voltage charges curves, (b) IC curve obtained by differentiating the cha

Table 4
The relationship between changes in charge curve and changes in impedance spectrums a

Changes in the voltage charging
curve

Changes in the
impedance
spectrum

Most
pertinent DM

Potential a

Decrease in charging capacity,
and left and upward shifting.

Increase in Rsei and
Rct

LLI
Quantified by
Eqs. (4) & (8)

Electrolyte
solvent co/

Shorten of main plateau (3.65–
3.75 V)

Increase in Y0 LAM
Quantified by
Eqs. (3) & (9)

Electrode d
active part
dissolution

Fig. 4. Overall framework for the machine learning-b
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3.3. Degradation in a full cell case

Periodic RPTs during battery aging were performed to quantify
the incremental degradation of the cells, as explained in Section 2;
the evaluation of the charging curve, measured at 0.5C (i.e., 1.1 A),
ing and at the 200th, 400th, 600th, 800th, and 1000th cycles, including (a) constant
rging curve, (c) DV curves, and (d) corresponding EIS results obtained at 50% SOC.

nd the details of degradation mechanisms.

ging mechanisms

decomposition; oxidation of electrolyte; Lithium plating; formation of Li grains;
intercalation.

ecomposition; oxidation of the electrolyte; intercalation gradient strains in the
icles; formation of Li grains; crystal structure disordering; transition metal
.

ased EIS prediction with partial charging curves.
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and the evaluation of the impedance spectrum, recorded at 50%
SOC, are presented in Fig. 3. As shown in Fig. 3(a), with the battery
aging, the charging voltage plateaus show an upward trend and
move to the left, corresponding to an increased internal impedance
and a reduction of battery capacity, respectively. For the first 400
cycles, three distinct voltage plateaus I, II and, III could be identi-
fied. As the battery ages, all three plateaus become shorter, and
the most subtle phase II plateau becomes indistinguishable. Con-
verting the voltage-capacity curve to the IC peak in the voltage
range (Fig. 3b), the obtained peaks decrease and shift to the right,
behavior which is associated with increased internal resistance and
loss of active material. As analyzed in section 3.1, peak I is mainly
controlled by the graphite reduction potential. Peak II is almost
Fig. 5. The EIS curve prediction evaluations with different input voltage range for 50% SO
and the ground truth; (d) the RMSE for the Z’’; (e) the MAE for the Z’’; (f) the R2 betwee

216
indistinguishable, and it disappears after a few hundred cycles.
The main peak III (3.65─3.75 V) is controlled by both the reduction
potential of the graphite anode and the oxidation potential of the
NMC cathode, so the decreasing trend of peak III in height (max
DQ
DV) can reflect the degree of loss of positive and negative active
materials. In addition, the loss of lithium ions is usually manifested
as a leftward shift of the DV curve, as shown in Fig. 3(c). The
max Q decrease with the battery aging, and at the same time, the
DV curves shift upwards and left. This is consistent with the aging
results speculated in Section 3.1.

The corresponding battery EIS results are shown in Fig. 3(d).
With the battery aging, Rsei and Rct show an increasing trend, from
less than 10 to over 50 mO. As discussed in Section 3.2, the
C. (a) The RMSE for the Z’; (b) the MAE for the Z’; (c) the R2 between the predicted Z’
n the predicted Z’’ and the ground truth.
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increased Rsei in the high-frequency region and Rct in the middle
frequency region represents an increase in LLI. Besides, the tail of
the impedance spectrum associated with the Li-ion diffusion
shows a decrease in slope with the battery aging, corresponding
to a decreased Y0. The above aging trends and the corresponding
degradation modes and aging mechanisms are summarized in
detail in Table 4. Since the IC and DV curves contain inherent infor-
mation to the charging voltage curves, Table 4 only summarizes
the changes observed in the charging curve.

Based on the quantifiable relationships between Eq. (4) and Eq.
(8) and between Eq. (3) and Eq. (9), it is possible to establish an
accurate physical functional relationship between the charging
curve and impedance spectrum parameters. In other words, the
impedance parameters can be obtained based on the parameters
of the charging voltage curve and vice-vaersa. However, this is
not practical; on the one hand, the algorithm needs to adjust the
algorithm parameters according to different batteries, different
working conditions or even different environments. On the other
hand, the extraction of input features can be uncertain due to the
charging voltage curves containing lots of feature parameters.
Most of these issues can be overcome by using machine learning,
which allows for algorithm self-selection, adaptability, fast speed,
and high accuracy advantages [26] and can be performed to predict
the EIS.

In this work, the max DQ
DV appears in the voltage internal 3.65–

3.75 V in the IC curve, and will be used to estimate the impedance
spectrum at low frequency, since both the max DQ

DV and the low-
frequency impedance spectrum can be used to quantify the same
degradation mode, i.e., LAM. Transforming the charging curve into
an IC curve requires a smoothing process, which can cause data
distortion (especially of the charging plateau). Therefore, we rec-
ommend using the charging curve directly to predict the EIS rather
than converting it to the IC curve. Besides, the lithium loss esti-
mates associated with Rsei and Rct usually require the battery
capacity at the cut-off voltage. However, in real-life application,
it is almost impossible to fully discharge a battery before recharg-
ing it, making it difficult to obtain a complete voltage capacity
curve as well as a normal capacity. The trend of ‘‘left and upward
Fig. 6. The EIS curve prediction results with the input voltage range from 3.65 to 4.2 V fo
The mapping between the predicted Z’ and the real Z’. (c) The mapping between the pre
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shifting” used to indicate the lithium loss may be obtained from
the partial charge curve. Therefore, partial/complete charging
curves will be used to predict the complete EIS by machine learn-
ing methods.
4. Impedance spectrum prediction

4.1. Prediction framework

The proposed framework for the EIS prediction with partial
charging curves is shown in Fig. 4. Firstly, the charging voltage
curve and the EIS curve at different SOCs are collected. Then the
data are preprocessed, where the data are cleaned first. The abnor-
mal values are filtered, and the missing values are filled up in this
process. In addition, the curve is filtered to remove the noise. The
partial voltage range is selected according to the practical require-
ments and the electrochemical analysis in the above section and
the charging voltage curve is interpolated in this range based on
the voltage interval selected as 5 mV in this paper. The third step
is to train the machine learning model via the processed data. Dif-
ferent machine learning models could be selected including gaus-
sian process regression (GPR) [27], linear regression (LR) [28], K-
nearest neighbors (KNN) regression [29], XGBoost [30], artificial
neural network (ANN) [31], and random forest (RF) [32], which
helps evaluate the generalization and robustness of the prediction
framework with various machine learning models. The details
model algorithms of each machine learning method can be
obtained from the corresponding literature. The prediction frame-
work is a sequence-to-sequence way, where the voltage sequence
is the input while the outputs are the predicted Z’ and Z’’
sequences. The parameters of the machine learning models are
trained using the training data. Finally, the trained model is used
for the online prediction with the obtained online measured partial
voltage data. The predictions of the EIS curves at different SOCs
could be obtained by this prediction framework. The prediction
results based on the proposed framework are presented and eval-
uated in the following sections.
r 50% SOC. (a) The predicted curve (dotted lines) and the real curve (solid lines). (b)
dicted Z” and the real Z”. (d) Frequencies of the errors for the predicted Z’ and Z”.



Fig. 7. Prediction evaluation for different SOCs. (a) results for RMSE, (b) results for
MAE, (c) results for R2.
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4.2. Prediction with the different voltage range

Firstly, the different partial charging voltage curves (according
to the available voltage range in practical applications) are used
as input to predict the whole EIS curve. The GPR model is used
as the machine learning model for the evaluations [33]. The predic-
tions of the EIS curves at 50% SOC are demonstrated. Here, the bat-
teries with EIS tests at odd SOC points are used, where 41 samples
are included. 70% of them (i.e., 28 samples) are used for training
and 30% (i.e., 13 samples) are used for validations.

The root means square error (RMSE), mean absolute error
(MAE), and the fitted R square (R2) between the predicted values
and the ground truth with different voltage ranges are shown in
Fig. 5, where both the errors and R2 for the Z’ and Z’’ are included.
It is wished that the less the RMSE and MAE, the better, and the
higher the R2, the better. The results show that generally the errors
become larger and R2 becomes smaller with the decrease of voltage
range, which means generally wider voltage range contains more
information that supports better predictions. However, the results
show that the voltage range from 3.65 to 4.2 V also provides satis-
factory predictions. These confirm the above mechanism analysis
suggesting that the main charging plateau (3.65–3.75 V) derived
from the partial charging curve that can represent shift character-
istics of the whole curve, which can accurately predict the impe-
dance spectrum. As a result, the voltage ranges that have
satisfactory prediction accuracy all contain 3.65–3.75 V.

Therefore, the aging mechanism analysis and the correlation
evaluation among the charging curve, IC / DV curve, and the EIS
curve help select the proper partial voltage range that can offer
physical interpretations and has high performance. This voltage
range (i.e., 3.65–4.2 V) is used in the following evaluations for
other aspects.

The prediction results for the EIS curve at 50% SOC using the
voltage range from 3.65 to 4.2 V are shown in Fig. 6, where the pre-
dicted curve (dotted lines) and the real curve (solid lines) are
shown in Fig. 6(a), the mapping between the predicted Z’ and the
ground truth is shown in Fig. 6(b), the mapping between the pre-
dicted Z” and the ground truth is shown in Fig. 6(c), and the error
occurances of the Z’ and Z” are shown in Fig. 6(d). The results show
that the predicted curves fit well with the real curves, where both
the fitting of the predicted Z’ and the Z” show highly linear map-
pings with the real values with R2 of 0.933 and 0.942, respectively.
The histogram of occurances of the errors of the predicted Z’ and Z”
illustrate that the errors are within 4 mX for Z’ and most of the
errors are less than 2 mX for Z”. Therefore, the results proved that
the predicted curves are close to the real curves for all the tests.

4.3. Prediction at different SOCs

Then, the model is evaluated based on the predictions of the EIS
curves at different SOC points to prove the generalization of the
proposed method at different SOC levels. The machine learning
model and the test ratio are set similarly as in the previous section,
i.e., GPR model and 30% testing ratio. The RMSE, MAE, and R2 for
the predicted Z’ and Z’’ are shown in Fig. 7, while the numerical
results are listed in Table 5 and Table 6, respectively for batch#1
and batch#2. The accurate prediction results prove that the predic-
tion model is suitable for being applied over a wide SOC range,
which means the EIS curve at different SOC points under different
aging status could be predicted. Therefore, the generalization of
the prediction model is accurate, which supports different applica-
tion requirements. The obtained results show that all the RMSE
and MAE are less than 2.8 mX and 1.2 mX for the Z’, all the RMSE
and MAE are less than 1.7 mX and 1.1 mX for the Z’’. The R2 for the
Z’ and Z’’ are larger than 0.875 and 0.915 respectively, whichmeans
that the predicted values are converged to the real values at all the
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SOC stages. The results indicate that the prediction errors for the
20%�80% SOC are less than those in 0–10% and 90–100% SOC
stages. This may be related to the electrochemical stability of the
battery at a moderate SOC range [34].
4.4. Robustness evaluation

Finally, the robustness of the proposed prediction method is
evaluated for different training � testing ratios and considering
different ML algorithms. The errors and the fitted R2 of the predic-
tion results are shown in Fig. 8. Generally, with the reduction of the
training data, the errors become larger and the R2 becomes smaller,
which means the performance becomes poorer with the reduction
of data for the model training. However, the results show that even



Table 5
Results for different SOC with 30% data for testing for batch #1.

Index 10% SOC 30% SOC 50% SOC 70% SOC 90% SOC

RMSE of Z’ (mX) 2.103 1.909 1.902 2.044 2.784
MAE of Z’ (mX) 1.789 1.569 1.574 1.670 2.175
R2 of Z’ 0.953 0.932 0.933 0.941 0.921
RMSE of Z” (mX) 0.846 0.625 0.644 0.807 1.173
MAE of Z” (mX) 0.533 0.391 0.392 0.466 0.632
R2 of Z” (mX) 0.936 0.930 0.942 0.928 0.875

Table 6
Results for different SOC with 30% data for testing for batch #2.

Index 0% SOC 20% SOC 40% SOC 60% SOC 80% SOC 100% SOC

RMSE of Z’ (mX) 2.648 1.874 1.808 1.826 2.014 2.298
MAE of Z’ (mX) 1.822 1.403 1.396 1.438 1.534 1.683
R2 of Z’ 0.959 0.938 0.916 0.929 0.933 0.931
RMSE of Z” (mX) 1.698 0.632 0.543 0.545 0.651 0.790
MAE of Z” (mX) 1.032 0.407 0.325 0.313 0.399 0.493
R2 of Z” (mX) 0.913 0.938 0.945 0.964 0.951 0.943

Fig. 8. Errors and the fitted R2 with different ratios of data for validation.

Table 7
Comparisons with different machine learning algorithms.

Index GPR LR R

RMSE of Z’ (mX) 1.902 5.337 2
MAE of Z’ (mX) 1.574 2.921 1
R2 of Z’ 0.933 0.470 0
RMSE of Z” (mX) 0.644 1.481 0
MAE of Z” (mX) 0.392 0.829 0
R2 of Z” (mX) 0.942 0.692 0
Time (s) 0.598 0.002 1
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with 40% data for training (16 samples) and 60% data for validation
(25 samples), the RMSE and MAE for Z’ are still within 3.02 mX and
2.2 mX respectively, those for Z” are still less than 1.04 mX and
0.63 mX, respectively (Fig. 8a). The R2 for Z’ and Z” are still 0.813
and 0.849 respectively (Fig. 8b). Therefore, the model has good
robustness with the reduction of training data and can still with
satisfactory predict performances.

In order to evaluate the robustness of the proposed prediction
framework, different machine learning algorithms are used. The
detailed process of each machine learning algorithm is described
in supporting note 1. The prediction results are listed in Table 7,
while the errors of each machine learning model are shown in
Fig. S1. The results are obtained by the prediction for the EIS curve
at 50% SOC using 30% data for validation. One can conclude that
different machine learning algorithms are suitable for the predic-
tion of the EIS curve with the proposed framework. Among them,
the GPR has the best accuracy performance, and the calculation
time is also proper for online applications with only 0.598 s in total
for the whole training and prediction process.

Finally, we test our model on the prediction for calendar aging
batteries. The same set of the results for Fig. 6 is used. The predic-
tion results are shown in Fig. 9, which indicates that our model is
also suitable for the prediction under calendar aging. The fitted R2

between the predictions and the ground truth is larger than 0.944.
The errors are less than 1.5 mX for Z” and 4 mX for Z’. The RMSEs
for Z’ and Z” are 1.38 and 0.36 mX, respectively, while the MAEs
are 0.93 and 0.23 mX, respectively. Therefore, our method is
robust for the EIS prediction under both cycling aging and calendar
aging using a partial charging curve.
F XGBoost KNN ANN

.341 3.234 2.133 3.353

.790 2.120 1.475 2.352

.898 0.805 0.915 0.791

.860 1.055 0.730 1.122

.477 0.640 0.427 0.708

.896 0.844 0.925 0.823

.362 1.539 0.002 4.589



Fig. 9. The EIS curve prediction results under calendar aging. (a) The predicted curve (dotted lines) and the real curve (solid lines). (b) The mapping between the predicted Z’
and the real Z’. (c) The mapping between the predicted Z’’ and the real Z’’. (d) Frequencies of the errors for the predicted Z’ and Z”.
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5. Conclusions

In this study, an accurate impedance spectrum prediction from
charging voltage curves is achieved by machine learning methods,
based on the mechanism that both charging curves and impedance
spectrum can achieve the quantification of LAM and LLI. Coin cells
were assembled to clarify the electrochemistry mechanisms of IC
and DV curves at the electrodes level. The results support that
the main peak in the IC curve (3.65–3.75 V) can be used to quantify
the LAM, and the shifting trend of DV curve can be used to quantify
LLI. Furthermore, the high and medium frequency impedance spec-
trum that represents Rsei and Rct can be used to quantify the LLI,
and the low frequency impedance spectrum indicating the diffu-
sion of Li-ions can be used to quantify the LAM. Therefore, a quan-
tifiable potential mechanistic relationship supports the prediction
of EIS by charging curves.

Consistent with the mechanistic analysis, machine learning can
achieve accurate EIS predictions. We optimized the voltage input
interval for prediction and found that it is necessary to include
the range 3.65–3.75 V in the input voltage in order to obtain an
accurate result, which is consistent with the internal mechanism
analysis between the IC curve and EIS. When the input voltage
range is 3.65–4.2 V, reliable results are obtained most of the time
with RMSEs less than 1.9 mO. The majority of the predictions are
less than 4 mO with independent of the considered charging volt-
age ranges. Besides, the impedance spectrum predictions for bat-
tery at different SOCs was also realized. Furthermore, we varied
the proportion of the data set for training and applied different
machine learning methods to evaluate the robustness and general-
ization of the proposed method. We can conclude that 40% data is
enough to obtain an impedance spectrum prediction result with
RMSEs less than 3 mO. Among the considered ML algorithms, the
GPR with multiple outputs model is recommended as the proper
220
choice because of the high accuracy and acceptable computational
burden.
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