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ABSTRACT This paper proposes a transfer learning neural network (TLNN) approach for digital pre-
distortion (DPD) of mm-Wave active phased arrays (APA) operated under variable signal bandwidth
regimes. Compared with the conventional artificial neural network (ANN) method, the proposed approach
can achieve similar linearization performance with much lower computational complexity by transferring
part of a trained model from one bandwidth to another bandwidth. In the recently introduced 5G, the
increased signal bandwidth triggers considerable memory effects in the APA. Moreover, dealing with
different signal bandwidths typically requires a time-consuming recalculation of the predistorter parameters.
In this paper, the authors propose to have those challenges solved by using a DPD model based on the
transfer learning method. The proposed approach was validated with over-the-air (OTA) measurements
on an APA excited with signals of varying bandwidth, namely from 20 MHz to 100 MHz. Experimental
results show a significant reduction in the training time while ensuring good linearization performance.
With the applied TLNN DPD, an 8.5 dB improvement of adjacent channel leakage ratio (ACLR) and 8.6%
points improvement of error vector magnitude (EVM) is achieved. Under the variable bandwidth regime,
the complexity of the DPD model in terms of the number of multiplications is reduced from 199168 to 160.
The proposed TLNN DPD proved to be robust concerning variation in the bandwidth of the APA excitation
signal.

INDEX TERMS Active phased array (APA), artificial neural networks (ANN), transfer learning (TL), digital
pre-distortion (DPD), over-the-air (OTA).

I. INTRODUCTION
Active phased array (APA) transmitters including multiple
antennas operating at mmWave frequencies, which are used
in the recent wireless communication systems, are facing
new challenges in the forms of high bandwidth, high
nonlinearity and mutual coupling between antennas together
with dynamic change of the bandwidth. Digital predistortion
(DPD) techniques based on conventional methods can not
easily handle these new challenges without increasing the

The associate editor coordinating the review of this manuscript and
approving it for publication was Amjad Ali.

computational complexity. Together with the wide band-
width, 5G has introduced a dynamic bandwidth selection
that requires the mobile transmitter to quickly adapt to
different operating conditions. Dynamic bandwidth selection
together with the impact from the transmission channel
makes the need for reusing the adjusted parameters defined
for calibration, linearization, etc. highly important [1]. The
transmission quality of the communication system is to a high
degree dependent on how well it can dynamically change
the bandwidth and power level with minimum cost in terms
of speed and cost. The state-of-the-art (SoA) DPD systems
deployed by the industry have excellent performance for
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FIGURE 1. TLNN-based linearization model.

relatively steady conditions where the bandwidth and power
are not rapidly changed. For cases with a rapid change of
transmission parameters and environment, the existing DPD
methods need to update a huge amount of coefficients which
potentially can make the system complex and slow.

Artificial neural networks (ANN) have been widely
used in modeling nonlinear devices because of their good
approximation ability to nonlinear functions [2], [3]. For wide
bandwidth signals, in particular, the memory effects have a
significant impact. There are generally two dynamic neural
network structures for taking care of memory effects [4].
The first structure, recurrent neural networks (RNNs), utilizes
feed-forward and feedback signal processing and uses output-
to-input time-delays lines. In another structure, a time-
delay neural network (TDNN), combines I/Q processing with
input time-delay lines to handle memory effects. In order
to extract amplitude and phase information from modulated
complex wave-forms, ANNs need to consider operating
with either complex-valued (CV) input signals, weights
and activation outputs, or real-valued (RV) double-inputs
double-outputs (and real weights and activation outputs), i.e.
in the form of multiple I and Q components. CV operation
leads to heavy calculations and a longer training phase [5]
and therefore the proposed model in this work uses the
RV concept. The real-valued time-delay neural networks
(RVTDNNs) offer superior performance and easy baseband
implementation when used for inverse modeling of PAs with
strong nonlinearities and memory effects [6].

However, by increasing the bandwidth and nonlinearity,
the RVTDNN requires a higher input dimension, i.e. larger
number of IQ data, and more hidden layers which make
the model slow. Several works based on transfer learning
have been introduced to cope with these challenges [6], [7].
The study of transfer learning is motivated by the fact that
one can intelligently apply knowledge learned previously
to solve new problems faster or with better solutions [8].
A similar problem also lies in the way of other dense ANN
networks with several layers and neurons used in image
recognition [9] and channel estimation [10], [11]. In these
works, the transfer learning techniques grant the models the

ability to rapid image recognition and channel estimation
by leveraging prior knowledge. Inspired by these works,
this paper investigates applying transfer learning DPD for
bandwidth-scalable APAs. Fig. 1 shows the block diagram
of the actual transfer learning neural network (TLNN)
linearization technique. Part of the narrow bandwidth model
from the previous training has been transferred and combined
with the fine-tuning layers to make the new model for the
wide bandwidth.

This paper is organized as follows: Section I is the
introduction. Section II presents the proposed linearization
method. The measurement setup is in section III. The
optimization of the pre-designed model and the reference
model is described in section IV. Section V is about transfer
learning implementation. Bandwidth-scalable predistortion
results are shown in section VI and finally, the conclusion
of this work is presented in section VII.

II. PROPOSED TLNN LINEARIZATION METHOD
This section describes the selected model for lineariza-
tion, the data structure and architecture of the model
together with a complexity analysis of the proposed neural
network.

A. SISO MODEL FOR TLNN-BASED LINEARIZATION
Several modified DPD algorithms have been introduced to
combat the challenges raised by the recently introduced
hardware configuration for 5GmmWave transmitter based on
the APA [12], [13], [14]. A single input single output (SISO)
model where the entire transmitter has been considered as
a two-port system has been presented using an observation
receiver in far-field in [15], [16], and [17]. A memory
polynomial model (MPM)-based DPD technique based on
this SISO model has been used for the linearization of the
antenna array in presence of crosstalk. It has been shown that
the trained DPD is able to mitigate the impact of cross-talk at
PAs outputs, which is also called loadmodulation, in a limited
range of steering angle. The step size for reusing the trained
model is dependent on the target specification of linearity and
the amount of coupling among the branches of the APAwhich
again is dependent on the size of the array and the distance
between the patches [18]. The potential mismatches between
PAs can be compensated so that they all exhibit the very same
behavior which is presented in [19]. In this way, linearization
in all directions can be achievedwith a singleDPD, in contrast
to linearizing the main beam only. However, this approach
requires analog circuits for compensating the mismatch in
each branch which may introduce high complexity and
delay for large arrays and the potential changes in the PAs’
behaviors due to crosstalk. In the present work, based on the
SISO model, the reference signal for DPD identification is
obtained through far-field measurements of an observation
antenna placed at the main beam direction, Fig. 1, and the
focus here is on the challenges related to high bandwidth and
dynamic bandwidth behavior.
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FIGURE 2. The proposed TLNN model based on RVTDNN. The transferred pre-design model is the frozen model from the previous training and is
combined with the fine-tuning layers to make the new model.

B. DATA STRUCTURE OF THE MODEL
The data structure of the exploited TLNN is shown in Fig. 2,
where yI (n) and yQ(n) are the I/Q components of input to
the ANN and x̂I (n) and x̂Q(n) are the I/Q components of the
output of the network. The data format of the source and
target datasets is the same, and the inputs and outputs are
represented as:

Yn = [yI (n), yI (n− 1), . . . , yI (n−M ),

yQ(n), yQ(n− 1), . . . , yQ(n−M )] (1)

and

Xn =
[
x̂I (n), x̂Q(n)

]
, (2)

where M denotes the number of delay lines at the input of
the network. The procedure for training is as follows: a set
of source datasets, e.g. measured IQ samples of a 5G signal
with 20MHz channel bandwidth, are used for offline training.
Part of the network is then used as a transfer learning model
for the target dataset, which is a 5G signal that can have the
same or different channel bandwidth. As illustrated in Fig. 2,
the first k layers of themodel,FCk , are used for extracting the
nonlinear characteristics of the APA in low bandwidth cases
and are frozen after executing offline training. The output of
the frozen layers, Tn, is written as:

Tn = f frozen (Xn) . (3)

Here, f frozen(.) indicates the function representing the frozen
layer. The block diagram in Fig. 2 represents a generic
implementation of the TL concept.

C. TRANSFER LEARNING DPD ARCHITECTURE
The proposed DPD architecture used in this work is
based on RVTDNN, where an arbitrary number of mem-
ory taps can be assessed [6]. The same taps configu-
ration is employed between input and feedback signals
regardless of the physics to be modeled. The proposed

architecture has a fully-connected structure and the input-
output relationship between the hidden layers is defined
as [21], [22], [23]:

y(j) = f
(
Wx(j−1)

+ B
)

, (4)

where j is the j-th fully connected layer and f (.) is the
activation function and y(j) is a P × 1 vector representing
the output values of the j-th layer, W is a P × Q matrix
representing the trainable coefficients, x(j−1) is aQ× 1 vector
representing the outputs of the previous layers and B is a
P × 1 vector representing the trainable biases. Thus, the
number of outputs of the previous layer is defined by Q,
and the number of inputs to the next layer is defined as
P. By using the activation function, denoted as f in Fig. 2,
any arbitrary nonlinear functions can be fitted. The proposed
RVTDNN architecture uses the rectified linear units (ReLU)
activation function, which is less computationally expensive
than hyperbolic tangent (Tanh) and Sigmoid because it
involves simpler mathematical operations [24], [25]. The
ReLU activation function is defined as:

σReLU(x) = max(0, x) (5)

The ReLU activation function introduces nonlinearity by
setting negative inputs to 0, which also adds sparsity to the
ANN and can simplify the computations.

The fine-tuning layers denoted by z, where z = N − k ,
are defined as transferred layers (TL). The output of the i-th
fine-tuning layers, (TL)i, is written as:

(TL)i = f1
(
wTi · (TL)i−1 + bi

)
, i = 1, 2, . . . , z (6)

wherewTi and bi are the weights and biases of the i-th transfer
layer and the final output, Y ′

n is defined as:

Y ′
n = f2(wTout · (TL)z + bout ), (7)

where wTout and bout denote the weights and biases of the
output layer and (TL)z is the output of z-th transfer layer.
f1(.) and f2(.) are the activation functions which can be
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FIGURE 3. Block diagram of measurement setup in compact antenna test range chamber [20].

FIGURE 4. Measurement setup using compact antenna test range chamber.

chosen differently. In the presented work, both activation
functions are of the ReLU type. The experimental dataset is
divided into a training set and a validation set at 70% and
30%, respectively. The weights and biases of the network are
learned by choice of an appropriate loss function. The two
most used loss functions for regression tasks are mean square
error (MSE) loss and Huber loss. The Huber loss is a robust
loss function used for a wide range of regression tasks [26]
and it is used for the presented work. The Huber loss function
behaves quadratic for small residuals and linearly for large
residuals and is defined as [27]:

Lδ(Y ′
n,Yn) =


1
2
(Y ′
n − Yn)

2 for
∣∣Y ′
n − Yn

∣∣ ≤ δ

δ
∣∣Y ′
n − Yn

∣∣ −
1
2
δ2 otherwise,

(8)

where δ, set to 1, is the parameter of Huber loss. Y ′
n and Yn

denote the observation and prediction values, respectively.
Through backward propagation and using the Adam opti-
mization algorithm, the local minimum is approached. The
measured data are collected and uploaded using MATLAB.
The ANN is built and trained using the Keras 2.3.0-tf package
in Python.

D. COMPLEXITY OF THE PROPOSED ANN
The complexity analysis is madewith a starting point in Eq. 4,
assuming only fully connected layers with equal amounts
of neurons and P = Q. Between each fully connected
layer, there are P2 multiplications. The number of operations
between the input layer and the first hidden layer is 2MP
multiplications, where M is the number of time delays and
P is the number of neurons. There are 2P multiplications
between the last hidden layer and the output layer. The total
amount of multiplications is:

Cm,ANN = Ca,ANN = 2MP+ (J − 1)P2 + 2P, (9)

where the number of hidden layers is defined by J .

III. OTA MEASUREMENTS SETUP
The block diagram of the OTA measurements setup using a
compact antenna test range (CATR) is shown in Fig. 3 [20]
and the actual laboratory setup is in Fig. 4. The 5G signal
generator (R&S SMBV100B) generates the intermediate
frequency (IF) signal for transmitter input. It is centered
at 3 GHz and generates an up to 100 MHz bandwidth 5G NR
signal. The modulation format for the 100 MHz bandwidth
is 3GPP downlink OFDM 64-QAM, sub-carrier spacing of
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30 kHz and 3168 active sub-carriers. With 3 sub-carrier in
each resource block (RB), it ends up to 1056 RB. The sample
rate of the transmitter and receiver signals is 400 MHz which
gives an oversampling rate of 4. The peak-to-average power
ratio (PAPR) of the input signal, after capturing and loading
to the generator, is 11.6 dB. A 12.5 GHz continued-wave
signal of 12.5 GHz has been generated by the local oscillator
(LO) generator (Agilent E3247C) and multiplied to 25 GHz
using (MITEQ-MAX2M200400) frequency multiplier. This
LO signal is used for up-converting the 3 GHz modulated
IF signal to 28 GHz and down-converted it back to 3 GHz.
For up-converting the IF signal to the 28 GHz carrier
frequency and for down-converting the signal back to IF,
two active mixers operating in their highly linear region
are utilized (KTX321840 and KRX321840). For selecting
the up-converted modulated signal and suppressing the LO
leakage and image frequency signals, a 28 GHz band-pass
filter is used. The pre-amplifier is a high-power device
operating more than 10 dB below its compression point. The
output signal from the pre-amplifier is highly linear and the
signal power is sufficient to drive the 4 × 4 APA, Amotech
AAiPK428GC-A0404 [28], close to its saturated region.
The APA device includes four Anokiwave AWMF-0158
transceivers [29] and integrates 16 branches of attenuators,
phase shifters and PAs and 16 patch antennas in a 4× 4 APA.
The equivalent isotropic radiated power (EIRP) is 39.8 dBm
at an input power of 5 dBm [28]. A host PC is used for
capturing and uploading the IQ samples. The measurement
setup is power calibrated to keep all other components in their
linear operating regions and the only source of nonlinearity
is related to the APA. For controlling the main beam of the
array the code book and software tools of Amotech have
been used. Fig. 5a and Fig. 5b illustrate the amplitude to
amplitude (AMAM) gain distortion and the amplitude to
phase (AMPM) phase distortion at the APA output. Fig. 5c
shows the time-domain compression of the waveform at
the APA output. All measurements are based on 100 MHz
bandwidth.

IV. ANN OPTIMIZATION RESULTS
The ANN optimization methodology presented in [30] was
used in this paper. The methodology is applied to an
ANN model trained using two signal bandwidth values,
namely 20 MHz and 100 MHz. When moving from the
classical ANN model to the proposed TLNN approach,
part of the optimized 20 MHz model will be frozen and
used as the pre-design model for TLNN. The results from
ANN optimization of 100 MHz bandwidth are used as the
benchmark to compare with the results obtained using TLNN.
This chapter includes the ANN optimization procedure and
verification results carried out for an RF signal bandwidth
of 20 MHz. The target of the ANN optimization is to
minimize the number of time-delays and the number of
neurons while the desired levels of linearization in terms
of the adjacent channel leakage ratio (ACLR) and the error
vector magnitude (EVM) are maintained. 100 k I/Q samples

FIGURE 5. APA input-output waveforms. (a): AMAM gain distortion,
(b) AMPM phase distortion, (c): Time-domain gain compression.

of the input and output signals are captured, time-aligned
and used to train several ANN predistorters. There are four
fully connected hidden layers in the model based on the
results obtained in [30] where a number above four couldn’t
improve the linearization performance anymore. The time-
delays parameter is swept from 3 to 20 and the neurons
are swept from 40 to 480. The optimization results are
assessed by constructing the network to use 70 % of the
I/Q data for training and 30 % for validation. Fig. 6 shows
ANN parameter optimization results of linearization of the
narrow-bandwidth signal, where the optimal choice is a
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FIGURE 6. ANN parameter optimization results of linearization of the
narrow bandwidth signal. (a): The ACLR (average left/right levels)
improvements [dB], (b): The EVM improvements [%], (c): The number of
required multiplications for each case.

trade-off between the ACLR, the EVM and the number of
multiplications. By keeping the number of time delays to
4 and the number of neurons to 256, it is possible to achieve
an ACLR improvement of 13.1 dB, as shown in Fig. 6a,
and EVM improvement of 8.8 % points, Fig. 6b, while
keeping the number of multiplications as low as possible,
i.e. app. 199 k, Fig. 6c. Increasing the number of neurons to
higher than 256will lead to ACLR incremental improvements

FIGURE 7. ANN-based results for 20 MHz BW using 256 neurons and four
time-delays. (a): The AM/AM gain distortion, (b): The AM/PM gain
distortion, (c): The power spectral density.

below 0.4 dB and EVM incremental improvements below
0.2 % points, which we consider negligible for the sake of
our optimization procedure as shown in Fig. 6a-b. There
is a clear indication from Fig. 6c that in a dense network,
with several hidden layers, the number of multiplications
will increase drastically by the number of neurons. This
is in agreement with Equation (9) where the number of
multiplications increases approximately as the square of the
number of neurons when the number of the hidden layers
exceed one. So it is important to keep as low as possible
the number of neurons for a dense network with several
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FIGURE 8. The implemented architecture of the TLNN. The transferred pre-design model is the frozen model from the previous training and is combined
with the fine-tuning layers to make the new model.

layers, for achieving a lower training time and computational
complexity. In [30] a procedure to find the optimal values for
the number of layers and the number of neurons has been
proposed. The PSD result is in Fig. 7a shows the achieved out-
of-band improvement obtained by deploying the proposed
optimized ANN-based DPD. Fig. 7b and Fig. 7c show the
in-band AM/AM and AM/PM gain distortions related to
EVM. These results are perfectly aligned with the expected
performance based on the proposed optimization procedure,
whose results are summarized in Fig. 6.

V. TRANSFER LEARNING IMPLEMENTATION
For implementing the transfer learning algorithm, the part
of the model of 20 MHz bandwidth is copied and used as a
transferred pre-designmodel for linearization of the 100MHz
bandwidth signal. This is done by freezing three hidden
layers from the trained model of 20 MHz bandwidth.
The frozen layers are then combined with the fine-tuning
layers to build the model for 100 MHz bandwidth. The
implemented architecture of the TLNN is in shown Fig. 8.
Table 1 summarizes the implementation procedure used for
the proposed method. Table 2 shows network configuration
parameters for regular ANN and TLNN. By using the
transfer learning approach, the number of hidden layers is
reduced from four to one and the number of neurons is
reduced from 256 to 16. Furthermore, the model from one
bandwidth is transferred to another bandwidth which means
the transferred pre-designed model already includes most of
the knowledge of the nonlinear behavioral model of APA.

VI. BANDWIDTH-SCALABLE PREDISTORTION RESULTS
First, the model for the reference 100 MHz bandwidth
based on regular ANN, has been optimized using the
same procedure as described in section IV. This model is
constructed by using four hidden layers with 256 neurons
in each. Linearization results of this approach are used
for bench-marking of the TLNN-based linearization of
the 100 MHz bandwidth. For TLNN, the frozen pre-defined
model from 20 MHz training and one fully connected fine-
tuning hidden layer are used. This model has been verified
with four different sets of neurons, 128, 64, 32 and 16 in
the fine-tuning layer. The results for each set of neurons are

TABLE 1. Algorithm used for TLNN training.

TABLE 2. Network configuration parameters for Regular ANN and TLNN.

bench-marked with the regular ANN which has four fully
connected layers and 256 neurons in each. The structures of
the input and output layers of the networks are the same for
both regular and TLNN. The number of multiplications based
on Equation (9) for regular ANN and TLNN are given as:

Cm,ANN = 2 ∗ 4 ∗ 256 + (4 − 1) ∗ 2562 + 2 ∗ 256

= 199168, (10)

and for TLNN with 1 hidden layer and 16 neurons, it will
result to:

Cm,TNN = 2 ∗ 4 ∗ 16 + 2 ∗ 16

= 160 (11)
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FIGURE 9. Regular ANN vs. TL-ANN for 50 MHz BW. (a): The AM/AM gain distortion, (b): The AM/PM gain distortion, (c) Power spectral density (e.g.
TLNN-H1N8, means TLNN with 1 hidden layer and 8 neurons).

TABLE 3. Performance comparison between regular ANN and the proposed TLNN for 50 MHz bandwidth signal. *) ACLR is based on the average of the
left and the right sides.

A. DISCUSSION
A comparison of the verification results in terms of AM/AM
and AM/PM distortion gains and PSD are illustrated in

Fig. 9 and Fig. 10 for respectively 50 MHz and 100 MHz
bandwidths. The TLNN linearization can provide the same
level of linearity as the regular ANN. Reducing the number
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FIGURE 10. Regular ANN vs. TL-ANN for 100 MHz BW. (a): The AM/AM gain distortion, (b): The AM/PM gain distortion, (c) Power spectral density (e.g.
TLNN-H1N8, means TLNN with 1 hidden layer and 8 neurons).

TABLE 4. Performance comparison between regular ANN and the proposed TLNN for 100 MHz bandwidth signal. *) ACLR is based on the average of the
left and the right sides.

of neurons to e.g. 8 neurons, results in degradation of the
performance in terms of EVM and ACLR. This highlights
the role of the fine-tuning layers. Detailed performance

comparisons between regular ANN and the proposed TLNN
are in Table 3 and Table 4 for respectively 50 MHz
and 100 MHz bandwidths. These results show that it is pos-
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sible to achieve approximately the same linearization perfor-
mance compared to regular ANN, i.e. an EVM improvement
of 8.6 % points and ACLR improvement of 9 dB, by using
TLNN with 16 neurons as is shown in Table 4. Hence the
proposed approach proves to be robust versus signal band-
width and can be used as a bandwidth-scalable linearization
technique. On the other hand, TLNN allows for reducing the
number of hidden layers (through re-using the frozen model)
and the number of neurons which results in the relaxation
of the computational complexity in terms of the number
of multiplications. The outcomes of the performed lineariza-
tion experiments can be summarized as follows:

1) By using the SoA conventional RVTDNN approach for
linearization of the actual APA, we need an ANN DPD
of 256 neurons, 4 hidden layers for 20 MHz signal
linearization, and another ANN DPD of 256 neurons,
4 hidden layers multiplications for 100 MHz signal
linearization.

2) TLNN approach instead can reuse the model calculated
for 20 MHz and need only additional 16 neurons and
one layer for 100 MHz signal linearization.

3) For an adaptive DPD, the time to calculate the
incremental layers in TLNN is reduced and grants the
models the ability to be adaptively re-identified.

4) A clear advantage delivered by the proposed is in
terms of the LUT (look-Up Table) size necessary
to implement the DPD. Instead of storing two com-
pletely different sets of ANN DPD parameters (SoA
approach), one for the narrow bandwidth use case and
the other for the wide bandwidth use case, system
engineers will need to store much fewer parameters for
linearizing the wide bandwidth use case, because they
can reuse most of the ones calculated for the narrow
bandwidth.

A long duration of the algorithm identification will be
a problem for an adaptive online NN-based linearization
technique. However, using the proposed TLNN, the time
to calculate the incremental layers will be reduced and
consequently relax the adaptive online processing issue. The
HW implementation itself is challenged by the realization
of the online OTA feedback receiver. There is a need for a
far-filed observation antenna for providing the OTA feedback
signal for adaptive online DPD. The feedback signal could be
obtained from the receiver antenna of the same device, but the
proper implementation techniques are still under discussion
in industry and academia. One promising proposal is to use
the auxiliary antenna connection (the diversity or MIMO
antenna) [31]. However, there may be an issue with the low
coupling ratio between the transmitter and these auxiliary
antennas.

VII. CONCLUSION
This paper presented a bandwidth-scalable over-the-air DPD
of an APA transmitter based on a TLNN method. The
proposed methodology allows for reducing the hardware
implementation complexity in terms of the number of multi-

plications while ensuring the same linearization performance
as a regular ANN. In the proposed method, part of the model
is fixed as a pre-designed model, and then an incremental
model component was trained and deployed for fine-tuning
the remaining adaptation layers to build the final model.
This paper demonstrated how such a TL technique could be
used to implement a bandwidth-scalable digital predistorter.
The ANN layers identified for one signal bandwidth were
reused and enhanced with an incremental neuron layer to
allow the ANN predistorter to successfully linearize input
signals with wider bandwidths. The proposed linearization
technique was validated with measurements on a state-of-the-
art 4 × 4 APA and a setup using up- and down-conversion
from sub-6 GHz to 28 GHz for verification. Experimental
results showed that our optimized ANN-based DPD could
linearize a 20 MHz 5G signal with an EVM improvement
of 8.8 % points and an ACLR improvement of 13.3 dB.
It was also demonstrated that using TL, the same ANN DPD
can be reused to linearize a 5G signal with a much wider
bandwidth, namely 100 MHz. To do so, only an additional
layer of 16 neurons was added on top of the reused ANN
DPD. Such an approach allowed us to obtain an EVM
improvement of 8.6 % points and an ACLR improvement of
8.5 dB. The multiplications of the ‘‘Frozen layers’’ should
also be considered when evaluating the complexity of the
overall TLNN-based DPD actuator, however, the complexity
of TLNN-based DPD model identification is reduced to
a factor of 160/199168 compared with the conventional
ANN. The reduced complexity allows to bring down the
cost of the implementation using digital hardware. Further
research is being conducted to make the proposed bandwidth-
scalable DPD fully robust concerning the signal bandwidth
and other transmitter operating conditions. Our future goal
is to enhance the TL methodology to obtain a universal set of
parameters that can be fully reused to linearizemultiple signal
bandwidths. Such a result would allow lowering further the
complexity and cost of the DPD implementation on digital
hardware. Furthermore, we expect that if the average output
power and the peak-to-average power ratio change greatly,
the nonlinear characteristics of the power amplifier will also
change. An investigation of the capability of TL-based ANN
for power-scalable scenarios may also be interesting for
future work.
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